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APPROXIMATION PROPERTIES OF (p,q)–GAMMA OPERATORS

WENTAO CHENG ∗ , WENHUI ZHANG AND AXIU SHU

(Communicated by V. Gupta)

Abstract. In this paper, we introduce a new analogue of Gamma operators and we call it as
(p,q) -Gamma operators which is a generalization of q -Gamma operators. Moments of these
operators is estimated. And some other results of these operators are studied by means of mod-
ulus of continuity and Peetre K -functional. Then, some theorems concerned with the rate of
convergence and the weighted approximation for these operators are also obtained. Finally, a
Voronovskaya asymptotic formula is also presented.

1. Introduction and definitions

Let f be a function defined on [0,∞) and satisfy the following growth condition:

| f (x)| � Me−β x (M > 0;β � 0;x → ∞). (1)

In [18], Zeng investigated and studied some approximation properties of the following
sequence of linear positive operators (named Gamma operators)

Gn( f ;x) =
1

xnΓ(n)

∫ ∞

0
f
( t

n

)
tn−1e−

t
x dt. (2)

During the last decade, the wide application of q -calculus in the field of approx-
imation theory has led to the discovery of new generalizations of classical operators.
For more comprehensive details, the readers should look through the references mate-
rial [1], [14], [15]. In [3], Cai introduced and studied q -analogue of Gamma operators
as follows:
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DEFINITION A. For f ∈C[0,∞) satisfies (1), q∈ (0,1) and n∈N , the q-Gamma
operators Gn,q( f ;x) is defined by

Gn,q( f ;x) =
1

xnΓq(n)

∫ ∞/A

0
f

(
t

[n]q

)
tn−1Eq

(
−qt

x

)
dqt.

Stancu generalization of Gn,q( f ;x) was discussed and studied in [12]. Nowadays,
with the rapid development of the post-quantum calculus, which called the (p,q)-
calculus for short, the generalizations of several classical operators have been stud-
ied intensively (Such as [4, 5, 9]) since Mursaleen et al. first defined and constructed
(p,q)-Bernstein operators[10] and (p,q)-Bernstein-Stancu operators[11]. The (p,q)-
calculus has been used in many other fields, such as Lie group theory, CAGD, physical
sciences(see [7], [16]). Let us recall the basic notations of (p,q)-calculus which can be
found in [15].

For any fixed real number p > 0, q > 0, the (p,q)-integers [m]p,q are defined by

[m]p,q = pm−1 + pm−2q+ pm−3q2 + · · ·+ pqm−2 +qm−1 =

⎧⎪⎪⎨
⎪⎪⎩

pm−qm

p−q , p �= q �= 1;
mpm−1, p = q �= 1;
[m]q, p = 1;
m, p = q = 1,

where [m]q denotes the q -integers and m = 0,1,2, · · · . Also (p,q)-factorial is defined
as follows:

[m]p,q! =

{
[1]p,q[2]p,q · · · [m]p,q, m � 1;

1, m = 0.

Now, we introduce two types of (p,q)-analogues of exponential function ep,q(x)
and Ep,q(x) (see [2]):

ep,q(x) =
∞

∑
m=0

p
m(m−1)

2 xm

[m]p,q!
,x ∈ R, |p| < 1 and |q| < 1;

Ep,q(x) =
∞

∑
m=0

q
m(m−1)

2 xm

[m]p,q!
,x ∈ R, |p| < 1 and |q| < 1.

Let f be an arbitrary function. The improper (p,q)-integral of f (x) on [0,∞) is
defined as (see [13])

∫ ∞

0
f (x)dp,qx = (p−q)

∞

∑
i=−∞

qi

pi+1 f

(
qi

pi+1

)
,0 <

q
p

< 1.

The (p,q)-Gamma function of the second kind was defined in [13] as follows

γp,q(z) =
∫ ∞

0
q

z(z−1)
2 tz−1ep,q(−pt)dp,qt,R(z) > 0.
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Meantime, the (p,q)-Gamma function fulfils the following relation

γp,q(z+1) = [z]p,qγp,q(z),

moreover, for any nonnegative integer n > 0, the following relation holds

γp,q(n+1) = [n]p,q!.

Now, we construct (p,q)-Gamma operators using the (p,q)-Gamma function of
the second kind preserving linear functions as:

DEFINITION 1. For f ∈C[0,∞) satisfies (1), 0< q< p � 1 and n∈N , the (p,q)-
analogue of Gamma operators (2) are defined as

Gp,q
n ( f ;x) =

1
xnγp,q(n)

∫ ∞

0
f

(
qnt

[n]p,q

)
q

n(n−1)
2 tn−1ep,q

(
− pt

x

)
dp,qt.

This paper is organized as follows: In Section 1, we give some basic notations
and the definition of (p,q)-Gamma operators. In Section 2, we present basic lemmas
and estimate the moments of the operators. In Section 3, we present a direct result of
(p,q)-Gamma operators in terms of first and second order modulus of continuity. In
Section 4, we deal with the rate of convergence. In Section 5, we study the weighted
approximation of the (p,q)-Gamma operators. In Section 6, we obtain Voronovskaja
type asymptotic formula.

2. Auxiliary results

In this section, in order to prove our main results, we first establish some useful
lemmas.

LEMMA 1. Let 0 < q < p � 1 , x ∈ [0,∞) and k = 0,1, · · · , we have

Gp,q
n (tk;x) =

xkq−
k(k−1)

2 [n+ k−1]p,q!
[n]kp,q[n−1]p,q!

.

Proof. Direct computation gives

Gp,q
n (tk;x) =

1
xnγp,q(n)

∫ ∞

0

(
qnt

[n]p,q

)k

q
n(n−1)

2 tn−1ep,q

(
− pt

x

)
dp,qt

=
xk

[n]kp,qγp,q(n)

∫ ∞

0
q

n(n−1)
2 +nk

( t
x

)n+k−1
ep,q

(
− pt

x

)
dp,q

( t
x

)

=
xkq−

k(k−1)
2

[n]kp,qγp,q(n)

∫ ∞

0
q

(n+k)(n+k−1)
2

( t
x

)n+k−1
ep,q

(
− pt

x

)
dp,q

( t
x

)

=
xkq−

k(k−1)
2 [n+ k−1]p,q!

[n]kp,q[n−1]p,q!
.

Lemma 1 is proved. �
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LEMMA 2. Let 0 < q < p � 1 , x ∈ [0,∞) , we have

Gp,q
n (1;x) = 1, Gp,q

n (t;x) = x, Gp,q
n (t2;x) =

(
1+

pn

q[n]p,q

)
x2, (3)

Gp,q
n (t3;x) =

(
1+

pn ([2]p,q +q)
q2[n]p,q

+
p2n

q3[n]3p,q

)
x3,

Gp,q
n (t4;x) =

(
1+

(
q2 +q[2]p,q +[3]p,q

)
pn

q3[n]p,q
+

(
[2]p,q[3]p,q +q[3]p,q +q2[2]p,q

)
p2n

q5[n]2p,q

+
[2]p,q[3]p,qp3n

q6[n]3p,q

)
x4.

Proof. From Lemma 1, we get the first and second equalities of (3) easily. Using
[n+m]p,q = qm[n]p,q + pn[m]p,q , we have

Gp,q
n (t2;x) =

[n+1]p,q

q[n]p,q
x2 =

(
1+

pn

q[n]p,q

)
x2.

Next,

Gp,q
n (t3;x) =

[n+1]p,q[n+2]p,q

q3[n]2p,q
x3 =

(q[n]p,q + pn)(q2[n]p,q + pn[2]p,q)
q3[n]2p,q

x3

=

(
1+

pn ([2]p,q +q)
q2[n]p,q

+
p2n

q3[n]3p,q

)
x3.

Finally,

Gp,q
n (t4;x) =

[n+1]p,q[n+2]p,q[n+3]p,q

q6[n]3p,q
x4

=
(q[n]p,q + pn)(q2[n]p,q + pn[2]p,q)(q3[n]p,q + pn[3]p,q)

q6[n]3p,q
x4

=
(

1+

(
q2 +q[2]p,q +[3]p,q

)
pn

q3[n]p,q
+

(
[2]p,q[3]p,q +q[3]p,q +q2[2]p,q

)
p2n

q5[n]2p,q

+
[2]p,q[3]p,qp3n

q6[n]3p,q

)
x4.

Lemma 2 is proved. �
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LEMMA 3. Let 0 < q < p � 1 , x ∈ [0,∞) , we have

Gp,q
n (t− x;x) = 0;

A(x) := Gp,q
n

(
(t− x)2;x

)
=

pn

q[n]p,q
x2; (4)

Gp,q
n

(
(t − x)4;x

)
=

pn(p−q)2

q3[n]p,q
x4 +

(
[2]p,q[3]p,q +q[3]p,q +q2[2]p,q−4q2

)
p2n

q5[n]2p,q
x4

+
[2]p,q[3]p,qp3n

q6[n]3p,q
x4.

Proof. Because Gp,q
n (t − x;x) = Gp,q

n (t;x)− x , Gp,q
n ((t − x)2;x) = Gp,q

n (t2;x)−
2Gp,q

n (t;x) + x2 and Gp,q
n ((t − x)4;x) = Gp,q

n (t4;x)− 4xGp,q
n (t3;x) + 6x2Gp,q

n (t2;x) −
4x3Gp,q

n (t;x)+ x4 , and from Lemma 2, we obtain Lemma 3 easily. �

REMARK 1. The sequences (pn) , (qn) satisfying 0< qn < pn < 1 such that pn →
1, qn → 1 and pn

n → a , qn
n → b , [n]pn,qn → ∞ as n → ∞ where 0 � a,b < 1, then:

1. lim
n→∞

[n]pn,qnG
pn,qn
n ((t− x)2;x) = ax2 ;

2. lim
n→∞

[n]pn,qnG
pn,qn
n ((t− x)4;x) = 0.

3. Local approximation

Let CB[0,∞) be the space of all real-valued continuous bounded functions f on
[0,∞) , endowed with the norm ‖ f‖ = sup

x∈[0,∞)
| f (x)| . The first-order and second-order

modulus of continuities, the Peetre’s K -functional of the function f ∈ CB[0,∞) are
defined by for δ > 0

ω( f ;δ ) = sup
0<t�δ

sup
x∈[0,∞

| f (x+ t)− f (x)|,

ω2( f ;δ ) = sup
0<t�δ

sup
x∈[0,∞

| f (x+2t)−2 f (x+h)+ f (x)|,

K2( f ;δ ) = inf
g∈C2

B[0,∞)
{‖ f −g‖+ δ‖g′′‖},

where C2
B[0,∞) := {g ∈ CB[0,∞) : g′,g′′ ∈ CB[0,∞)} . By [6], there exists an absolute

constant M > 0 such that
K2( f ;δ ) � Mω2( f ;

√
δ ). (5)

LEMMA 4. For f ∈CB[0,∞) , we have

|Gp,q
n ( f ;x)| � ‖ f‖.

Proof. The proof of this lemma is obvious. �
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THEOREM 1. Let f ∈ CB[0,+∞) , 0 < q < p � 1 , then for every x ∈ [0,∞) and
n > 2 we have

|Gp,q
n ( f ;x)− f (x)| � Cω2

(
f ,
√

A(x)
)

,

where C is some positive constant and A(x) is given by equation (4).

Proof. For all g ∈C2
B[0,∞) , using the Taylor’s expansion for x ∈ [0,∞) , we have

g(t) = g(x)+g′(x)(t − x)+
∫ t

x
(t −u)g′′(u)du.

Applying the operators Gp,q
n to both sides of the equality above and using Lemma 3,

we get

|Gp,q
n (g;x)−g(x)|=

∣∣∣∣Gp,q
n

(∫ t

x
(t−u)g′′(u)du;x

)∣∣∣∣� Gp,q
n

(∣∣∣∣
∫ t

x
(t −u)g′′(u)du

∣∣∣∣ ;x
)

� Gp,q
n

(‖g′′‖(t− x)2;x
)

� A(x)‖g′′‖.
By Lemma 4 , we have

|Gp,q
n ( f ;x)− f (x)| � |Gp,q

n ( f −g;x)− ( f −g)(x)|+ |Gp,q
n (g;x)−g(x)|

� 2‖ f −g‖+A(x)‖g′′‖.

Lastly, taking infimum on both side of the equality above over all g ∈C2
B[0,∞)

|Gp,q
n ( f ;x)− f (x)| � 2K2 ( f ;A(x))

for which we have the desired result by (5). This completes the proof of Theorem
1. �

THEOREM 2. Let 0 < γ � 1 and E be any bounded subset of the interval [0,∞) .
If f ∈CB[0,∞) is locally in Lip(γ) , i.e. , the condition

| f (x)− f (t)| � L|x− t|γ ,t ∈ E and x ∈ [0,∞)

holds, then, for each x ∈ [0,∞) , we have

|Gp,q
n ( f ;x)− f (x)| � L

{
(A(x))

γ
2 +2(d(x;E)γ)

}
,

where L is a constant depending on γ and f ; and d(x;E) which is the distance between
x and E is defined by

d(x;E) = inf{|t− x| : t ∈ E}.

Proof. From the properties of infinum, at least an point t0 exists in the closure of
E , that is t0 ∈ E , such that

d(x;E) = |t0− x|.
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Using the triangle inequality, we have

|Gp,q
n ( f ;x)− f (x)| � Gp,q

n (| f (t)− f (x)|;x)
� Gp,q

n (| f (t)− f (t0)|;x)+Gp,q
n (| f (t0)− f (x)|;x)

� L(Gp,q
n (|t− t0|γ ;x)+Gp,q

n (|t0 − x|γ ;x))
� L(Gp,q

n (|t− x|γ ;x)+2|t0− x|γ) .

Choosing a1 =
2
γ

and a2 =
2

2− γ
and using the well-known Hölder inequality

|Gp,q
n ( f ;x)− f (x)| � L

{
(Gp,q

n (|t− x|γa1 ;x))
1
a1 (Gp,q

n (1aa ;x))
1
a2 +2|t0− x|γ

}

� L

{(
Gp,q

n ((t− x)2;x)
) γ

2 +2|t0− x|γ
}

� L
{

A
γ
2 (x)+2(d(x;E))γ

}
.

This completes the proof. �

4. Rate of convergence

Let Bx2 [0,∞) be the set of all functions f defined on (0,∞) satisfying the con-
dition | f (x)| � Mf (1 + x2) , where Mf > 0 is a constant depending only on f . Let
Cx2 [0,∞) denote the subset of all continuous functions in Bx2 [0,∞) . Let C∗

x2 [0,∞)

be the subset of all functions f ∈ Cx2 [0,∞) with the norm ‖ f‖x2 = sup
x∈[0,∞)

| f (x)|
1+ x2 and

C∗
x2 [0,∞) =

{
f ∈Cx2 [0,∞) : lim

x→∞

| f (x)|
1+ x2 < ∞

}
. Meantime, we denote the modulus of

continuity on f on the closed interval [0,a] , a > 0 by

ωa( f ,δ ) = sup
|t−x|�δ

sup
x,t∈[0,a]

| f (t)− f (x)|.

Obviously, for the function f ∈Cx2 [0,∞) , the modulus of continuity ωa( f ,δ ) tends to
zero as δ → 0+ . Now we give the theorem about the rate of convergence theorem for
the operators Gp,q

n ( f ;x) .

THEOREM 3. Let f ∈Cx2 [0,∞) , 0 < q < p � 1 and ωa+1( f ,δ ) be its modulus of
continuity on the finite interval [0,a+1]⊂ [0,∞) , where a > 0 . Then, for every n > 2 ,

‖Gp,q
n ( f ;x)− f (x)‖C[0,a] � 4Mf (1+a2)A(a)+2ωa+1

(
f ,
√

A(a)
)

.

Proof. For all x ∈ [0,a] and t > a+ 1, we easily have (t − x)2 � (t − a)2 � 1,
therefore,

| f (t)− f (x)| � | f (t)|+ | f (x)| � Mf (2+ x2 + t2) = Mf
(
2+ x2 +(x− t− x)2)

� Mf
(
2+3x2 +2(x− t)2)� Mf (4+3x2)(t− x)2 � 4Mf (1+a2)(t − x)2,

(6)
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and for all x ∈ [0,a] , t ∈ [0,a+1] and δ > 0, we have

| f (t)− f (x)| � ωa+1( f , |t − x|) �
(

1+
|t− x|

δ

)
ωa+1( f ,δ ). (7)

From (6) and (7) , we get

| f (t)− f (x)| � 4Mf (1+a2)(t − x)2 +
(

1+
|t− x|

δ

)
ωa+1( f ,δ ).

By Schwarz’s inequality and Lemma 3, we have

|Gp,q
n ( f ;x)− f (x)| �Gp,q

n (| f (t)− f (x)|;x)

�4Mf (1+a2)Gp,q
n ((t − x)2;x)+Gp,q

n

((
1+

|t− x|
δ

)
;x

)
ωa+1( f ,δ )

�4Mf (1+a2)Gp,q
n ((t − x)2;x)+ ωa+1( f ,δ )

×
(

1+
1
δ

√
Gp,q

n ((t − x)2;x)
)

�4Mf (1+a2)A(x)+ ωa+1( f ,δ )
(

1+
1
δ
√

A(x)
)

�4Mf (1+a2)A(a)+ ωa+1( f ,δ )
(

1+
1
δ
√

A(a)
)

.

By taking δ =
√

A(a) , we get the proof of Theorem 3. �
As is known, if f is not uniformly continuous on the interval (0,∞) , the usual first

modulus of continuity ω( f ;δ ) does not tend to zero as δ → 0. For every f ∈C0
x2 [0,∞) ,

we would like to take a weighted modulus of continuity Ω( f ;δ ) which tends to zero as
δ → 0.

Let

Ω( f ;δ ) = sup
0<h�δ ,x�0

| f (x+h)− f (x)|
1+(x+h)2 , for every f ∈C0

x2 [0,∞).

The weighted modulus of continuity Ω( f ;δ ) was defined by Yuksel and Ispir in [17].
It is known that Ω( f ;δ ) has the following properties:

(i) Ω( f ;δ ) is a monotone increasing function of δ ;
(ii) For each f ∈C0

x2 [0,∞) , lim
δ→0+

Ω( f ;δ ) = 0;

(iii) For each m ∈ N , Ω( f ;mδ ) � mΩ( f ;δ ) ;
(iv) For each λ ∈ R

+ , Ω( f ;λ δ ) � (1+ λ )Ω( f ;δ ) .

THEOREM 4. Let f ∈C0
x2 [0,∞) and the sequences (pn) , (qn) satisfying 0 < qn <

pn < 1 such that pn → 1 , qn → 1 , [n]pn,qn → ∞ as n → ∞ , then there exists a positive
integer N ∈ N+ such that for all n > N , the inequality

sup
x∈[0,∞)

|Gpn,qn
n ( f ;x)− f (x)|

(1+ x2)
5
2

� 10Ω

(
f ;

1√
[n]pn,qn

)

holds.
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Proof. For t > 0, x∈ (0,∞) and δ > 0, by the definition of Ω( f ;δ ) and the above
property (iv), we get

| f (t)− f (x)| � (1+(x+ |x− t|))2 Ω( f ; |t − x|)

� 2(1+ x2)
(
1+(t− x)2)(1+

|t− x|
δ

)
Ω( f ;δ ).

Using lim
n→∞

pn = lim
n→∞

qn = 1, lim
n→∞

[n]pn,qn = ∞ and Lemma 3, there exists a positive

integer N ∈ N+ such that for all n > N ,

Gpn,qn
n ((t− x)2;x) � 2(1+ x2)

[n]pn,qn

, (8)

Gpn,qn
n ((t− x)4;x) � x4. (9)

Since Gpn,qn
n is linear and positive, we have

|Gpn,qn
n ( f ;x)− f (x)| � 2(1+ x2)Ω( f ;δ )

{
1+Gpn,qn

n

(
(t− x)2;x

)
+Gpn,qn

n

((
1+(t− x)2) |t − x|

δ
;x

)}
.

(10)

To estimate the second term of (10), applying the Cauchy-Schwartz inequality and
(x+ y)2 � 2(x2 + y2) , we have

Gpn,qn
n

((
1+(t− x)2) |t− x|

δ
;x

)
�
√

2
(
Gpn,qn

n

(
1+(t− x)4;x

)) 1
2

(
Gpn,qn

n

(
(t − x)2

δ 2 ;x

))
1
2 .

By (8) and (9),

Gpn,qn
n

((
1+(t− x)2) |t− x|

δ
;x

)
� 2(1+ x2)

3
2

δ [n]pn,qn

.

Taking δ = 1√
[n]pn,qn

, we can obtain

|Gpn,qn
n ( f ;x)− f (x)| � 10(1+ x2)

5
2 Ω

(
f ;

1√
[n]pn,qn

)
.

The proof is completed. �

5. Weighted approximation

Now, we obtain the weighted approximation theorem as follows:

THEOREM 5. Let the sequences (pn) , (qn) satisfying 0 < qn < pn � 1 such that
pn → 1 , qn → 1 , [n]pn,qn → ∞ as n → ∞ . Then for f ∈C0

x2 [0,∞) , we have

lim
n→∞

‖Gpn,qn
n ( f )− f‖x2 = 0.



888 W. CHENG, W. ZHANG AND A. SHU

Proof. Using Korovkin’s theorem (see[8]), it is sufficient to verify the following
three conditions:

lim
n→∞

‖Gpn,qn
n (tk)− xk‖x2 = 0,k = 0,1,2. (11)

Since Gpn,qn
n (1;x) = 1, Gpn,qn

n (t;x) = x , (11) holds for k = 0,1.
By (3), we have,

∥∥Gpn,qn
n (t2;x)− x2

∥∥
x2 = sup

x∈[0,∞)

1
1+ x2

∣∣Gpn,qn
n (t2;x)− x2

∣∣= sup
x∈[0,∞)

x2

1+ x2

∣∣∣∣ pn
n

qn[n]pn,qn

∣∣∣∣
=

pn
n

qn[n]pn,qn

= 0,n → ∞,

which implies that
lim
n→∞

∥∥Gpn,qn
n (t2;x)− x2

∥∥
x2 = 0.

Thus the proof is completed. �
Now, we present a weighted approximation theorem for function in Cx2 [0,∞) .

THEOREM 6. Let the sequences (pn) , (qn) satisfying 0 < qn < pn � 1 such that
pn → 1 , qn → 1 , [n]pn,qn → ∞ as n→ ∞ . For every f ∈Cx2 [0,∞) and α > 0 , we have

lim
n→∞

sup
x∈[0,∞)

|Gpn,qn
n ( f ;x)− f (x)|

(1+ x2)1+α = 0.

Proof. Let x0 ∈ [0,∞) be arbitrary but fixed. Then

sup
x∈[0,∞)

|Gpn,qn
n ( f ;x)− f (x)|

(1+ x2)1+α � sup
x∈[0,x0]

|Gpn,qn
n ( f ;x)− f (x)|

(1+ x2)1+α + sup
x∈(x0,∞)

|Gpn,qn
n ( f ;x)− f (x)|
(1+ x2)1+α

�‖Gpn,qn
n ( f ;x)− f (x)‖C[0,x0] +Mf sup

x∈(x0,∞)

|Gpn,qn
n ((1+ t2);x)|
(1+ x2)1+α

+ sup
x∈(x0,∞)

| f (x)|
(1+ x2)1+α .

(12)

Since | f (x)|� Mf (1+x2) , we have sup
x∈(x0,∞)

| f (x)|
(1+x2)1+α � Mf

(1+x2
0)

α . Let ε > 0 be arbitrary.

We can choose x0 to be so large that

Mf

(1+ x2
0)α < ε. (13)

In view of Lemma 2, while x ∈ (x0,∞) , we obtain

Mf lim
n→∞

|Gpn,qn
n ((1+ t2);x)|
(1+ x2)1+α = Mf

(1+ x2)
(1+ x2)1+α =

Mf

(1+ x2)α � Mf

(1+ x2
0)α < ε.
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Using Theorem 3, we can see that the first term of the inequality (12), implies that

‖Gpn,qn
n ( f ;x)− f (x)‖C[0,x0] < ε, as n → ∞. (14)

Combining (12)-(14), we get the desired result. �

6. Voronovskaja type theorem

In this section, we give a Voronovskaja-type asymptotic formula for Gpn,qn
n ( f ;x)

by means of the second and fourth central moments.

THEOREM 7. The sequences (pn) , (qn) satisfying 0 < qn < pn � 1 such that
pn → 1 , qn → 1 and pn

n → a, qn
n → b, [n]pn,qn → ∞ as n→ ∞ where 0 � a,b < 1 . For

f ∈C2
B[0,∞) , the following equality holds

lim
n→∞

[n]pn,qn (Gpn,qn
n ( f ;x)− f (x)) =

a
2

f ′′(x)x2,

for every x ∈ [0,A] , A > 0 .

Proof. Let x ∈ [0,∞) be fixed. In order to prove this identity, we use Taylor’s
expansion

f (t)− f (x) = (t− x) f ′(x)+ (t− x)2
(

f ′′(x)
2

+ θ (t,x)
)

,

where θ (t,x) is bounded and lim
t→x

θ (t,x) = 0. By applying the operator Gn,qn( f ;x) to

the above relation, we obtain

Gpn,qn
n ( f ;x)− f (x) = f ′(x)Gpn,qn

n ((t− x);x)+
1
2

f ′′(x)Gpn,qn
n

(
(t− x)2;x

)
+Gpn,qn

n

(
θ (t,x)(t− x)2;x

)
=

1
2

f ′′(x)Gpn,qn
n

(
(t− x)2;x

)
+Gpn,qn

n

(
θ (t,x)(t − x)2;x

)
.

Since lim
t→x

θ (t,x) = 0, then for all ε > 0, there exists δ > 0 such that |t−x|< δ implies

|θ (t,x)| < ε for all fixed x ∈ [0,∞) where n is large enough. While if |t− x|� δ , then

|θ (t,x)| � M
δ 2 (t − x)2 , where M > 0 is a constant. Using Remark 1, we have

lim
n→∞

[n]pn,qnG
pn,qn
n ((t − x)2;x) = ax2

and

[n]pn,qn

∣∣Gpn,qn
n

(
θ (t,x)(t − x)2;x

)∣∣�ε[n]pn,qnG
pn,qn
n

(
(t− x)2;x

)
+

M
δ 2 [n]pn,qnG

pn,qn
n

(
(t − x)4;x

)→ 0 (n → ∞).

The proof is completed. �
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