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EXTENSIONS OF HLAWKA’S INEQUALITY FOR FOUR VECTORS

MARIUS MUNTEANU

(Communicated by T. Burić)

Abstract. Given four real numbers a1,a2,a3,a4 we find necessary and sufficient conditions for
the inequality

a1

4

∑
i=1

‖xi‖+a2 ∑
1�i< j�4

∥∥xi + x j
∥∥+a3 ∑

1�i< j<k�4

∥∥xi + x j + xk
∥∥+a4

∥∥∥∥∥
4

∑
i=1

xi

∥∥∥∥∥ � 0

to be satisfied for all x1,x2,x3 ,x4 in an inner product space, thus providing an extension of
Hlawka’s inequality for four vectors. As a consequence, we show that

∑
1�i�4

‖xi‖− ∑
1�i< j�4

∥∥xi + x j
∥∥+ ∑

1�i< j<k�4

∥∥xi + x j + xk
∥∥+

∥∥∥∥∥
4

∑
i=1

xi

∥∥∥∥∥ � 0

and determine when equality occurs.

1. Introduction

Let E be an inner product space with a real or complex inner product 〈·, ·〉 induc-
ing the norm ‖·‖ . Hlawka’s inequality ([6]) asserts that for any a,b,c ∈ E we have

‖a‖+‖b‖+‖c‖− (‖a+b‖+‖a+ c‖+‖b+ c‖)+‖a+b+ c‖� 0.

Equality holds if and only if we have one of the following cases:

(i) a = αu,b = βu,c = γu for some u ∈ E and α,β ,γ � 0 or

(ii) a = αu,b = βu,c = γu for some u ∈ E, two of the scalars α,β ,γ are positive,
and α + β + γ � 0 or

(iii) a+b+ c = 0.

Hlawka’s proof of this result appears in [8, p.171]. Other proofs were obtained by
several authors and can be found in [10] or [11]. The inequality above has been
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generalized in several directions. For example, D. Adamović showed in [1] that for
any xi ∈ E,1 � i � n,

(n−2)
n

∑
i=1

‖xi‖− ∑
1�i< j�n

∥∥xi + x j
∥∥+

∥∥∥∥∥
n

∑
i=1

xi

∥∥∥∥∥ � 0.

A further extension was obtained by S. D. Djoković in [3]:(
n−2
k−2

)
n− k
k−1

n

∑
i=1

‖xi‖− ∑
1�i1<···<ik�n

∥∥xi1 + xi2 + · · ·+ xik

∥∥+
(

n−2
k−2

)∥∥∥∥∥
n

∑
i=1

xi

∥∥∥∥∥ � 0,

for all n � 3 and all k,2 � k � n− 1. For additional generalizations and a thorough
survey of results connected with Hlawka’s inequality, the interested reader is referred
to W. Fechner’s paper [4].

While significantly more general than the original inequality of Hlawka, Djoković’s
inequality involves only sums of the form ∑I⊂{1,2,...,n}‖∑i∈I xi‖ , for subsets I with
|I| = 1,k, and n. In this paper, while we limit our investigations to the case when
n = 4, we obtain inequalities involving sums of the aforementioned form but with the
cardinality of I taking all values from 1 to 4.

One impediment in extending Hlawka’s inequality in this direction is that if we
consider

∑
1�i�4

‖xi‖− ∑
1�i< j�4

∥∥xi + x j
∥∥+ ∑

1�i< j<k�4

∥∥xi + x j + xk

∥∥−‖x1 + x2 + x3 + x4‖ , (1.1)

one might naively expect this quantity to be nonnegative. However, as observed in [3],
if we choose x1 = x2 = x3 �= 0,x4 = −2x1, then the expression above is easily seen to
be negative.

Our approach will be to consider real numbers a1,a2,a3,a4 in order to find neces-
sary and sufficient (linear) conditions involving these numbers such that

a1 ∑
1�i�4

‖xi‖+a2 ∑
1�i< j�4

∥∥xi + x j
∥∥+a3 ∑

1�i< j<k�4

∥∥xi + x j + xk

∥∥+a4

∥∥∥∥∥
4

∑
i=1

xi

∥∥∥∥∥ � 0,

for all xi ∈ E,1 � i � 4 (see Theorem 5.1, Section 5).

2. Preliminaries

While our goal is to derive certain inequalities in inner product spaces, as we will
show below, much of the work can be reduced to the case of real numbers. More
precisely, let E be an inner product and let ‖·‖ be the induced norm on E. If Li : Rn →
R,1 � i � m, are linear functions, by abuse of notation, we will also denote by Li the
linear function defined on En with values in E obtained by replacing the argument
(x1,x2, . . . ,xn) ∈ Rn of Li : Rn → R by (v1,v2, . . . ,vn) ∈ En. With this convention, we
have the following:

LEMMA 2.1. Given a1,a2, . . .am ∈ R, the inequality
m

∑
i=1

ai
∥∥Li(v)

∥∥ � 0 (2.1)



EXTENSIONS OF HLAWKA’S INEQUALITY FOR FOUR VECTORS 893

is satisfied for all v ∈ En if and only if the inequality

m

∑
i=1

ai|Li(x)| � 0 (2.2)

is satisfied for all x ∈ Rn.

Proof. If inequality (2.1) is satisfied, then relation (2.2) follows by choosing some
u ∈ E and letting v = (x1u,x2u, . . . ,xnu).

Conversely, if (2.2) is satisfied, then let us first show that the same inequality holds
when x = (x1,x2, . . . ,xn) ∈ Rn is replaced by f = ( f1, f2, . . . , fn) ∈ (L1(0,1))n and | · |
by the L1−norm, where L1(0,1) denotes the space of real valued functions defined
on [0,1] with integrable absolute value. To see this, let us note that it is enough to
consider fi ∈ L1(0,1),1 � i � n, and replace xi in (2.2) by fi(x). The inequality then
follows by integration. Now, since any two dimensional normed space can be (linearly
and) isometrically imbedded in L1(0,1) (see [12] or Corollary 2, Section 3, in [7]),
it follows that (2.1) holds on C (with any norm). By repeating the same argument as
before for complex valued functions this time, we may conclude that (2.1) is valid for
complex valued functions with integrable modulus. (by abuse of notation, we will also
denote this set of functions by L1(0,1)).

Since L2(0,1) can be linearly and isometrically embedded in L1(0,1) (see [2] for
real scalars and [5] for complex scalars), inequality (2.1) holds on L2(0,1). Moreover,
L2(0,1) and �2 are linearly isometric, thus (2.2) holds on �2, the space of real or com-
plex sequences (xi)1�i�∞ with ∑ |xi|2 < ∞, endowed with the usual norm. Finally, we
show that this implies that (2.1) is satisfied on any inner product space E. To this end,
consider v1,v2, . . . ,vn ∈ E and let V = span{v1,v2, . . . ,vn}. V is a finite dimensional
inner product space, with the inner product obtained by restricting the one on E. But
then V is linearly isometric to �k

2, where k = dimV, where lk2 consists of all k− tuples
α = (α1,α2, . . . ,αk) and ‖α‖ =

√
|α1|2 + |α2|2 + . . .+ |αk|2. Since lk2 can be linearly

and isometrically embedded into l2, the conclusion follows. �
We would like to acknowledge that the statement and proof of the lemma above

were inspired by Bill Johnson’s insightful response to a mathoverflow.net question re-
lated to Hlawka’s inequality ([13]).

In light of the previous lemma, below we will restrict out attention to the real case.

LEMMA 2.2. With notations as above, for m � 2 we have

f (x) :=
m

∑
i=1

ai|Li(x)| � 0

for all x ∈ Rn if and only if for each 1 � i � m we have f (x) � 0 for all x ∈ kerLi.

Proof. Without loss of generality, we may assume that kerLi �= kerLj for all 1 �
i < j � m. The hyperplanes kerLi,1 � i � m, divide Rn into a collection of nonempty,
connected, convex sets and each one of these sets can be described as
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{x ∈ R
n|εiLi(x) > 0, i ∈ I ⊆ {1,2, . . . ,m}}, (2.3)

for some choice of εi ∈ {±1}.
There are two reasons why we may not have I = {1,2, . . . ,m}. To see this, con-

sider the following example. Let L1,L2,L3 : R2 →R given by L1(x1,x2)= x1,L2(x1,x2)
= x2,L3(x1,x2) = x1 + x2. On one hand we have

{x ∈ R
n|L1(x) > 0,L2(x) > 0,L3(x) < 0} = /0.

On the other hand,

{x ∈ R
n|L1(x) > 0,L2(x) > 0,L3(x) > 0} = {x ∈ R

2|L1(x) > 0,L2(x) > 0}.

Thus, each (nonempty) set defined by relation (2.3) is fully determined by a min-
imal set I = {i1, i2 . . . , ir} ⊆ {1,2, . . . ,m} and a set of ΩI = {εi j ∈ {±1},1 � j � r}.
Consequently, we make the following notation:

CI,ΩI = {x ∈ R
n|εiLi(x) > 0, for all i ∈ I}.

Note that for any j /∈ I, we have that either ε jL j is redundant, i.e., it is positive
throughout CI,ΩI or it is incompatible, i.e., it is negative throughout CI,ΩI . Thus, for
any i ∈ {1,2, . . . ,m} the sign of Li is constant on CI,ΩI .

Considering the closure of CI,ΩI , we have

CI,ΩI = {x ∈ R
n|εiLi(x) � 0, for all i ∈ I}

and
R

n =
⋃
I

CI,ΩI ∪
⋃

1�i�m

ker(Li) =
⋃
I

CI,ΩI . (2.4)

Thus, we may conclude that f is nonnegative on R
n if and only if the restriction of

f to each CI,ΩI is nonnegative. As we will show next, f is nonnegative on CI,ΩI iff it
is nonnegative on the boundary of CI,ΩI . Since the boundary of each CI,ΩI is contained
in the union of kerLi for all i,1 � i � m (as shown below), the lemma follows.

Note that the boundary of CI,ΩI is given by

∂CI,ΩI =
⋃
i∈I

WI,i ⊂
⋃
i∈I

kerLi,

where for each i ∈ I,

WI,i = {x ∈ R
n|Li(x) = 0,ε jL j(x) � 0, j ∈ I−{i}} ⊂ kerLi.

To prove that f is nonnegative on CI,ΩI iff it is nonnegative on the boundary of
CI,Ωi , observe that the restriction of f to CI,ΩI is the restriction to CI,ΩI of a linear
combination of linear functions (due to the fact that the sign of Li is constant on CI,ΩI ),
hence the restriction of a linear function. Thus, it will be enough to show that any
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x ∈CI,ΩI can be written as a sum of two vectors in ∂CI,ΩI . In order to accomplish this,
let us define the set

W̃I,i = {x ∈ R
n|Li(x) = 0,ε jL j(x) > 0, j ∈ I−{i}}.

Observe that
∂CI,Ωi ⊇WI,i ⊇ W̃I,i �= /0.

As the inclusions are obvious, let us show that W̃I,i is nonempty. By contradiction,
assume W̃I,i is empty. Consider the set

SI,i = {x ∈ R
n|ε jL j(x) > 0, j ∈ I−{i}},

and note that SI,i is convex and nonempty since CI,ΩI ⊂ SI,i. Based on our assumption,
we must have that for any x ∈ SI,i, either εiLi(x) > 0 or εiLi(x) < 0. But this implies
that either εiLi > 0 throughout SI,i or εiLi < 0 throughout SI,i. To see this, note that if
we had u1,u2 ∈ SI,i with εiLi(u1) > 0 and εiLi(u2) < 0, then εiLi(tu1 +(1− t)u2) = 0
for some t ∈ (0,1). But this is impossible by the convexity of SI,i and the assumption.
Having shown that εiLi has constant sign on SI,i, we could reach the final contradiction.
Indeed, if εiLi > 0 on SI,i, then εiLi is redundant in the definition of CI,ΩI . On the other
hand εiLi < 0 on SI,i, then we would have CI,ΩI = /0. As both the redundancy and the
incompatibility cases have been ruled out when we defined CI,ΩI , we have W̃I,i �= /0.

Now let x ∈ CI,ΩI and let i ∈ I. Next, we prove that x can be written as the sum
of two vectors, one in W̃I,i, the other in W̃I, j0 , for some j0 ∈ I−{i}. As shown above,
there exists some v ∈ W̃I,i. Note that v �= 0. Define

a = min

{
ε jL j(x)
ε jL j(v)

, j ∈ I−{i}
}

=
ε j0Lj0(x)
ε j0Lj0(v)

for some j0 ∈ I −{i}. Since ε jL j(x) > 0 and ε jL j(v) > 0 for all j ∈ I −{i}, we
have a > 0. For x = av+(x−av), we will show that both av and x−av are in ∂CI,ΩI .
Clearly, av∈ W̃I,i ⊂ ∂CI,ΩI since a > 0. For x−av , note that εiLi(x−av) = εiLi(x) > 0
since x ∈CI,ΩI . On the other hand, for j ∈ I−{i},

ε jL j(x−av) = ε jL j(x)−aε jL j(v) � 0,

by the definition of a. As we also have ε j0Lj0(x− av) = 0, we may conclude that
x−av1 ∈WI, j0 ⊂ ∂CI,ΩI . �

3. Extensions for four real or complex numbers

THEOREM 3.1. Given real numbers ai,1 � i � 4, the inequality

a1 ∑
1�i�4

|xi|+a2 ∑
1�i< j�4

|xi +x j|+a3 ∑
1�i< j<k�4

|xi +x j +xk|+a4|x1 +x2 +x3 +x4|� 0,

holds for all xi ∈ R,1 � i � 4, if and only if the following five inequalities hold:

a1 +a2 +a3 � 0;
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a1 +2a2 +a3 � 0;

a1 +3a2 +3a3 +a4 � 0;

2a1 +3a2 +3a3 +a4 � 0;

5a1 +9a2 +3a3 +a4 � 0.

Proof. By Lemma 2.2, the inequality in the theorem above is satisfied iff it is sat-
isfied on each one of the subspaces of R4 of the form ∑i∈I xi = 0, for all I ⊆{1,2,3,4}.
Whenever we choose one such subspace, the restriction of the function on the left side
of the inequality to this subspace becomes a linear combination of absolute values of
linear functions of three variables and we can use Lemma 2.2 again. If we apply the
process once more, the new restrictions become constants depending on a1,a2,a3,a4

multiplied with the absolute value of one of the four variables xi,1 � i � 4. Such a func-
tion is nonnegative iff the constant is nonnegative. While the principle is simple enough,
there are many cases and subcases to be investigated. However, the computations are
straightforward and we summarize the results below, where {i, j,k, l} represents any
permutation of {1,2,3,4} :

(i) If xi + x j = 0,xi + xk = 0, and x j + xl = 0 (i.e., xi = −x j = −xk = xl) , then

S = |xi|(a1 +a2 +a3).

(ii) If xi = 0 and x j + xk + xl = 0, then

S = (|x j|+ |xk|+ |x j + xk|)(a1 +2a2 +a3).

(iii) If xi = 0,x j + xk = 0, and x j + xl = 0 (i.e., xi = 0,x j = −xk = −xl ), then

S = |x j|(3a1 +5a2 +3a3 +a4).

(iv) If xi + x j + xk = 0,xi + x j + xl = 0, and xi + xk + xl = 0 (i.e., x j = xk = xl,xi =
−2x j ), then

S = |xi|(5a1 +9a2 +3a3 +a4).

(v) If xi + x j + xk = 0,xi + xl = 0, and x j + xl = 0 (i.e., xi = x j = −xl,xk = −2xi ),
then

S = |xi|(5a1 +7a2 +5a3 +a4).

(vi) If xi + x j = 0,xi + xk = 0, and xi + xl = 0 (i.e., x j = xk = xl = −xi ), then

S = 2|xi|(2a1 +3a2 +3a3 +a4).

(vii) If xi = x j = xk = 0, then

S = |xl|(a1 +3a2 +3a3 +a4).
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Note the seven cases above cover all possible cases of (x1,x2,x3,x4) simultaneously
satisfying

∑
i∈I1

xi = 0, ∑
i∈I2

xi = 0, ∑
i∈I3

xi = 0,

for some I1, I2, I3 ⊆ {1,2,3,4}.
Finally, we note that the number of inequalities involving the coefficients ai can

be reduced to the five in the conclusion of the theorem due to the fact that

3a1 +5a2 +3a3 +a4 =
2
3
(2a1 +3a2 +3a3 +a4)+

1
3
(5a1 +9a2 +3a3 +a4)

and

5a1+7a2+5a3+a4 =2(a1+a2+a3)+
1
3
(5a1+9a2+3a3+a4)+

2
3
(2a1+3a2+3a3+a4).

As one can easily check, of the remaining five expressions in ai, neither one is a linear
combination with nonnegative coefficients of the other four. �

As discussed by several authors (see [4], [9]), Hlawka’s inequality is not satisfied
on a general normed space but it does hold on two-dimensional normed spaces. We
have a similar result below.

COROLLARY 3.2. Theorem 3.1 remains valid on any two-dimensional normed
space E if | · | is replaced by the norm on E.

Proof. If we assume that the five inequalities in ai,1 � i � 4 are satisfied, then the
conclusion follows based on the same argument used in extending an inequality from R

to C in Lemma 2.1. The converse also follows based on the proof of same lemma by
choosing four complex numbers vi,1 � i � 4 that are xi−multiples of a some complex
number u. �

4. An affine version of Hlawka’s inequality

In this section we prove an affine version of Hlawka’s inequality on inner product
spaces. The result can be seen as an extension of Hlawka’s inequality. While interesting
in its own right, we will only make use of it in the last section in order to derive the
equality case for a certain Hlawka-type inequality involving four vectors.

THEOREM 4.1. Let E be any inner product space. The inequality

3

∑
i=1

‖xi − p‖− ∑
1�i< j�3

∥∥xi + x j − p
∥∥+‖x1 + x2 + x3− p‖+‖p‖ � 0 (4.1)

is satisfied for all x1,x2,x3, p ∈ X .
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Proof. By Lemma 2.1, we may assume that x1,x2,x3 are real numbers and ‖·‖
is the usual absolute value function. By Lemma 2.2, it is enough to show that the
inequality holds in each of the four cases below:

(i) If x1 = p, we need to prove that

|x2− x1|+ |x3− x1|+ |x2 + x3|+ |x1| � |x2|+ |x3|+ |x2 + x3− x1|.
By Hlawka’s inequality applied to x2− x1,x3− x1,x1, we have

|x2 − x1|+ |x3− x1|+ |x1| � |x2 + x3−2x1|+ |x2|+ |x3|− |x2 + x3− x1|.
Since

|x2 + x3|+ |x2 + x3−2x1| � 2|x2 + x3− x1|
by the triangle inequality, we may conclude the validity of inequality (4.1) in this
case.

(ii) If x1 + x2 = p, then the inequality to be proven becomes

|x2|+ |x1|+ |x3− x1− x2|+ |x3| � |x3 − x2|+ |x3− x1|− |x1 + x2|.
Applying Hlawka’s inequality for −x1,−x2,x3 yields

|x1|+ |x2|+ |x3|+ |x3− x2− x1| � |x3 − x1|+ |x3− x2|+ |x1 + x2|.
Clearly, the right side of the inequality above is greater than or equal to |x3−x2|+
|x3 − x1|− |x1 + x2|.

(iii) If x1 + x2 + x3 = p, then the inequality we need to prove becomes

|x2 + x3|+ |x1 + x3|+ |x1 + x2|− (|x1|+ |x2|+ |x3|)+ |x1 + x2 + x3| � 0.

By considering the subcases x1 +x2 = 0,x1 = 0, and x1 +x2 +x3 = 0, the expres-
sion on the left side of the inequality becomes (|x3−x1|+ |x3 +x1|−2|x1|),2|x2 +
x3|, and 0, respectively. In either case, the left side is nonnegative.

(iv) If p = 0, then inequality 4.1 is simply Hlawka’s inequality. �

OBSERVATION 4.2. If we let f : E → R be defined as f (x) = ‖x− p‖+‖p‖ .
Inequality (4.1) can be written as

3

∑
i=1

f (xi)− ∑
1�i< j�3

f (xi + x j)+ f (x1 + x2 + x3) � 0.

This is the reason why we refer to inequality (4.1) as the affine version of Hlawka’s
inequality.

OBSERVATION 4.3. The affine version of the triangle inequality, i.e.,

‖x1 − p‖+‖x2− p‖−‖x1 + x2− p‖+‖p‖ � 0 (4.2)

is satisfied as well by the triangle inequality. Equality is achieved iff x1 = λ1p,x2 = λ2p,
with λ1,λ2 � 1.
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5. Extensions to inner product spaces

Let (E,〈·, ·〉) be an inner product space with ‖·‖ as the induced norm and let
xi ∈ E,1 � i � 4. By Theorem 3.1 and Lemma 2.1, we obtain the following:

THEOREM 5.1. With notations as above, given ai ∈ R,1 � i � 4, the inequality

a1 ∑
1�i�4

‖xi‖+a2 ∑
1�i< j�4

∥∥xi + x j
∥∥+a3 ∑

1�i< j<k�4

∥∥xi + x j + xk

∥∥+a4

∥∥∥∥∥
4

∑
i=1

xi

∥∥∥∥∥ � 0

is valid iff the following inequalities hold:

a1 +a2 +a3 � 0;

a1 +2a2 +a3 � 0;

a1 +3a2 +3a3 +a4 � 0;

2a1 +3a2 +3a3 +a4 � 0;

5a1 +9a2 +3a3 +a4 � 0.

OBSERVATION 5.2. Looking at the expression (1.1) considered when attempting
to naively extend Hlawka’s inequality, we have a1 = 1,a2 = −1,a3 = 1, and a4 = −1
in the formula for S above. For this choice of ai, all inequalities in the conclusion of the
theorem above are satisfied except for 5a1 + 9a2 + 3a3 + a4 � 0. To find “best”valid
extensions, we fix three of the coefficients ai as in the naive extension and find the
correct remaining coefficient based on the five inequalities in the theorem.

COROLLARY 5.3. With notations as in Theorem 5.1 we have following:

(i) If a1 = 1,a2 = −1,a3 = 1, then a4 � 1 and

∑
1�i�4

‖xi‖− ∑
1�i< j�4

∥∥xi + x j
∥∥+ ∑

1�i< j<k�4

∥∥xi + x j + xk

∥∥+

∥∥∥∥∥
4

∑
i=1

xi

∥∥∥∥∥ � 0.

(ii) If a1 = 1,a2 = −1,a4 = −1, then a3 � 5
3 and

∑
1�i�4

‖xi‖− ∑
1�i< j�4

∥∥xi + x j
∥∥+

5
3 ∑

1�i< j<k�4

∥∥xi + x j + xk
∥∥−

∥∥∥∥∥
4

∑
i=1

xi

∥∥∥∥∥ � 0.

(iii) If a1 = 1,a3 = 1,a4 = −1, then a2 � − 7
9 and

∑
1�i�4

‖xi‖− 7
9 ∑

1�i< j�4

∥∥xi + x j
∥∥+ ∑

1�i< j<k�4

∥∥xi + x j + xk

∥∥−
∥∥∥∥∥

4

∑
i=1

xi

∥∥∥∥∥ � 0.
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(iv) If a2 = −1,a3 = 1,a4 = −1, then a1 � 7
5 and

7
5 ∑

1�i�4
‖xi‖− ∑

1�i< j�4

∥∥xi + x j
∥∥+ ∑

1�i< j<k�4

∥∥xi + x j + xk

∥∥−
∥∥∥∥∥

4

∑
i=1

xi

∥∥∥∥∥ � 0.

OBSERVATION 5.4. Djoković’s inequality for n = 4 can be obtained from Theo-
rem 5.1. If k = 2, the left side of the inequality reads

2 ∑
1�i�4

‖xi‖− ∑
1�i< j�4

∥∥xi + x j
∥∥+‖x1 + x2 + x3 + x4‖ � 0,

with a1 = 2,a2 = −1,a3 = 0,a4 = 1. As one can easily check, these coefficients verify
the five conditions in Theorem 5.1. Similarly, if k = 3, we have

∑
1�i�4

‖xi‖− ∑
1�i< j<k�4

∥∥xi + x j + xk

∥∥+2‖x1 + x2 + x3 + x4‖ � 0

and the coefficients a1 = 1,a2 = 0,a3 = −1,a4 = 2 check the conditions as well.

Lastly, we address the equality case for the first inequality in consequence 5.3
above.

PROPOSITION 5.5. Given an inner product space E and xi ∈ E, we have

∑
1�i�4

‖xi‖− ∑
1�i< j�4

∥∥xi + x j
∥∥+ ∑

1�i< j<k�4

∥∥xi + x j + xk
∥∥+‖x1 + x2 + x3 + x4‖ = 0

if and only if there exists a permutation σ of {1,2,3,4}, a vector u ∈ E, and real
numbers λi,1 � i � 4, such that xσ(i) = λσ(i)u,λσ(i) � 0,1 � i � 3, and 0 � λσ(1) +
λσ(2) + λσ(3) + λσ(4) � min{λσ(1),λσ(2),λσ(3)}.

Proof. Note that the equality in the proposition can be reorganized as follows:

( ∑
1�i�3

‖xi‖− ∑
1�i< j�3

∥∥xi + x j
∥∥+‖x1 + x2 + x3‖)

+ ( ∑
1�i�3

‖xi − p‖− ∑
1�i< j�3

∥∥xi + x j − p
∥∥+‖x1 + x2 + x3− p‖+‖p‖) = 0,

where p = x1 + x2 + x3 + x4. By Theorem 4.1 and Hlawka’s inequality, both of the
terms on the left side of the equality above are nonnegative. Thus, in order to have
equality, both terms need to be zero. In particular, we must have equality in Hlawka’s
inequality for x1,x2,x3. Noting that the equality in the proposition can be reorganized
by using not just x1,x2,x3 in the relation above but any three of the vectors x1,x2,x3,x4,
we get equality in Hlawka’s inequality for any three of the vectors x1,x2,x3,x4. After
analyzing the possibilities, the only viable option is

xi1 = λi1u,xi2 = λi2u,xi3 = λi3u,xi4 = λi4u

for some u ∈ E, λi j � 0,1 � j � 3,0 � λi1 + λi2 + λi3 + λi4 � min{λi1 ,λi2 ,λi3}, and
{1,2,3,4}= {i1, i2, i3, i4}. �
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