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GEOMETRIC PROPERTIES OF MATHIEU–TYPE

POWER SERIES INSIDE UNIT DISK

DEEPAK BANSAL AND JANUSZ SOKÓŁ

(Communicated by J. Pečarić)

Abstract. In the present investigation we study normalized Mathieu-type power series and find
sufficient conditions, so that the normalized Mathieu-type power series have certain geometric
properties like close-to-convexity and starlikeness inside the unit disc.

1. Introduction

The following infinite series is named after Émile Leonard Mathieu (1835-1890)
who investigated it in his 1890 monograph [10] on elasticity of solid bodies:

S(r) =
∞

∑
n=1

2n
(n2 + r2)2 (r > 0). (1)

Closed integral representation of the series S(r) is given by (see [8])

S(r) =
1
r

∫ ∞

0

t sin(rt)
et −1

dt. (2)

The Mathieu-type power series is defined by (see [17])

S(r;z) =
∞

∑
n=1

2n
(n2 + r2)2 zn (r > 0, |z| < 1). (3)

Originally it is defined for function of real variable but we are defining it for function
of complex variable. H. Alzer, J. L. Brenner and O. G. Ruehr in [1] obtained

1

r2 + 1
2ζ (3)

< S(r) <
1

r2 +1/6
(4)

where ζ denotes the zeta function. There has been a rich literature on the study of
Mathieu’s series, its generalization and its inequalities, one can refer [1, 3, 4, 5, 7, 11,
14]. In the present paper, our aim is to study geometric properties of Matheiu-type
power series. For this we need the following well known definitions from geometric
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function theory.
Let H denote the class of analytic functions inside the unit disc D = {z ∈ C : |z| < 1}
and A denote the class of analytic functions inside the unit disk D , having the form

f (z) = z+a2 z2 +a3 z3 + · · · , z ∈ D. (5)

We denote by S , the class of all functions f ∈ A which are univalent in D i. e.

S = { f ∈ A | f is one-to-one in D}.
A set G in the complex plane is called starlike with respect to origin if for any point
z in G the line segment joining origin to z lies interior of G . A function f ∈ A that
maps unit disk D onto a starlike domain is called starlike function and class of such
functions is denoted by S ∗ . Analytically a function f ∈ A is called starlike function
if

Re

{
z f ′(z)
f (z)

}
> 0, z ∈ D.

A set G in the plane is called convex if for every pair of points z1 and z2 interior of G ,
the line segment joining z1 and z2 is also in the interior of G . A function f ∈ A that
maps D onto a convex domain is called convex function and class of such functions is
denoted by K . Analytically a function f ∈ A is called convex function if

Re

{
1+

z f ′′(z)
f ′(z)

}
> 0, z ∈ D.

An analytic function f in D is said to be close-to-convex with respect to a fixed convex
function g (need not be normalized), denoted by Cg , if Re{ f ′(z)/g′(z)} > 0, z ∈ D .
Every starlike function is close-to-convex. However, the converse is not true. The
Noshiro-Warschawski theorem implies that close-to-convex functions are univalent in
D , but not necessarily the converse. It is easy to verify that K ⊂ S ∗ ⊂ C ⊂ S .
Geometrically an analytic function f is called close-to-convex in D , if complement of
f (D) can be written as the union of non-intersecting half-lines. For more details see
[6].
It is obvious to see that S(r;z) /∈ A , so using the following normalization, we have

S(r;z) =
(r2 +1)2

2

∞

∑
n=1

2n
(n2 + r2)2 zn = z+

∞

∑
n=2

n(r2 +1)2

(n2 + r2)2 zn. (6)

The aim of the present work is to find sufficient condition such that normalizedMathieu-
type power series is close-to-convex and starlike in D , for some related results we refer
to [2, 12, 16]. For this we need the following lemmas:

LEMMA 1.1. (Ozaki [13]) Let f (z) = z+
∞
∑

n=2
anzn . Suppose

1 � 2a2 � · · · � (n+1)an+1 � · · · � 0 (7)

or
1 � 2a2 � · · · � (n+1)an+1 � · · · � 2. (8)

Then f is close-to-convex with respect to convex function −log(1− z) .
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LEMMA 1.2. (Féjer [9]) If an � 0 , {nan} and {nan− (n+1)an+1} both are non-

increasing, then the function f (z) = z+
∞
∑

n=2
anzn is in S ∗ .

LEMMA 1.3. (Féjer [9]) Let {an} be a sequence of nonnegative real numbers
such that a1 = 1 , and that for n � 2 the sequence {an} is a convex decreasing, i.e.

a1−a2 � · · · � ak −ak+1 � · · · � 0.

Then

Re

(
∞

∑
n=1

anz
n−1

)
> 1/2 (z ∈ D). (9)

Note that each convex decreasing sequence generates also a convex null sequence. Re-
call that the sequence a0 , a1, . . . of nonnegative numbers is called a convex null se-
quence if

lim
k→∞

ak = 0 and a0−a1 � a1−a2 � · · · � ak −ak+1 � · · · � 0.

For a convex null sequence a0 , a1, . . . , a0 > 0, we have instead of (9) the following
inequality

Re

(
a0

2
+

∞

∑
n=1

anz
n

)
> 0 (z ∈ D).

2. Close-to-convexity and starlikeness of Mathieu-type power series

Main results are contained in following theorems:

THEOREM 2.1. For r > 0 and z ∈ D

|S(r;z)| � (r2 +1)2

2(r2 +1/6)
(10)

Proof. Using (4) and triangle inequality in D we get the result. �

THEOREM 2.2. If 0 < r �
√

2 then S(r;z) is close-to-convex with respect to
−log(1− z) in D .

Proof. Using (6) and (5), we have

nan− (n+1)an+1=
n2(r2 +1)2

(n2 + r2)2 − (n+1)2(r2 +1)2

((n+1)2 + r2)2 =
(r2 +1)2

(n2 + r2)2((n+1)2 + r2)2 X(n),

where
X(n) = n2((n+1)2 + r2)2 − (n+1)2(n2 + r2)2.
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To show X(n) � 0, it is sufficient to show that

n2((n+1)2 + r2)2 � (n+1)2(n2 + r2)2

i.e. n((n+1)2 + r2) � (n+1)(n2 + r2)
i.e. n2 +n− r2 � 0,

which is true for all n � 1 and 0 < r �
√

2 and hence by using Lemma 1.1 we get the
required result. �

THEOREM 2.3. If 0 < r �
√

4−√
13 then S(r;z) is starlike in D .

Proof. It is already proved in Theorem 2.2 that {nan} is nonincreasing sequence
for all 0 < r �

√
2. To show S(r;z) is starlike in D , using Lemma 1.2, it is sufficient

to show that the sequence {nan− (n+1)an+1} is also nonincreasing. That is

nan−2(n+1)an+1+(n+2)an+2 � 0

⇐⇒ (r2 +1)2
[

n2

(n2 + r2)2 −2
(n+1)2

((n+1)2 + r2)2 +
(n+2)2

((n+2)2 + r2)2

]
� 0

⇐⇒ [ f (n)−2 f (n+1)+ f (n+2)]� 0,

where

f (x) =
x2

(x2 + r2)2 , x � 1.

To show [ f (n)− 2 f (n+ 1)+ f (n+ 2)] � 0, n = 1,2,3,4, . . . , it is sufficient to prove
that f (x) is a convex function in the real sense or that f ′′(x) � 0,x � 1. Differentiating
twice, we have

f ′′(x) =
2(3x4−8x2r2 + r4)

(x2 + r2)4 , x � 1. (11)

Denominator is already positive for all x � 1 and r > 0. Let φ(x) = 3x4 −8x2r2 + r4 .
Obviously φ ′(x) = 12x3−16r2x � 0 for all x � 1 and 0 < r �

√
3/2. Thus f ′′(x) �

0 provided φ(1) � 0, which in turns gives 0 < r �
√

4−√
13. This completes the

proof. �

THEOREM 2.4. For 0 < r � 1 ,

Re

{
S(r;z)

z

}
>

1
2

(z ∈ D). (12)

Proof. First we prove that

{an}∞
n=1 =

{
n(r2 +1)2

(n2 + r2)2

}∞

n=1
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is a decreasing sequence, for this we show

an−an+1 � 0 ∀n ∈ N.

Now

an−an+1 � 0 ⇐⇒ (r2 +1)2
[

n
(n2 + r2)2 −

n+1
((n+1)2 + r2)2

]
� 0

⇐⇒ (r2 +1)2 [ f (n)− f (n+1)] � 0,

where
f (x) =

x
(x2 + r2)2 (x � 1). (13)

To show f (n)− f (n + 1) � 0, n = 1,2,3, . . . , it is sufficient to prove that f (x) is a
decreasing function in the real sense or that f ′(x) < 0, x � 1. We have

f ′(x) =
r2 −3x2

(x2 + r2)3 � 0 (x � 1 and 0 < r �
√

3).

Next we prove that {an}∞
n=1 is a convex decreasing sequence. For this we show

an+2−an+1 � an+1−an ∀ n ∈ N.

Now

an−2an+1 +an+2 � 0

⇐⇒ (r2 +1)2
[

n
(n2 + r2)2 −2

n+1
((n+1)2 + r2)2 +

n+2
((n+2)2 + r2)2

]
� 0

⇐⇒ (r2 +1)2 [ f (n)−2 f (n+1)+ f (n+2)]� 0,

where f (x) is given by (13). To show [ f (n)+ f (n+2)−2 f (n+1)]� 0,n=1,2,3,4, . . .,
it suffices to prove that f (x) is a convex function in the real sense or that f ′′(x) � 0,
x � 1. We have

f ′′(x) =
12x(x2− r2)
(x2 + r2)4 � 0 (x � 1 and 0 < r � 1).

Thus {an}∞
n=1 is a convex decreasing sequence. Now applying Lemma 1.3 on {an}∞

n=1 ,
we have

Re

{
∞

∑
n=1

anz
n−1

}
> 1/2, z ∈ D.

which is equivalent to

Re

{
S(r;z)

z

}
> 1/2, z ∈ D. �
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THEOREM 2.5. For 0 < r �
√

4−√
13 ,

Re
{
S
′(r;z)

}
>

1
2

(z ∈ D). (14)

Proof. From (6),

S
′(r;z) = 1+

∞

∑
n=2

n2(r2 +1)2

(n2 + r2)2 zn−1. (15)

So taking

an =
n2(r2 +1)2

(n2 + r2)2

and proceeding similarly as in Theorem 2.4, we get the proof. �

THEOREM 2.6. If

r ∈
[√

3−
√

6,

√
3+

√
6

]
(16)

then ∫ z

0

S(r;t)
t

dt (17)

is in the class S ∗ of starlike functions.

Proof. We have

∫ z

0

S(r;t)
t

dt = z+
(r2 +1)2

2

∞

∑
n=2

2zn

(n2 + r2)2 . (18)

It is known that ∑∞
n=2 n|an| < 1 implies z+ ∑∞

n=2 anzn is starlike. Hence, from (18), to
show that (17) is a starlike function it suffices to prove that

(r2 +1)2

2

∞

∑
n=2

2n
(n2 + r2)2 < 1. (19)

From (4) we have

(r2 +1)2

2

∞

∑
n=2

2n
(n2 + r2)2 <

(r2 +1)2

2

{
1

r2 +1/6
− 2

(1+ r2)2

}
.

After some simple calculations we can see that for nonnegative r (16) is equivalent to

(r2 +1)2

2

{
1

r2 +1/6
− 2

(1+ r2)2

}
� 1.

Simplifying, we get 3r4−6r2 +1 � 0, which in turns gives
√

3−√
6 � r �

√
3+

√
6.

This proves the starlikeness of (17). �
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We have

z+
∞

∑
n=2

n(r2 +1)2

(n2 + r2)2 zn =
z

(1− z)2 ∗ h2(z)∗ h2(z),

where

h2(z) = z+
∞

∑
n=2

r2 +1
r2 +n2 zn.

It is known that

h1(z) = z+
∞

∑
n=2

r2 +1
r2 +n

zn

is convex univalent, so it is possible that h2(z) is convex univalent too. If we will be
able to prove that h2(z) is convex univalent, then by [15], S(r; t) = z

(1−z)2 ∗h2(z)∗h2(z)
is starlike for all nonnegative r .

CONJECTURE. For all r , Re{r} > 0 , the function h2(z) is convex univalent and
so S(r; t) is starlike.
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