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GEOMETRIC PROPERTIES OF MATHIEU-TYPE
POWER SERIES INSIDE UNIT DISK

DEEPAK BANSAL AND JANUSZ SOKOL

(Communicated by J. Pecari¢)

Abstract. In the present investigation we study normalized Mathieu-type power series and find
sufficient conditions, so that the normalized Mathieu-type power series have certain geometric
properties like close-to-convexity and starlikeness inside the unit disc.

1. Introduction

The following infinite series is named after Emile Leonard Mathieu (1835-1890)
who investigated it in his 1890 monograph [10] on elasticity of solid bodies:

S(r) = i(nziinﬂ)z(rw). (1
n=1

Closed integral representation of the series S(r) is given by (see [8])

1 [~ tsin(rt)
S(r)=— —=dt. 2
=+ | =5 e
The Mathieu-type power series is defined by (see [17])
S(r;z) = i LG (r>0, |zl <1). (3)
(21 2)2

Originally it is defined for function of real variable but we are defining it for function
of complex variable. H. Alzer, J. L. Brenner and O. G. Ruehr in [1] obtained

1 1

<S(r)<m 4)

2 1
EREI(E)
where { denotes the zeta function. There has been a rich literature on the study of
Mathieu’s series, its generalization and its inequalities, one can refer [1, 3, 4, 5, 7, 11,
14]. In the present paper, our aim is to study geometric properties of Matheiu-type
power series. For this we need the following well known definitions from geometric
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function theory.
Let % denote the class of analytic functions inside the unitdisc D={z € C: |z] < 1}
and 7 denote the class of analytic functions inside the unit disk I, having the form

f@) =2+ +az?+---, zeD. (5)
We denote by ., the class of all functions f € o7 which are univalent in D i. e.
& ={f € | fis one-to-one in D}.

A set G in the complex plane is called starlike with respect to origin if for any point
z in G the line segment joining origin to z lies interior of G. A function f € </ that
maps unit disk D onto a starlike domain is called starlike function and class of such
functions is denoted by .”*. Analytically a function f € o7 is called starlike function

S

A set G in the plane is called convex if for every pair of points z; and z, interior of G,
the line segment joining z; and z, is also in the interior of G. A function f € <7 that
maps D onto a convex domain is called convex function and class of such functions is
denoted by # . Analytically a function f € &7 is called convex function if

2f"(2)
f'(2)
An analytic function f in I is said to be close-to-convex with respect to a fixed convex
function g (need not be normalized), denoted by %, if Re{f'(z)/g'(z)} >0,z € D.
Every starlike function is close-to-convex. However, the converse is not true. The
Noshiro-Warschawski theorem implies that close-to-convex functions are univalent in
D, but not necessarily the converse. It is easy to verify that # C .* C € C ..
Geometrically an analytic function f is called close-to-convex in D, if complement of
f(D) can be written as the union of non-intersecting half-lines. For more details see
[6].
It is obvious to see that S(r;z) ¢ 7, so using the following normalization, we have
(FP+1)?2 & 2n (r +1)
6
2 2 (n2+r? st Z ©)

n=1

%e{l+ }>07 zeD.

S(r;z) =

The aim of the present work is to find sufficient condition such that normalized Mathieu-
type power series is close-to-convex and starlike in I, for some related results we refer
to [2, 12, 16]. For this we need the following lemmas:

LEMMA 1.1. (Ozaki [13]) Let f(z) =z+ i ay7". Suppose
n=2

122422+ Dap; =20 (7)

or
1<2a, < < (n+ Dagy <~ <2. (8)

Then f is close-to-convex with respect to convex function —log(1 —z).
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LEMMA 1.2. (Féjer [9]) If a, =0, {na,} and {na, — (n+1)a,;1} both are non-

increasing, then the function f(z) =z+ Y a7 isin /*.
n=2
LEMMA 1.3. (Féjer [9]) Let {a,} be a sequence of nonnegative real numbers
such that a; = 1, and that for n > 2 the sequence {ay} is a convex decreasing, i.e.
ai—ayz -z ag—age = - 2 0.
Then

%e(ianzn_l> >1/2(zeD). )
n=1

Note that each convex decreasing sequence generates also a convex null sequence. Re-
call that the sequence ag, aj,... of nonnegative numbers is called a convex null se-
quence if

limay=0 and apy—ay>a—ay>---Zar—apy; =--- = 0.

k—so0

For a convex null sequence ag, ay,..., ap > 0, we have instead of (9) the following
inequality

Re <c12_0+ Za,ﬂ") >0(zeD).
n=1

2. Close-to-convexity and starlikeness of Mathieu-type power series

Main results are contained in following theorems:

THEOREM 2.1. For r >0 and z€ D

2 2
IS(r:2)| < 2(r +1)

27 1/6) "

Proof. Using (4) and triangle inequality in D we get the result. [

THEOREM 2.2. If 0 < r < V/2 then S(r;z) is close-to-convex with respect to
—log(1 —z) in D.

Proof. Using (6) and (5), we have

2P+ (DA (P +1)
na, — (n+1)a41= W2 (12577 _(n2+r2)2((n—|—l)2+r2)2X(n)’

where
X(n) = n((n+ 1>+ 2P — (n+ 1) + )2,
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To show X (n) > 0, it is sufficient to show that

nz((n—l— 1)2—|—r2)2 > (n+ 1)2(n2 —|—r2)2
ie. n((n+12+7) > (n+1)(n*+12)
2>

ie. n”’+n—r 0,

which is true for all n > 1 and 0 < r < v/2 and hence by using Lemma 1.1 we get the
required result. [

THEOREM 2.3. If 0 < r < /4 —+/13 then S(r;z) is starlike in D.

Proof. 1t is already proved in Theorem 2.2 that {na,} is nonincreasing sequence
forall 0 < r < v/2. To show S(r;z) is starlike in D, using Lemma 1.2, it is sufficient
to show that the sequence {na, — (n+1)a, 11} is also nonincreasing. That is

na, —2n+ Day1+ (n+2)ay2 >0

n (n+1)? (n+2)?
(2422 T((n+1)2412)2 ° ((n+2)2+12)2
< [f(n)=2f(n+1)+ f(n+2)] >0,

= (FP+1)?

where

x2

f(x):m, )C>1

To show [f(n) —2f(n+ 1)+ f(n+2)] >0, n=1,2,3,4,..., it is sufficient to prove
that f(x) is a convex function in the real sense or that f”(x) > 0,x > 1. Differentiating
twice, we have

2(3x* — 8x%r + %)

(2 +r2)4

Denominator is already positive for all x > 1 and r > 0. Let ¢ (x) = 3x* — 8x%r2 4 r*.
Obviously ¢’(x) = 12x* —16r2x > 0 forall x> 1 and 0 < r < \/3/2. Thus f”(x) >
0 provided ¢ (1) > 0, which in turns gives 0 < r < /4 —+/13. This completes the
proof. [

f(x) = ,x> 1 (11)

THEOREM 2.4. For 0 <r<1,

me{S(”)}> Lzem) (12)

Proof. First we prove that

{an},—1 = {% }:1
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is a decreasing sequence, for this we show

ap—apy; =2 0Vn e N.

Now
5 5 n n+1
an—ane1 20 <= (r"+1) R EA [y
= (P+1?[f(n)— f(n+1)] >0,
where N
f(x)zm(x>1)- (13)

To show f(n)— f(n+1) >0, n=1,2,3,..., it is sufficient to prove that f(x) is a
decreasing function in the real sense or that f’(x) < 0, x > 1. We have

P2 —3x2

10 = faay SO land0 <r < V3).

Next we prove that {a, },_; is a convex decreasing sequence. For this we show
Apto —Apy] = Ay —ap YneN.
Now

ay — 2an+1 +an+2 =20
n n+1 n+2
_ >0
CER A (PR YA i

= (1 (11221 72)2
= (P+1)?[f(n)—2f(n+ 1)+ f(n+2)] >0,

where f(x) is given by (13). To show [f(n)+f(n+2)—2f(n+1)]>0,n=1,2,3,4,...,
it suffices to prove that f(x) is a convex function in the real sense or that f”(x) > 0,
x> 1. We have

12x(x> — r?)
f”(x)zm >0 (x>land0<r<1).

=3

Thus {a,},_; is aconvex decreasing sequence. Now applying Lemma 1.3 on {a,}, _;,

we have
%e{EanZ"l} >1/2, zeD.
n=1

which is equivalent to

sm{g(m)}> 1/2, zeD. O
Z
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THEOREM 2.5. For 0 <r<v4—+13,

1
Re{S'(r;z)} > 3 (zeD). (14)
Proof. From (6),
rz_1+2 r“) -1, (15)
So taking
B n?(r* +1)?
L PR

and proceeding similarly as in Theorem 2.4, we get the proof. [J

e{\/3—\/6,\/3+\/6J (16)

/Z Mdt (17)
0 t

THEOREM 2.6. If

then

is in the class .* of starlike functions.

Proof. We have

S(rr) (P12 &S 22
/O—t dr =z+ gz(nsz)z. (18)

It is known that Y, n|a,| < 1 implies z+ ¥, ,a,2" is starlike. Hence, from (18), to
show that (17) is a starlike function it suffices to prove that
(P+1)2 & 2n
2 & (nP4r?)?

<1 19)

From (4) we have

P+1)? g 2n <(r2+1)2 2
2 A (nP4r2)? 2 rr+1/6  (1+r2)2% )"

After some simple calculations we can see that for nonnegative r (16) is equivalent to

(P +1) 2 <1
2 rP1/6 (1422 ) =7

Simplifying, we get 3r* —6r2 +1 <0, which in turns gives v/3 — 6 <r < /3 + 6.
This proves the starlikeness of (17). [
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‘We have
> n(r?+1)% z
z = s« hy(z) * ha(2),
nzz(nz_f_rz)z (1—2)?
where
o 2
rr+1 ,
h(z) =z+ Y Tl
It is known that
)
r+1
hi(z) =z+ 7"
P +n

is convex univalent, so it is possible that /;(z) is convex univalent too. If we will be
able to prove that h;(z) is convex univalent, then by [15], S(r;t) = ﬁ xhy(z2) xhy(z)

is starlike for all nonnegative r.

CONJECTURE. Forall r, Re{r} > 0, the function hy(z) is convex univalent and

so S(r;t) is starlike.
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