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BUSEMANN–PETTY PROBLEMS FOR

Lp MIXED INTERSECTION BODIES

XUEFU ZHANG, SHANHE WU AND YIBIN FENG

(Communicated by J. Pečarić)

Abstract. The notion of Lp mixed intersection bodies was introduced by Ma. In this paper, we
consider the Busemann-Petty problems for the Lp mixed intersection bodies.

1. Introduction and main results

Let Sn−1 denote the unit sphere in Euclidean space R
n . If K is a compact star-

shaped (about the origin) set in R
n , then its radial function, ρK = ρ(K, ·) : R

n \ {0}→
R , is defined by (see [9, 34])

ρ(K,x) = max{λ : λx ∈ K}.

If ρK is positive and continuous, then K will be called a star body with respect to the
origin. The set of all star bodies about the origin in R

n is denoted by S n
o , and the set

of all origin-symmetric star bodies in R
n will be denoted by S n

e . Two star bodies K
and L are said to be dilates of one another if ρK(u)/ρL(u) is independent of u ∈ Sn−1 .

Let K n denote the set of convex bodies (compact, convex subsets with nonempty
interiors) in Euclidean R

n . For u ∈ Sn−1 , u⊥ denotes the (n− 1)-dimensional sub-
space orthogonal to u . We use Vk(M) to denote the k -dimensional volume of a k -
dimensional compact convex set M . Instead of Vn we usually write V . For the standard
unit ball B in R

n , we write ωn =V (B) for its volume. We also note that i denotes any
real number in this article.

Busemann and Petty [3] posed a problem: Let K and L be origin-symmetric con-
vex bodies in R

n . Is it true that for any u ∈ Sn−1 ,

Vn−1(K∩u⊥) � Vn−1(L∩u⊥) =⇒V (K) � V (L)?

A long list of authors contributed to the solution of this famous problem over a
period of 40 years, see [1-2, 10-14, 17, 20-21, 24, 26, 33, 35, 42]. The question has
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a negative answer for n � 5 and an affirmative answer for n = 3,4. For a detailed
account of the interesting history of the Busemann-Petty problems, see the books by
Gardner [9, Chapter 8] and Koldobsky [22, Chapter 5].

The crucial idea solving the problem is to define a new convex body which is
called the intersection body given by Lutwak [26]. For K ∈ S n

o , the intersection body,
IK , of K is a star body whose radial function in the direction u ∈ Sn−1 is equal to the
(n−1)-dimensional volume of the section of K by u⊥ , i.e.,

ρ(IK,u) = Vn−1(K ∩u⊥). (1.1)

The intersection bodies have been intensively studied in recent years (see [15-16,
19, 23, 25, 31-32, 38-40] and the books [22, 36]). From (1.1) and the fact that K ⊆ L for
K,L ∈ S n

o if and only if ρ(K, ·) � ρ(L, ·) , we see that the Busemann-Petty problems
can be rephrased in the following way:

For K,L ∈ S n
o , is it true that

IK ⊆ IL =⇒V (K) � V (L)?

Lutwak [26] showed that the problem has an affirmative answer if the body K
restricted to the class of intersection bodies. In addition, Lutwak proved that if L is
a sufficiently smooth origin-symmetric star body with positive radial function which
is not an intersection body, then there exists an origin-symmetric star body K such
that IK ⊆ IL but V (K) > V (L) . Further, the Busemann-Petty problems have been
considered in the context of Lp Brunn-Minkoski theory (see [4-8, 27-30, 37, 39]). In
particular, Yuan and Cheung [41] generalized the intersection body to Lp analogue,
and introduced the notion of Lp intersection body: Let L be a star body and nonzero
p < 1. The Lp intersection body IpL , of L , is the origin-symmetric star body whose
radial function is defined by

ρ(IpL,u)p =
∫

L
|u · x|−pdx. (1.2)

In [41], they establish the affirmative version of Busemann-Petty problems for the
Lp intersection body.

THEOREM 1.A. Let K be a Lp intersection body and L be a star body in R
n . If

IpK ⊆ IpL , then for 0 < p < 1 ,

V (K) � V (L).

Equality holds if and only if K = L.

A further extension of Lp intersection bodies is the Lp mixed intersection bodies
defined in [31]. Let K be a star body and p � 1. The Lp mixed intersection body,
Ip,iK , of K is defined by

ρ(Ip,iK,u) =

(
W̃p,i(K,B∩u⊥)
W̃p,i(B,B∩u⊥)

) 1
p

(1.3)
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for u ∈ Sn−1 , where W̃p,i denotes the Lp dual mixed quermassintegrals (see (2.3)).
Suppose that f is a Borel function on Sn−1 . The spherical Radon transform R f

of f was, in [18], defined by

(R f )(u) =
∫

Sn−1∩u⊥
f (v)dSn−2(v)

for u∈ Sn−1 . The spherical Radon transform is self-adjoint, i.e., if f and g are defined
on Sn−1 bounded Borel function, then∫

Sn−1
f (u)Rg(u)dS(u) =

∫
Sn−1

R f (u)g(u)dS(u). (1.4)

Using the spherical Radon transform, the definition of Ip,iK is rewritten by

ρ(Ip,iK,u) =

(
W̃p,i(K,B∩u⊥)

W̃p,i(B,B∩u⊥)

) 1
p

=
(

1
(n−1)ωn−1

R(ρn−p−i
K )(u)

) 1
p

=
(

1
(n−1)ωn−1

∫
Sn−1∩u⊥

ρ(K,v)n−p−idSn−2(v)
) 1

p

(1.5)

for u ∈ Sn−1 .
Thus, such inequalities as the Busemann type inequality, monotonicity inequality

and Brunn-Minkowski inequality were shown in [31]. The main aim of this paper is
to study the Busemann-Petty problems for the Lp mixed intersection bodies. We first
solve the affirmative version for the problems. For convenience, let Ip,i denote the set
of Lp mixed intersection bodies.

THEOREM 1.1. Let p � 1 and K,L ∈ S n
o . if K ∈ Ip,i , then for i < n− p,

Ip,iK ⊆ Ip,iL

implies
W̃i(K) � W̃i(L),

with equality if and only if K = L; if L ∈ Ip,i , then for i > n,

Ip,iK ⊆ Ip,iL

implies
W̃i(K) � W̃i(L),

with equality if and only if K = L.

Here, W̃i denotes the dual quermassintegrals (see (2.2)).
The following provides the negative version of the Busemann-Petty problems for

the Lp mixed intersection bodies.

THEOREM 1.2. Let p � 1 . If K /∈ S n
e , then there exists L ∈ S n

e such that when
i < n− p,

Ip,iK ⊂ Ip,iL

has
W̃i(K) > W̃i(L).
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2. Preliminaries

2.1. Lp dual mixed quermassintegrals

For K,L ∈ S n
o , p > 0 and λ ,μ � 0 (not both zero), the Lp radial combination,

λ ◦K+̃pμ ◦L ∈ S n
o , of K and L is defined, cf. [34], by

ρ(λ ◦K+̃pμ ◦L, ·)p = λ ρ(K, ·)p + μρ(L, ·)p. (2.1)

The dual quermassintegrals of a body K ∈ S n
o is

W̃i(K) =
1
n

∫
Sn−1

ρ(K,u)n−idS(u). (2.2)

Obviously,

W̃0(K) =
1
n

∫
Sn−1

ρ(K,u)ndS(u) =V (K).

For p � 1, the Lp dual mixed quermassintegrals, W̃p,i(K,L) , of K,L ∈ S n
o was

defined, in [31], by

n− i
p

W̃p,i(K,L) = lim
ε→0+

W̃i(K+̃pε ◦L)−W̃i(K)
ε

. (2.3)

From definition (2.3), the following integral representation of Lp dual mixed quer-
massintegrals was given in [31]: If K,L ∈ S n

o and p � 1, then

W̃p,i(K,L) =
1
n

∫
Sn−1

ρ(K,u)n−p−iρ(L,u)pdS(u). (2.4)

Apparently,
W̃p,i(K,K) = W̃i(K).

The Minkowski inequalities for the Lp dual mixed quermassintegrals were estab-
lished in [31]: If K,L ∈ S n

o and p � 1, then for i < n− p ,

W̃p,i(K,L) � W̃i(K)
n−p−i

n−i W̃i(L)
p

n−i ; (2.5)

for n− p < i < n or i > n ,

W̃p,i(K,L) � W̃i(K)
n−p−i

n−i W̃i(L)
p

n−i . (2.6)

In every case, equality holds if and only if K is a dilate of L .

2.2. Lp dual mixed Blaschke body

For K,L ∈ S n
o , p � 1 and λ ,μ � 0 (not both zero), the Lp dual mixed Blaschke

combination, λ �K+̆p,iμ �L ∈ S n
o , of K and L is defined by

ρ(λ �K+̆p,iμ �L, ·)n−p−i = λ ρ(K, ·)n−p−i + μρ(L, ·)n−p−i. (2.7)
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Taking λ = μ = 1
2 , L = −K in (2.7), the Lp dual mixed Blaschke body, ∇̆p,iK ,

of K is defined by

∇̆p,iK =
1
2

�K+̆p,i
1
2

� (−K). (2.8)

Obviously, the Lp dual mixed Blaschke body is origin-symmetric.

3. Proofs of Theorems 1.1-1.2

The proof of Theorem 1.1 needs the following lemma.

LEMMA 3.1. If K,L ∈ S n
o , then for p � 1 ,

W̃p,i(K, Ip,iL) = W̃p,i(L, Ip,iK).

Proof. From (1.4), (1.5) and (2.4), it follows that

W̃p,i(K, Ip,iL) =
1
n

∫
Sn−1

ρ(K,u)n−p−iρ(Ip,iL,u)pdS(u)

=
1
n

∫
Sn−1

1
(n−1)ωn−1

ρ(K,u)n−p−iR(ρn−p−i
L )(u)dS(u)

=
1
n

∫
Sn−1

1
(n−1)ωn−1

R(ρn−p−i
K )(u)ρ(L,u)n−p−idS(u)

=
1
n

∫
Sn−1

ρ(L,u)n−p−iρ(Ip,iK,u)pdS(u) = W̃p,i(L, Ip,iK). �

Proof of Theorem 1.1. For a star body K with Ip,iK = K , it follows from Lemma
3.1 that

W̃i(K) = W̃p,i(K,K) = W̃p(K, Ip,iK) = W̃p,i(K, Ip,iK);

W̃p,i(L,K) = W̃p,i(L, Ip,iK) = W̃p,i(K, Ip,iL).

Since

W̃p,i(K, Ip,iK) =
1
n

∫
Sn−1

ρ(K,u)n−p−i
(

ρ(Ip,iK,u)
ρ(Ip,iL,u)

)p

ρ(Ip,iL,u)pdS(u)

� max
u∈Sn−1

(
ρ(Ip,iK,u)
ρ(Ip,iL,u)

)p

W̃p,i(K, Ip,iL),

we have
W̃i(K)

W̃p,i(K, Ip,iL)
� max

u∈Sn−1

(
ρ(Ip,iK,u)
ρ(Ip,iL,u)

)p

.

From Ip,iK ⊆ Ip,iL , we obtain that for i < n− p ,

W̃i(K) � W̃p,i(K, Ip,iL) = W̃p,i(L,K) � W̃i(L)
n−p−i

n−i W̃i(K)
p

n−i ,



924 X. ZHANG, S. WU AND Y. FENG

i.e.,
W̃i(K) � W̃i(L).

From the equality condition of (2.5) and the condition Ip,iK ⊆ Ip,iL , we know that
equality holds if and only if K = L .

Let Ip,iL = L for a star body L . By Lemma 3.1, we have

W̃i(L) = W̃p,i(L,L) = W̃p,i(L, Ip,iL) = W̃p,i(L, Ip,iL);

W̃p,i(K,L) = W̃p,i(K, Ip,iL) = W̃p,i(L, Ip,iK).

Thus

W̃p,i(L, Ip,iK) =
1
n

∫
Sn−1

ρ(L,u)n−p−i
(

ρ(Ip,iK,u)
ρ(Ip,iL,u)

)p

ρ(Ip,iL,u)pdS(u)

� max
u∈Sn−1

(
ρ(Ip,iK,u)
ρ(Ip,iL,u)

)p

W̃p,i(L, Ip,iL),

i.e.
W̃p,i(K,L)

W̃i(L)
� max

u∈Sn−1

(
ρ(Ip,iK,u)
ρ(Ip,iL,u)

)p

.

From Ip,iK ⊆ Ip,iL , it follows that

W̃i(L) � W̃p,i(K,L).

The above inequality implies that for i > n ,

W̃i(K) � W̃i(L). �

LEMMA 3.2. If K,L ∈ S n
o , p � 1 and λ ,μ � 0 (not both zero), then for i <

n− p,

W̃i(λ �K+̆p,iμ �L)
n−p−i

n−i � λW̃i(K)
n−p−i

n−i + μW̃i(L)
n−p−i

n−i ; (3.1)

for n− p < i < n or i > n,

W̃i(λ �K+̆p,iμ �L)
n−p−i

n−i � λW̃i(K)
n−p−i

n−i + μW̃i(L)
n−p−i

n−i . (3.2)

In every inequality, with equality if and only if K and L are dilates.

Proof. From (2.4), (2.5) and (2.7), we have for any Q ∈ S n
o and i < n− p

W̃p,i(λ �K+̆p,iμ �L,Q) = λW̃p,i(K,Q)+ μW̃p,i(L,Q)

�
[
λW̃i(K)

n−p−i
n−i + μW̃i(L)

n−p−i
n−i

]
W̃i(Q)

p
n−i . (3.3)

Let Q = λ �K+̆p,iμ �L in (3.3). Thus we have

W̃i(λ �K+̆p,iμ �L)
n−p−i

n−i � λW̃i(K)
n−p−i

n−i + μW̃i(L)
n−p−i

n−i .
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For n− p < i < n or i > n , similar to the above method, we have

W̃i(λ �K+̆p,iμ �L)
n−p−i

n−i � λW̃i(K)
n−p−i

n−i + μW̃i(L)
n−p−i

n−i .

Together with the equality conditions of (2.5) and (2.6), we see that equality in
every inequality holds if and only if K and L are dilates. �

Let λ = μ = 1
2 , L = −K in (3.1) and (3.2). Then the following is an immediate

result of Lemma 3.2.

COROLLARY 3.1. If K ∈ S n
o and p � 1 , then for i < n− p or n− p < i < n,

W̃i(∇̆p,iK) � W̃i(K); (3.4)

for i > n,
W̃i(∇̆p,iK) � W̃i(K). (3.5)

In every inequality, with equality if and only if K is origin-symmetric.

LEMMA 3.3. If K ∈ S n
o , then for p � 1 ,

Ip,i(∇̆p,iK) = Ip,iK.

Proof. From (1.5), (2.7) and (2.8), we have

ρ(Ip,i(∇̆p,iK),u)p =
1

(n−1)ωn−1

∫
Sn−1∩u⊥

ρ
(

1
2

�K+̆p,i
1
2

� (−K),v
)n−p−i

dSn−2(v)

=
1

(n−1)ωn−1

∫
Sn−1∩u⊥

[
1
2

ρ(K,v)n−p−i+
1
2

ρ(−K,v)n−p−i
]
dSn−2(v)

=
1
2

ρ(Ip,iK,u)p +
1
2

ρ(Ip,i(−K),u)p.

From formula (1.5) we easily see Ip,i(−K) = Ip,i(K) . Thus, we have

ρ(Ip,i(∇̆p,iK),u)p = ρ(Ip,iK,u)p,

i.e.,
Ip,i(∇̆p,iK) = Ip,iK. �

Proof of Theorem 1.2. Since K /∈ S n
e , (3.4) implies that for i < n− p ,

W̃i(∇̆p,iK) < W̃i(K).

Let ε > 0 such that W̃i((1+ ε)∇̆p,iK) < W̃i(K) . Taking L = (1+ ε)∇̆p,iK we have

W̃i(K) > W̃i(L).

However, from formula (1.5) and Lemma 3.3 we get

Ip,iL = Ip,i((1+ ε)∇̆p,iK) = (1+ ε)
n−p−i

p Ip,i(∇̆p,iK) = (1+ ε)
n−p−i

p Ip,iK ⊃ Ip,iK. �
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