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THE FUNDAMENTAL INEQUALITY FOR ALGEBROID FUNCTIONS ON

ANNULI CONCERNING SMALL ALGEBROID FUNCTIONS

HONG YAN XU AND ZHAO JUN WU

(Communicated by J. Pečarić)

Abstract. The main aim of this article is to study the properties on value distribution of alge-
broid functions on annulus. We obtain the second fundamental theorems for algebroid function
concerning small algebroid functions on annulus, which improves the previous result given by
Tan [28].

1. Introduction

As we all know, Nevanlinna theory plays an important role in studying the prop-
erties of meromorphic functions in the fields of complex analysis (see Hayman [5],
Yang [40] and Yi and Yang [41]). In fact, the value distribution theory of meromorphic
functions occupies one of the central places in Complex Analysis. In the past several
decades, numerous works are devoted to studying its connections with other areas of
mathematics including topology, differential geometry, measure theory, potential theory
and others; extending its inferences to wider classes of functions such as: meromorphic
functions in arbitrary plane regions and Riemann surfaces, algebroid functions, func-
tions of several variables, meromorphic curves.

In fact, algebroid function was firstly introduced by H. Poincaré, and after that, G.
Darboux pointed out that it is a very important class of functions. Let Hv(z), . . . ,H0(z)
be analytic functions in a single connected domain X⊆C without common zeros, then
the irreducible equation

Ψ(z, f ) = Hv(z) f v +Hv−1(z) f v−1 + · · ·+H0(z) = 0

defines a v-valued algebroid function f (z) in X ⊆ C (see [7, 26]). If v = 1, then f (z)
is a meromorphic function in X . Around 1930, G. Valiron, E. Ullrich, H. Selberg and
K. L. Hiong [8,24,29,30] extended the second fundamental theorem to algebroid func-
tions, M. Ru [22] in 2000 proved the second fundamental theorem concerning small
meromorphic functions for algebroid functions, D. C. Sun, Z. S. Gao, H. F. Liu in
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2012 [26] further established the second fundamental theorem concerning small alge-
broid functions for v-valued algebroid functions, which improved and extended those
previous forms about the second fundamental theorem. About 90 years passed, many
famous mathematicians (including G. Rémoundos, G. Valiron, E. Ullrich, H. Selberg,
K. L. Hiong, Y. Z. He, etc.) had paid great attention to deal with the value distribution
of algebroid functions in some complex domains, such as: the whole complex plane
C , the unit disc D and the angular domain Δ , and obtained a lot of interesting and
important results (see [6, 9, 14, 16, 21, 27, 31, 32, 33, 34, 38, 39, 42, 15, 23, 35, 37, 3]).
Because the whole complex plane C , the unit disc D and the angular domain Δ can
all be regarded as simple connected regions, thus, in a word, they had obtained many
results of algebroid functions only in some simple connected regions. Thus, there is a
naturel question: what had happened for algebroid function in some multiply connected
regions? In 2016, Y. Tan [28] first studied the value distribution of algebroid functions
on a special multiply connected region—double connected region—-the annulus, and
established some basic theorems which is an analog of Nevanlinna theory of algebroid
function in the whole complex plane. However, there were no the related results of alge-
broid function on annulus concerning small algebroid functions. In this way, the main
purpose of this article is to further study the value distribution of algebroid functions on
the annulus, and established the second fundamental theorem for algebroid functions
concerning small algebroid functions on the annulus.

The structure of this paper is as follows. In Section 2, we introduce some basic
notations and fundamental theorems of algebroid functions on the annulus. Section 3
is devoted to discuss the second fundamental theorem of algebroid function concerning
small algebroid functions on the annulus.

2. Basic notations and fundamental theorems for algebroid functions on the
annulus

In view of Doubly connected mapping theorem [1], each two connected domain is
conformally equivalent to an annulus ArR := {z : r < |z|< R} , where 0 � r < R � +∞.

Let z �→ z√
rR

and R0 =
√

R
r , then ArR can be reduced to the annulus AR0 := {z : 1

R0
<

|z| < R0} , especially A∞ := {z : 0 < |z| < +∞} for R0 = +∞ , i.e., r = 0, R = +∞
simultaneously.

Similar to ref. [7, 26], the basic notions and theorems of algebroid functions on
the annulus A will be showed as follows (see [28]) as follows. Let Av(z), . . . ,A0(z)
be analytic functions on annulus AR0(1 < R0 � +∞) without common zeros, then the
irreducible equation

ψ(z,Y ) = Av(z)Y v +Av−1(z)Y v−1 + · · ·+A0(z) = 0 (1)

defines a v-valued algebroid function Y (z) on the annulus AR0 (see [28]). Then Eq.
(1) defines a v-valued algebroid function on the annulus AR0 . If Av(z), . . . ,A0(z) are
all polynomials, then Y (z) is an algebraic function, and if anyone of Av(z), . . . ,A0(z)
is transcendental, then Y (z) is called algebroid function. For an irreducible algebroid
function Y (z) , we can divided the points in the complex plane into two classes: TY : a
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set of regular points of Y (z) , and SY = C−TW : a set of critical points of Y (z) . The
set SY is an isolated set (see [7, 17].). For every a ∈ TY . there exist and only exist v
number of regular function elements {(y j(z),a)}v

j=1 . Throughout this manuscript, we
usually denote Y (z) = {y j(z)}v

j=1 for convenience.

Let Y (z) be a v-valued algebroid function on the annulus AR0 := {z : 1
R0

< |z| <
R0} . For 1 < r < R0 � +∞ , the notations can be found in [28]

m(r,Y ) =
1
v

v

∑
j=1

m(r,y j) =
1
v

v

∑
j=1

1
2π

log+ |y j(reiθ )|dθ ,

N1(r,Y ) =
1
v

∫ 1

1
r

n1(t,Y )
t

dt, N2(r,Y ) =
1
v

∫ r

1

n2(t,Y )
t

dt,

m0(r,Y ) = m(r,Y )+m

(
1
r
,Y

)
−2m(1,Y), N0(r,Y ) = N1(r,Y )+N2(r,Y ),

and

Nx1(r,Y ) =
1
v

∫ 1

1
r

nx1(t,Y )
t

dt, Nx2(r,Y ) =
1
v

∫ r

1

nx2(t,Y )
t

dt,

Nx(r,Y ) = Nx1(r,Y )+Nx2(r,Y ),

where y j(z)( j = 1,2, . . . ,v) is a one-valued branch of Y (z) , n1(t,Y )[n2(t,Y )] is the
counting functions of poles of the function Y (z) in {z : t < |z| � 1}[{z : 1 < |z| � t}]
and counting multiplicity, and nx1(t,Y )[nx2(t,Y )] is the counting function of branch
points of the function Y (z) in {z : t < |z| � 1}[{z : 1 < |z| � t}] . Nx(r,Y ) is the density
index of branch point of Y (z) on the annulus A . The Nevanlinna characteristic of
algebroid function Y on the annulus A is defined by

T0(r,Y ) = m0(r,Y )+N0(r,Y ).

Similarly, for α ∈ C := C∪{∞} , we have

N0(r,
1

Y −α
)=N1(r,

1
Y −α

)+N2(r,
1

Y −α
)=

1
v

∫ 1

1
r

n1(t, 1
Y−α )
t

dt+
1
v

∫ r

1

n2(t, 1
Y−α )
t

dt,

where n1(t, 1
Y−α )[n2(t, 1

Y−α )] is the counting functions of poles of the function 1
Y (z)−α

in {z : t < |z| � 1}[{z : 1 < |z| � t}] and counting multiplicity. In addition, we denote
by n1(t, 1

Y−α ) , n2(t, 1
Y−α ) the counting function of distinct poles of the function 1

Y−α
in {z : t < |z|� 1} and {z : 1 < |z|� t} , respectively. Similarly, the notations N1(r,Y ),
N2(r,Y ), N0(r,Y ), and N0(r, 1

Y−α ) can be defined.
Let Y (z) be an algebroid function on the annulus A , if there are λ branches of

Y (z) which take a(�= ∞) as the value in z0 point, then the fractional power series is

Y (z) = α + βτ(z− z0)
τ
λ + βτ+1(z− z0)

τ+1
λ + · · · , (2)
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and n0(r,α) = n0(r, 1
Y−α ) = ∑

Y=α
τ , where n0(r,α) is the counting function of zeros of

Y (z)−α on the annulus A and counting multiplicity. If there are λ branches of Y (z)
which take ∞ as the value in z0 point, then the fractional power series is

Y (z) = β−τ(z− z0)−
τ
λ + β−τ+1(z− z0)

−τ+1
λ + · · · , (3)

and n0(r,∞) = n0(r,Y ) = ∑
Y=∞

τ , where n0(r,∞) is the counting function of poles of

Y (z)−α on the annulus A and counting multiplicity. z = z0 is a branch point of λ −1
degree of Y (z) on its Riemann Surface M̃ . nx(r,Y ) = ∑(λ − 1) denotes the branch
points of Y (z) on its Riemann Surface on the annulus A . Noting, assume that 0 is not
a branch points of Y (z) in this article. Obviously, for α ∈ C , we show

n0(r,
1

Y −α
) = n0(r,

1
ψ(z,α)

), N0(r,
1

Y −α
) = N0(r,

1
ψ(z,α)

),

and especially, N0(r, 1
Y ) = 1

vN0(r, 1
A0

) as α = 0, and N0(r,Y ) = 1
kN0(r, 1

Av
) as α = ∞ .

In view of the above definitions, some relationship the classical characteristics of
algebroid functions in between the whole plane C and annulus A can be listed below.

(a) N0(r,Y ) = N(r,Y )+N( 1
r ,Y )−2N(1,Y ) , for r > 1,

(b) T0(r,Y ) = T (r,Y )+T( 1
r ,Y )−2T(1,Y ) , for r > 1,

(c) T (r,Y )−2T(1,Y ) � T0(r,Y ) � T (r,Y ) .

For convenience, we give a simply proof of the above conclusions as follows.
In fact, assume that Y (0) �= ∞ . Since n1(t,Y ) = n(1,Y )− n(t,Y ),0 < t < 1 and

n2(t,Y ) = n(t,Y )−n(1,Y),t > 1, then

N0(r,Y ) =
1
v

∫ 1

1
r

n(1,Y )−n(t,Y)
t

dt +
1
v

∫ r

1

n(t,Y )−n(1,Y)
t

dt

=
1
v

∫ 1

1
r

n(1,Y )
t

dt− 1
v

∫ 1

1
r

n(t,Y )
t

dt +
1
v

∫ r

1

n(t,Y )
t

dt− 1
v

∫ r

1

n(1,Y )
t

dt

=
1
v
n(1,Y ) logr− 1

v

∫ 1

0

n(t,Y )
t

dt +
1
v

∫ 1
r

0

n(t,Y )
t

dt +
1
v

∫ r

0

n(t,Y )
t

dt

− 1
v

∫ 1

0

n(t,Y )
t

dt− 1
v
n(1,Y ) logr

=N(r,Y )+N(
1
r
,Y )−2N(1,Y ).

The case Y (0) = ∞ can be proved similarly. Because T (r,Y ) = m(r,Y )+N(r,Y ) , from
the above equality, then relation (b) follows immediately. Thus, (c) follows immedi-
ately from (b) .

DEFINITION 2.1. Let Y (z) be k -valued algebroid function which is determined
by (1) on the annulus A = {z : 1

R0
< |z| < R0}, where 1 < R0 � +∞. Then the order of

Y (z) is defined by:
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i) if R0 = +∞ ,

ρ(Y ) = limsup
r→+∞

log+ T0(r,Y )
logr

,

ii) if R0 < +∞ ,

ρ(Y ) = limsup
r→R0

log+ T0(r,Y )
log 1

R0−r

.

In addition, let Y (z) be v-valued algebroid functions on the annulus A , the fol-
lowing properties will be used in this paper (see [28]):

(d) T0(r,Y ) = T0
(
r, 1

Y

)
,

(e) T0(r, 1
Y−a) = T0(r,Y )+O(1) , for every fixed a ∈ C ,

(f) (q− 2v)T0(r,Y ) < ∑q
j=1 N0(r, 1

Y−a j
)−N1(r,Y ) + S0(r,Y ) , for a j ∈ C, j =

1,2, . . . ,q ,

where N1(r,Y ) is the density index of all multiple values including finite or infinite,
every τ multiple value counts τ −1, and

S0(r,Y ) = m0(r,
Y ′

Y
)+

q

∑
j=1

m0(r,
Y ′

Y −a j
)+O(1).

REMARK 2.1. From [28], (f) can be transformed to the following form

(q−2v)T0(r,Y ) <
q

∑
j=1

N0(r,
1

Y −a j
)+S0(r,Y ).

REMARK 2.2. For the remainder S0(r,Y ) in (f), by combining with [11, Theorem
1] and [28], it follows:

i) in the case R0 = +∞,

S0(r,Y ) = O(log(rT0(r,Y ))),

for r ∈ (1,+∞) outside a set of finite linear measure;

ii) in the case R0 < +∞ ,

S0(r,Y ) = O(log(
T0(r,Y )
R0 − r

)),

for r ∈ (1,R0) except for the set E of r such that
∫
E

dr
(R0−r) < +∞.
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REMARK 2.3. From Definition 2.1 and Remark 2.2, we obtain:

i) in the case R0 = +∞ , if ρ(Y ) < +∞ , then

S0(r,Y ) = O(logr) = o(T0(r,Y )), as r → +∞;

if ρ(Y ) = +∞ , then

S0(r,Y ) = O(log(rT0(r,Y ))) = o(T0(r,Y )), as r → +∞,

outside a set of finite linear measure;

ii) in the case R0 < +∞ , if ρ(Y ) ∈ [0,+∞) , then

S0(r,Y ) = O(log(
T0(r,Y )
R0− r

)) = O(log(
1

R0− r
)) = o(T0(r,Y )),

except for the set E of r such that
∫
E

dr
(R0−r) < +∞, and if ρ(Y ) = +∞ , then

S0(r,Y ) = O(log(
T0(r,Y )
R0− r

)) = o(T0(r,Y )), as r → R0−,

except for the set E of r such that
∫
E

dr
(R0−r) < +∞.

Similarly to Ref. [26], we also introduce some other definitions of algebroid func-
tion class on the annulus, which are used in our manuscript.

DEFINITION 2.2. Let Y (z) = {(y j(z),a)}v
j=1 be a v-valued algebroid function on

the annulus A . And let JY denote by the set of all algebroid mappings of Y (z) . Then
the set

GY := {g ◦Y(z);g ∈ JY}
is said as the algebroid function class of Y (z) on the annulus A .

DEFINITION 2.3. The small algebroid function set XY of Y (z) is defined as

XY :=
{

f ∈ GY : T0(r, f ) = o[T0(r,Y )](r → R0,r �∈ Ef )
}

,

where Ef is a real number set of finite linear measure depending on f if R0 = +∞ ,
and Ef is a set of r such that

∫
E

dr
(R0−r) < +∞ if R0 < +∞ . Thus, the element in XY is

called the small algebroid function of Y (z) .

REMARK 2.4. Note that all the finite or infinite complex constants belong to the
set XY , and all the small meromorphic functions and all the small algebroid functions
also belong this set.

DEFINITION 2.4. (see [26]). Let the set of all algebroid mappings of Y (z) be JY

and GY := {g ◦Y(z);g ∈ JY} . For any g1,g2 ∈ JY , we define:
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1) Addition: (g1 +g2)◦Y (z) = g1 ◦Y(z)+g2 ◦Y (z) .

2) Subtraction: (g1−g2)◦Y(z) = g1 ◦Y (z)−g2 ◦Y (z) .

3) Multiplication: (g1 ·g2)◦Y(z) = (g1 ◦Y (z)) · (g2 ◦Y(z)) .

4) Division: ( g1
g2

)◦Y (z) = g1 ◦Y(z) · 1
g2
◦Y (z) .

Next, we list the following theorem which is used in this paper.

THEOREM 2.1. Let Y (z) = {(y j(z),a)}v
j=1 and G(z) = {(g j(z),a)}v

j=1 ∈ GY be
two v-valued algebroid functions. Then:

i) T0(r,Y +G) � T0(r,Y )+T0(r,G)+O(1);

ii) T0(r,Y ·G) � T0(r,Y )+T0(r,G)+O(1) .

Proof. By cutting the annulus A , let {y j(z)}v
j=1 and {g j(z)}v

j=1 be v simple-
valued branches of Y (z) and G(z) , respectively. Then

m0(r,Y +G) =
1
2π

v

∑
j=1

∫ 2π

0
log+

∣∣∣y j(reiθ )+g j(reiθ )
∣∣∣dθ

+
1
2π

v

∑
j=1

∫ 2π

0
log+

∣∣∣∣y j(
1
r
eiθ )+g j(

1
r
eiθ )
∣∣∣∣dθ

− 1
2π

v

∑
j=1

∫ 2π

0
log+

∣∣∣y j(eiθ )+g j(eiθ )
∣∣∣dθ .

With a view of∫ 2π

0
log+

∣∣∣y j(eiθ )
∣∣∣dθ = O(1),

∫ 2π

0
log+

∣∣∣g j(eiθ )
∣∣∣dθ = O(1), f or j = 1,2, . . . ,v,

thus, it yields

m0(r,Y +G) =
1
2π

v

∑
j=1

{∫ 2π

0
log+

∣∣∣y j(reiθ )
∣∣∣dθ +

∫ 2π

0
log+

∣∣∣g j(reiθ )
∣∣∣dθ

}
+

1
2π

v

∑
j=1

{∫ 2π

0
log+

∣∣∣∣y j(
1
r
eiθ )
∣∣∣∣dθ +

∫ 2π

0
log+

∣∣∣∣g j(
1
r
eiθ )
∣∣∣∣dθ

}
− 1

2π

v

∑
j=1

{∫ 2π

0
log+

∣∣∣y j(eiθ )
∣∣∣dθ +

∫ 2π

0
log+

∣∣∣g j(eiθ )
∣∣∣dθ

}
+O(1)

�m0(r,Y )+m0(r,G)+O(1), (4)

and by using the argument as in (4), we have

N0(r,Y +G) =
1
v

∫ 1

1
r

n1(t,Y +G)
t

dt +
1
v

∫ r

1

n2(t,Y +G)
t

dt
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�N0(r,Y )+N0(r,G). (5)

Thus, from (4) and (5), i) follows. Similar to the same argument as in (4) and (5), we
can prove ii) easily. �

REMARK 2.5. From the process of the proof of Theorem 2.1, it is easily to get

m0(r,Y +G) � m0(r,Y )+m0(r,G)+O(1), N0(r,Y +G) � N0(r,Y )+N0(r,G),
m0(r,Y ·G) � m0(r,Y )+m0(r,G)+O(1), N0(r,Y ·G) � N0(r,Y )+N0(r,G).

3. The fundamental theorem for algebroid function on the annulus concerning
small algebroid functions

In this article, our main aim is to investigate the question: Could the conclusions
of Lemma 3.5 in [28] still hold when p distinct complex numbers a j( j = 1,2, . . . , p)
are replaced by p small algebroid functions a j(z)( j = 1,2, . . . , p)? We obtain the
following theorem, which is a positive answer to this question.

THEOREM 3.1. Suppose that Y (z) = {(y j(z),a)}v
j=1 is a v-valued nonconstant

algebroid function on the annulus A := {z : 1
R0

< |z|< R0}(1 < R0 � +∞) , {at(z)}p
t=1 ⊂

XY are p > 2 distinct small algebroid functions of Y(z) . Then for any ε ∈ (0,1) and
r > r0 , we have

m0(r,Y )+
p

∑
t=1

m0(r,
1

Y (z)−at(z)
) � (2+ ε)T0(r,Y )+2Nx(r,Y )+S0(r,Y ), (6)

or

(p−2− ε)T0(r,Y ) �
p

∑
t=1

N0(r,
1

Y −a j
)+2Nx(r,Y )+S0(r,Y ), (7)

or

(p−4v+2− ε)T0(r,Y ) �
p

∑
t=1

N0(r,
1

Y −a j
)+S0(r,Y ), (8)

where S0(r,Y ) is stated as in Remark 2.3.

To prove this theorem, we require some lemmas as follows.

LEMMA 3.1. (see [26]). Suppose that Y (z) is a v-valued nonconstant algebroid

function and n is a positive integer. Then Y (n)

Y is the differential polynomial of Y ′
Y .

LEMMA 3.2. (see [26]). Let f1, f2, . . . , fq , g ∈ GY . Then

W ( f1, f2, . . . , fq) :=

∣∣∣∣∣∣∣∣
f1 f2 · · · fq
f ′1 f ′2 · · · f ′q
· · · · · ·

f (q−1)
1 f (q−1)

2 · · · f (q−1)
q

∣∣∣∣∣∣∣∣= gqW

(
f1
g

,
f2
g

, · · · , fq
g

)
.
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LEMMA 3.3. (see [26]). Suppose that Au = {at := at(z)}u
t=1 ⊂ XY are u � 1

distinct small algebroid funtions. Let L(χ ,Au) denote the vector space spanned by
finitely many ap1

1 ,ap2
2 , . . . ,apu

u , where integer pt � 0(t = 1,2, . . . ,u) and ∑u
t=1 pt = χ(�

1) . Let dimL(χ ,Au) denote the dimension of the vector space L(χ ,Au) . Then for any
ε > 0 , there exists χ � 1 such that

dimL(χ +1,Au)
dimL(χ ,Au)

< 1+ ε.

LEMMA 3.4. Let Y (z) = {(y j(z),a)} be a v-valued nonconstant algebroid func-
tion on the annulus AR0 := {z : 1

R0
< |z| < R0}(1 < R0 � +∞) , and {at(z)}p

t=0 ⊂ XY

be p distinct small algebroid function with respect to Y(z) . Then for any 1
R0

< r < R0 ,
we have ∣∣∣∣∣m0

(
r,

p

∑
t=1

1
Y (z)−at(z)

)
−

p

∑
t=1

m0

(
r,

1
Y (z)−at(z)

)∣∣∣∣∣= S0(r,Y ),

where S0(r,Y ) is state as in Remark 2.3.

Proof. By using the curve V through all branch points of Y (z) , Y (z) can be cut
into v single-valued branch {y j(z)}v

j=1 on the annulus A . Similarly, every at(z) can be
cut into v single-valued branch {at, j(z)}v

j=1 on the annulus A . For any j = 1,2, . . . ,v ,
set

Fj(z) :=
p

∑
t=1

1
y j(z)−at, j(z)

. (9)

In view of at(z) ∈ XY and 1
R0

< r < R0 , then it yields m0(r,at) � T0(r,at) = o(T0(r,Y ))
for t = 1,2, . . . , p . Hence, we can conclude that

m0

(
r,

p

∑
t=1

1
Y (z)−at(z)

)
=

v

∑
j=1

1
2π

∫ 2π

0
log+

∣∣∣∣∣ p

∑
t=1

1
y j(reiθ )−at(reiθ )

∣∣∣∣∣dθ

+
v

∑
j=1

1
2π

∫ 2π

0
log+

∣∣∣∣∣ p

∑
t=1

1

y j( 1
r e

iθ ))−at( 1
r e

iθ )

∣∣∣∣∣dθ

−
v

∑
j=1

1
2π

∫ 2π

0
log+

∣∣∣∣∣ p

∑
t=1

1
y j(eiθ )−at(eiθ )

∣∣∣∣∣dθ

�
v

∑
j=1

p

∑
t=1

1
2π

∫ 2π

0
log+

∣∣∣∣ 1
y j(reiθ )−at(reiθ )

∣∣∣∣dθ

+
v

∑
j=1

p

∑
t=1

1
2π

∫ 2π

0
log+

∣∣∣∣∣ 1

y j( 1
r e

iθ ))−at( 1
r e

iθ )

∣∣∣∣∣dθ

−
v

∑
j=1

p

∑
t=1

1
2π

∫ 2π

0
log+

∣∣∣∣ 1
y j(eiθ )−at(eiθ )

∣∣∣∣dθ
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+o(T0(r,Y ))+K log p

�
p

∑
t=1

m0

(
r,

1
Y (z)−at(z)

)
+S0(r,Y ). (10)

Now, we will show the estimation of the lower bound of ∑v
j=1 m0(r,Fj) for any z ∈ A .

Denote
δ j(z) := min

1�t<u�p
{|at, j(z)−au, j(z)|} � 0.

Since δ j(z) is the function of z∈ A , in virtue of the uniqueness theorem, its zeros must
be isolated. Take arbitrary z ∈ {z : δ j(z) �= 0} .

Case 1. If for any t ∈ {1,2, . . . , p} ,

|y j(z)−at, j(z)| � δ j(z)
2p

,

then it yields
p

∑
t=1

log+ 1
|y j(z)−at, j(z)| � p log+ 2q

δ j(z)
. (11)

Case 2. If there exists some u ∈ {1,2, . . . , p} such that

|y j(z)−au, j(z)| � δ j(z)
2p

. (12)

Thus, for t �= u , it follows

|y j(z)−at, j(z)| � |au, j(z)−at, j(z)|− |y j(z)−au, j(z)| � δ j(z)− δ j(z)
2p

=
2p−1

2p
δ j(z).

Hence, by combining with (12), it yields

1
|y j(z)−at, j(z)| � 1

2p−1
2p

δ j(z)
(13)

<
1

2p−1
1

|y j(z)−au, j(z)| . (14)

Thus, with a view of (9) and (14), we can deduce that

|Fj(z)| � 1
|y j(z)−au, j(z)| −∑

t �=u

1
|y j(z)−at, j(z)|

� 1
|y j(z)−au, j(z)| −

p−1
2p−1

1
|y j(z)−at, j(z)| >

1
2|y j(z)−au, j(z)| ,

this leads to

log+ |Fj(z)| > log+ 1
|y j(z)−au, j(z)| − log2
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=
p

∑
t=1

log+ 1
|y j(z)−at, j(z)| − ∑

t �=u

log+ 1
|y j(z)−at, j(z)| − log2

�
p

∑
t=1

log+ 1
|y j(z)−at, j(z)| − ∑

t �=u

2p
(2p−1)δ j(z)

− log2

>
p

∑
t=1

log+ 1
|y j(z)−at, j(z)| − p log+ 2p

δ j(z)
− log2. (15)

Hence, combining with Case 1 and Case 2, we can conclude from (11) and (15) that

log+ |Fj(z)| >
p

∑
t=1

log+ 1
|y j(z)−at, j(z)| − p log+ 2p

δ j(z)
− log2. (16)

With a view of definition δ j(z) and the choice of z , then there exists t(z) �= u(z) such
that δ j(z) = at(z), j(z)−au(z), j(z) . Thus, it follows

1
δ j(z)

=
1

|at(z), j(z)−au(z), j(z)|
� ∑

1�t<u�p

1
|at, j(z)−au, j(z)| .

This leads to

1
2π

∫ 2π

0
log+ 1

δ j(reiθ )
dθ � ∑

1�t<u�p

1
2π

∫ 2π

0
log+ 1

|at, j(reiθ )−au, j(reiθ )|dθ +O(1)

= ∑m(r,at, j(z)−au, j(z))+O(1)

� ∑m(r,at, j)+m(r,au, j)+O(1), (17)

1
2π

∫ 2π

0
log+ 1

δ j( 1
r e

iθ )
dθ � ∑

1�t<u�p

1
2π

∫ 2π

0
log+ 1

|at, j( 1
r e

iθ )−au, j( 1
r e

iθ )|dθ +O(1)

= ∑m

(
1
r
,at, j −au, j

)
+O(1)

� ∑m

(
1
r
,at, j

)
+m

(
1
r
,au, j

)
+O(1), (18)

and
1
2π

∫ 2π

0
log+ 1

δ j(eiθ )
dθ = O(1). (19)

Thus, it yields from (17)-(19) that

v

∑
j=1

1
2π

∫ 2π

0
log+ dθ

δ j(reiθ )
+

v

∑
j=1

1
2π

∫ 2π

0
log+ dθ

δ j( 1
r e

iθ )
−

v

∑
j=1

1
2π

∫ 2π

0
log+ dθ

δ j(eiθ )

�∑T0(r,at, j)+T0(r,au, j)+O(1) = S0(r,Y ). (20)
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Substituting z = reiθ , z = 1
r e

iθ and z = eiθ into (16), respectively, and integrating
on θ from 0 to 2π , then we conclude from (20) that

m0

(
r,

p

∑
t=1

1
Y (z)−at(z)

)

=
v

∑
j=1

1
2π

∫ 2π

0
log+ |Fj(reiθ )|dθ +

v

∑
j=1

1
2π

∫ 2π

0
log+ |Fj(

1
r
eiθ )|dθ

−
v

∑
j=1

1
2π

∫ 2π

0
log+ |Fj(eiθ )|dθ

�
v

∑
j=1

p

∑
t=1

1
2π

∫ 2π

0
log+ 1

|y j(reiθ )−at, j(reiθ )|dθ

+
v

∑
j=1

p

∑
t=1

1
2π

∫ 2π

0
log+ 1

|y j( 1
r e

iθ )−at, j( 1
r e

iθ )|dθ

−
v

∑
j=1

p

∑
t=1

1
2π

∫ 2π

0
log+ 1

|y j(eiθ )−at, j(eiθ )|dθ −
v

∑
j=1

p
2π

∫ 2π

0
log+ 2p

δ j(reiθ )
dθ

−
v

∑
j=1

p
2π

∫ 2π

0
log+ 2p

δ j( 1
r e

iθ )
dθ +

v

∑
j=1

p
2π

∫ 2π

0
log+ 2pdθ

δ j(eiθ )
+O(1)

�
p

∑
t=1

m0

(
r,

1
Y (z)−a j(z)

)
+S0(r,Y ). (21)

Therefore, this completes the proof of this lemma from (10) and (21). �

LEMMA 3.5. (see [28, Lemma 3.3]). Let Y (z) be a v-valued algebroid function
which is determined by (1) on the annulus A , then

Nx(r,Y ) � 2(v−1)T0(r,Y )+O(1).

The proof of Theorem 3.1. : We will adapt the method of [26]. Let Δp =
{a1,a2, . . . ,ap} and L(χ ,Δp) be the vector space spanned by finitely many an1

1 an2
2 . . .a

np
p ,

where nt � 0(t = 1,2, . . . , p) and ∑p
t=1 = χ , and dimL(χ ,Δp) = n for given χ . Further,

let b1,b2, . . . ,bn be a basis of L(χ ,Δp) . In addition, let dimL(χ +1,Δp) = l , thus we
further denote by λ1,λ2, . . . ,λl a basis of L(χ +1,Δp) . By Lemma 3.3, for any ε > 0,
there exists some χ such that

1 � l
n

< 1+ ε. (22)

Let
γ(Y ) := W (λ1,λ2, . . . ,λl,Yb1,Yb2, . . . ,Ybn).

Since λ1,λ2, . . . ,λl ,Yb1,Yb2, . . . ,Ybn are linearly independent and P(Y ) �≡ 0, then in
view of the definition of the Wronskian determinant, it follows

γ(Y ) = ∑Cq(z)
n+l−1

∏
t=0

(Y (t))qt = Yn ∑Cq(z)
n+l−1

∏
t=0

(
Y (t)

Y

)qt

. (23)
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From [11, Theorem 1] and [28], we have m0

(
r, Y ′

Y

)
= S0(r,Y ) . Thus, by combining

this with (23), it follows

m0(r,γ(Y )) � nm0(r,Y )+S0(r,Y ). (24)

Meanwhile, in view of Lemma 3.2, we have

W (λ1,λ2, . . . ,λl ,Yb1, . . . ,Ybn) = γ(Y ) = Yn+l ·W
(

λ1

Y
, . . . ,

λl

Y
,b1, . . . ,bn

)
. (25)

(i) Let (q(z),z0) be a meromorphic fuction element or multivalent algebraic func-
tion element of Y (z) . If z0 is a τ -fold pole of q(z) , then in view of the right
side of Eq. (25), it follows that (q(z),z0) is the pole of γ(Y ) with order (n+ l)τ ,
outside the poles of the small algebroid functions {λi},{bt} ; If z0 is a zero of
q(z) , then in view of the left side of Eq. (25), it follows that (q(z),z0) is not the
pole of γ(Y ) , outside the poles of the small algebroid functions {λi},{bt} .

(ii) Denote

Wj(λ1, . . . ,λl,Yb1, . . . ,Ybn) := W (λ1, . . . ,λl−1,λl+1, . . . ,λk,Yb1, . . . ,Ybn),

for any 1 � j � l , and

Wj(λ1, . . . ,λl,Yb1, . . . ,Ybn) :=W (λ1, . . . ,λl, . . . ,λk,Yb1, . . . ,Ybl−1,Ybl+1, . . . ,Ybn),

if l < j � n + l . Assume that z0 is not the pole of q(z) and (q(z),z0) is any
λ -sheeted algebraic function element of Y (z) . Then z0 is at most the pole of
q(z) with the order λ −1. By Lemma 3.2, it follows

γ(Y ) =
l

∑
j=1

[(−1) j+1λ jWj(λ ′
1, . . . ,λ

′
l ,(Yb1)′, . . . ,(Ybn)′)]

+
n+l

∑
j=l+1

[(−1) j+1Yb j ·Wj(λ ′
1, . . . ,λ

′
l ,(Yb1)′, . . . ,(Ybn)′)]

=
l

∑
j=1

(−1) j+1λ j(Y ′b j +Yb′j)
n+l−1

×Wj

(
λ ′

1

(Yb j)′
, . . . ,

λ ′
l

(Yb j)′
,
(Yb1)′

(Yb j)′
, . . . ,

(Ybl)′

(Yb j)′

)
+

n+l

∑
j=l+1

(−1) j+1Yb j(Y ′b j +Yb′j)
n+l−1

×Wj

(
λ ′

1

(Yb j)′
, . . . ,

λ ′
l

(Yb j)′
,
(Yb1)′

(Yb j)′
, . . . ,

(Ybl)′

(Yb j)′

)
.

Thus the order of pole of γ(Y ) at (q(z),z0) is less than (λ −1)(n+ l−1) , outside
the poles of the small algebroid functions {λi},{bt} . Hence it follows from (i)
and (ii) that

N0(r,γ(Y )) � (n+ l)N0(r,Y )+ (n+ l−1)Nx(r,Y )+S0(r,Y ).
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By applying Theorem 2.1 and in view of (25), we can deduce

T0(r,γ(Y )) � nT0(r,Y )+ lN0(r,Y )+ (n+ l−1)Nx(r,Y )+S0(r,Y ). (26)

Let a be a linear combination of {at} , then

γ(Y −a) = W (λ1,λ2, . . . ,λl,Yb1−ab1,Yb2−ab2, . . . ,Ybn−abn)

= W (λ1,λ2, . . . ,λl,Yb1,Yb2, . . . ,Ybn)±∑W (λ1,λ2, . . . ,λl, . . .),

where the element ” . . .” behind λl in ∑W (λ1,λ2, . . . ,λl, . . .) consists of abt .
But abt and λ1,λ2 , . . . ,λl are linearly dependent, thus it follows
∑W (λ1,λ2, . . . ,λl, . . .) = 0. So, we obtain

γ(Y −a) = γ(Y ). (27)

Thus, it follows from Lemma 3.1 and (24) that

γ(Y ) = Yn ·ϕ
(

Y ′

Y

)
, (28)

where ϕ
(

Y ′
Y

)
is the differential polynomial of Y ′

Y . Let

Vt := Y −at, ϕt := ϕ
(

V ′
t

Vt

)
, t = 1,2, . . . , p.

Hence, by combining with (27) and (28), we obtain γ(Y ) = γ(Vt) = Vn
t ϕt , that

is,
1

(Y −at)n =
ϕt

γ(Y )
.

Thus, this leads to
1

|Y −at| =
|ϕt |n−1

|γ(Y )|n−1 . (29)

Set

F(z) :=
p

∑
t=1

1
Y (z)−a j(z)

,

then in view of Lemma 3.4 and (29), it yields

m0(r,F) = m0

(
r,

p

∑
t=1

1
Y (z)−at(z)

)
=

p

∑
t=1

m0

(
r,

1
Y (z)−at(z)

)
+S0(r,Y ), (30)

and

|F(z)| �
p

∑
t=1

1
|Y (z)−at(z)| � 1

|γ(Y )|n−1

p

∑
t=1

|ϕt |n−1
, (31)
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which leads to

m0(r,F) � 1
n
m0

(
r,

1
γ(Y )

)
+

1
n

p

∑
t=1

m0(r,ϕt)+O(1)

� 1
n
T0(r,γ(Y ))− 1

n
N0

(
r,

1
γ(Y )

)
+S0(r,Y )

� T0(r,Y )+
l
n
N0(r,Y )+

n+ l−1
n

Nx(r,Y )− 1
n
N0

(
r,

1
γ(Y )

)
+S0(r,Y )

� T0(r,Y )+
l
n
N0(r,Y )+2Nx(r,Y )− 1

n
N0

(
r,

1
γ(Y )

)
+S0(r,Y ). (32)

Hence from (22), (30) and (32), it yields

m0(r,Y )+
p

∑
t=1

m0

(
r,

1
Y (z)−at(z)

)
� l

n
m0(r,Y )+m0(r,F)

�(1+
l
n
)T0(r,Y )+2Nx(r,Y )+S0(r,Y )

<(2+ ε)T0(r,Y )+2Nx(r,Y )+S0(r,Y ),
(33)

which leads to (6).

Since

m0

(
r,

1
Y (z)−at(z)

)
� T0(r,Y −at)−N0

(
r,

1
Y −at

)
+O(1)

� T0(r,Y )−N0

(
r,

1
Y −at

)
+S0(r,Y ), (34)

and substituting (34) into (6), and with a view of N0(r,Y ) � T0(r,Y ) , we obtain
(7). By Lemma 3.5 and (7), then (8) holds immediately.

Therefore, this completes the proof of Theorem 3.1. �

Competing interests

The authors declare that none of the authors have any competing interests in the
manuscript.

Author’s contributions

HYX completed the main part of this article, HYX and ZJW corrected the main
theorems. All authors read and approved the final manuscript.

Acknowledgement. We thank the referee(s) for reading the manuscript very care-
fully and making a number of valuable and kind comments which improved the presen-
tation.



952 H. Y. XU AND Z. J. WU

RE F ER EN C ES

[1] S. AXLER, Harmomic functions from a complex analysis viewpoit, Amer. Math. Monthly 93 (1986),
246–258.

[2] T. B. CAO, H. X. YI AND H. Y. XU, On the multiple values and uniqueness of meromorphic functions
on annuli, Comput. Math. Appl. 58 (2009), 1457–1465.

[3] X. K. CHANG, S. Y. LIU, P. J. ZHAO AND X. LI, Convergent prediction correction-based ADMM
for multi-block separable convex programming, Journal of Computational and Applied Mathematics,
335 (2018), 270–288.
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