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Abstract. In this article, we present some new inequalities for numerical radius of Hilbert space
operators via convex functions. Our results generalize and improve earlier results by El-Haddad
and Kittaneh. Among several results, we show that if A ∈ B(H ) and r � 2 , then

wr (A) � ‖A‖r − inf
‖x‖=1

∥∥∥||A|−w(A)| r
2 x

∥∥∥2

where w(·) and ‖·‖ denote the numerical radius and usual operator norm, respectively.

1. Introduction

Let B(H ) denote the C∗ -algebra of all bounded linear operators acting on a
Hilbert space H . As customary, we reserve m , M for scalars. An operator A on
H is said to be positive (in symbol: A � 0) if 〈Ax,x〉 � 0 for all x ∈ H . We write
A > 0 if A is positive and invertible. For self-adjoint operators A and B , we write
A � B if A−B is positive, i.e., 〈Ax,x〉 � 〈Bx,x〉 for all x ∈ H . In particular, for some
scalars m and M , we write m � A � M if m〈x,x〉 � 〈Ax,x〉 � M 〈x,x〉 for all x ∈ H .

Here |A| = (A∗A)
1
2 is the absolute value of A .

If A ∈ B(H ) , the usual operator norm and the numerical radius of A are defined,
respectively, by ‖A‖ = sup‖x‖=1 ‖Ax‖ and w(A) = sup‖x‖=1 | 〈Ax,x〉 | . The numerical
radius satisfies

1
2
‖A‖ � w(A) � ‖A‖ , (1.1)

which show that w(A) is a norm equivalent to ‖A‖ . We also remark that if R(A)⊥R(A∗) ,
then w(A) = 1

2 ‖A‖ (see, e.g., [11, Theorem 1.3.4]).
An improvement of the second inequality in (1.1) has been given in [13, Theorem

1]. It says that for A ∈ B(H ) ,

w(A) � 1
2
‖|A|+ |A∗|‖ � 1

2

(
‖A‖+

∥∥A2
∥∥ 1

2

)
. (1.2)
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Consequently, if A2 = 0, then w(A) = ‖A‖
2 . The first inequality of (1.2) was extended

in [7] in the following form:

wr (A) � 1
2

∥∥∥|A|2rv + |A∗|2r(1−v)
∥∥∥ , r � 1, 0 < v < 1. (1.3)

Also, in the same paper, it was shown that

‖A+B‖2 �
∥∥∥|A|2 + |B|2

∥∥∥+
∥∥∥|A∗|2 + |B∗|2

∥∥∥ . (1.4)

The following result concerning the product of two operators was proved in [5]:

wr (B∗A) � 1
2

∥∥∥|A|2r + |B|2r
∥∥∥ , r � 1. (1.5)

A general numerical radius inequality has been proved by Shebrawi and Albadawi [16],
it has been shown that if A,X ,B ∈ B(H ) , then

wr (A∗XB) � 1
2

∥∥∥(
A∗|X∗|2vA

)r
+

(
B∗|X |2(1−v)B

)r∥∥∥ , r � 1, 0 < v < 1. (1.6)

Some interesting numerical radius inequalities improving inequalities (1.1) have been
obtained by several mathematicians (see [2, 18], and references therein). For a compre-
hensive overview of the connections among these and other known inequalities in the
literature, we refer to [4].

The purpose of this work is to establish some new inequalities for the numerical
radius of bounded linear operators in Hilbert spaces. We provide a new estimate for the
sum of two operators. After that, we generalize and improve the inequality (1.6). An
improvement of inequality w(A) � ‖A‖ is also given in the end of Section 2. Section 3
devoted to studying numerical radius inequalities involving f -connection of operators.

2. Inequalities for sums and products of operators

We start this section by an operator norm inequality related to (1.4). In fact we
give another upper bound for ‖A+B‖2 .

THEOREM 2.1. Let A,B ∈ B(H ) , then

‖A+B‖2 � 1
2

[∥∥∥|A∗|2 + |B∗|2
∥∥∥+

∥∥∥|A∗|2 −|B∗|2
∥∥∥]

+w(BA∗)+2‖A‖‖B‖ . (2.1)

Proof. We use the following inequality which is shown in the proof of Theorem 3
in [6]:

|〈z,x〉|2 + |〈z,y〉|2 � ‖z‖2 max
(
‖x‖2,‖y‖2

)
+ |〈x,y〉| ,

where x,y,z ∈ H . Taking x = A∗y , y = B∗y , and z = x with ‖x‖ = ‖y‖ = 1, we get

|〈x,A∗y〉|2 + |〈x,B∗y〉|2 � max
(
‖A∗y‖2,‖B∗y‖2

)
+ |〈A∗y,B∗y〉| .
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The above inequality is equivalent to

|〈Ax,y〉|2 + |〈Bx,y〉|2 � 1
2

[〈AA∗+BB∗y,y〉+ |〈AA∗ −BB∗y,y〉|]+ |〈BA∗y,y〉|

thanks to max{a,b} = 1
2 (a+b+ |a−b|) ,(a,b ∈ R) .

Now, it follows from the tringle inequality that

|〈A+Bx,y〉|2 �|〈Ax,y〉|2 + |〈Bx,y〉|2 +2 |〈Ax,y〉| |〈Bx,y〉|
�1

2
[〈AA∗+BB∗y,y〉+|〈AA∗−BB∗y,y〉|]+|〈BA∗y,y〉|+2 |〈Ax,y〉| |〈Bx,y〉| .

By taking the supremum over x,y ∈ H with ‖x‖ = ‖y‖ = 1, we deduce the desired
result. �

The following examples show that there is no ordering between our inequality
(2.1) and Kittaneh inequality (1.4) in general.

EXAMPLE 2.1. Let A =
(

1 0
−3 1

)
, B =

(−1 2
0 1

)
. After brief computation,

‖A+B‖2 ≈ 14.52,

1
2

[∥∥∥|A∗|2 + |B∗|2
∥∥∥+

∥∥∥|A∗|2−|B∗|2
∥∥∥]

+w(BA∗)+2‖A‖‖B‖ ≈ 29.58,

and ∥∥∥|A|2 + |B|2
∥∥∥+

∥∥∥|A∗|2 + |B∗|2
∥∥∥ ≈ 25.28.

Thus,

‖A+B‖2 �
∥∥∥|A|2 + |B|2

∥∥∥+
∥∥∥|A∗|2 + |B∗|2

∥∥∥
�

1
2

[∥∥∥|A∗|2 + |B∗|2
∥∥∥+

∥∥∥|A∗|2 −|B∗|2
∥∥∥]

+w(BA∗)+2‖A‖‖B‖ .

EXAMPLE 2.2. Let A =
(

2 0
3 1

)
, B =

(
0 1
0 1

)
. A simple computation shows that

‖A+B‖2 ≈ 17.94,

1
2

[∥∥∥|A∗|2 + |B∗|2
∥∥∥+

∥∥∥|A∗|2−|B∗|2
∥∥∥]

+w(BA∗)+2‖A‖‖B‖ ≈ 25.4,

and ∥∥∥|A|2 + |B|2
∥∥∥+

∥∥∥|A∗|2 + |B∗|2
∥∥∥ ≈ 29.44.

Thus,

‖A+B‖2 �
1
2

[∥∥∥|A∗|2 + |B∗|2
∥∥∥+

∥∥∥|A∗|2−|B∗|2
∥∥∥]

+w(BA∗)+2‖A‖‖B‖

�
∥∥∥|A|2 + |B|2

∥∥∥+
∥∥∥|A∗|2 + |B∗|2

∥∥∥ .



958 S. TAFAZOLI, H. R. MORADI, S. FURUICHI AND P. HARIKRISHNAN

REMARK 2.1. It follows from Theorem 2.1 that

‖A+B‖2 � 1
2

[∥∥∥|A|2 + |B|2
∥∥∥+

∥∥∥|A|2−|B|2
∥∥∥]

+w(BA∗)+2‖A‖‖B‖ ,

whenever A and B are two normal operators.

Letting x = y in the proof of Theorem 2.1, we find that:

COROLLARY 2.1. Let A,B ∈ B(H ) , then

w2 (A+B) � 1
2

[∥∥∥|A∗|2 + |B∗|2
∥∥∥+

∥∥∥|A∗|2 −|B∗|2
∥∥∥]

+w(BA∗)+2w(A)w(B) .

The following lemmas are useful for generalizing and improving inequality (1.6).
The first lemma is known as the generalized mixed Schwarz inequality (see, e.g., [14,
Theorem 1]).

LEMMA 2.1. Let A ∈ B(H ) and x,y ∈ H be any vectors. If f ,g are non-
negative continuous functions on [0,∞) satisfying f (t)g(t) = t,(t � 0) , then

|〈Ax,y〉| � ‖ f (|A|)x‖‖g(|A∗|)y‖ .

The second lemma is well known in the literature as the Mond–Pečarić inequality
[15].

LEMMA 2.2. If f is a convex function on a real interval J containing the spec-
trum of the self-adjoint operator A, then for any unit vector x ∈ H ,

f (〈Ax,x〉) � 〈 f (A)x,x〉 (2.2)

and the reverse inequality holds if f is concave.

The third lemma is a direct consequence of [3, Theorem 2.3].

LEMMA 2.3. Let f be a non-negative non-decreasing convex function on [0,∞)
and let A,B ∈ B(H ) be positive operators. Then for any 0 < v < 1 ,

‖ f ((1− v)A+ vB)‖� ‖(1− v) f (A)+ v f (B)‖ .

The above three lemmas admit the following more general result.

PROPOSITION 2.1. Let A,B,X ∈ B(H ) , and let f and g be non-negative func-
tions on [0,∞) which are continuous and satisfy the relation f (t)g(t) = t for all
t ∈ [0,∞) . If h is a non-negative increasing convex function on [0,∞) , then for any
0 < v < 1

h
(
w2 (A∗XB)

)
�

∥∥∥∥(1− v)h
((

B∗ f 2 (|X |)B
) 1

1−v

)
+ vh

((
A∗g2 (|X∗|)A

) 1
v

)∥∥∥∥ . (2.3)
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In particular,

w2r (A∗XB) � 1
2

∥∥∥(
B∗ f 2 (|X |)B

)2r
+

(
A∗g2 (|X∗|)A

)2r
∥∥∥ , (2.4)

for all r � 1 .

Proof. For any unit vector x ∈ H , we have

|〈A∗XBx,x〉|2 = |〈XBx,Ax〉|2
�

〈
B∗ f 2 (|X |)Bx,x

〉〈
A∗g2 (|X∗|)Ax,x

〉
(2.5)

=

〈((
B∗ f 2 (|X |)B

) 1
1−v

)1−v

x,x

〉〈((
A∗g2 (|X∗|)A

) 1
v

)v

x,x

〉

�
〈(

B∗ f 2 (|X |)B
) 1

1−v x,x

〉1−v〈(
A∗g2 (|X∗|)A

) 1
v x,x

〉v

(2.6)

� (1− v)
〈(

B∗ f 2 (|X |)B
) 1

1−v x,x

〉
+ v

〈(
A∗g2 (|X∗|)A

) 1
v x,x

〉
(2.7)

=
〈

(1− v)
(
B∗ f 2 (|X |)B

) 1
1−v + v

(
A∗g2 (|X∗|)A

) 1
v x,x

〉
,

where (2.5) follows from Lemma 2.1, (2.6) follows from Mond–Pečarić inequality for
concave function f (t) = tv (0 < v < 1) , and the weighted arithmetic-geometric mean
inequality implies (2.7).

Taking the supremum over x ∈ H with ‖x‖ = 1, we infer that

w2 (A∗XB) �
∥∥∥∥(1− v)

(
B∗ f 2 (|X |)B

) 1
1−v + v

(
A∗g2 (|X∗|)A

) 1
v

∥∥∥∥ .

On account of assumptions on h , we can write

h
(
w2 (A∗XB)

)
� h

(∥∥∥∥(1− v)
(
B∗ f 2 (|X |)B

) 1
1−v + v

(
A∗g2 (|X∗|)A

) 1
v

∥∥∥∥
)

=
∥∥∥∥h

(
(1− v)

(
B∗ f 2 (|X |)B

) 1
1−v + v

(
A∗g2 (|X∗|)A

) 1
v

)∥∥∥∥
�

∥∥∥∥(1− v)h
((

B∗ f 2 (|X |)B
) 1

1−v

)
+ vh

((
A∗g2 (|X∗|)A

) 1
v

)∥∥∥∥ , (2.8)

where (2.8) follows from Lemma 2.3.
The inequality (2.4) follows directly from (2.3) by taking h(t) = tr (r � 1) and

v = 1
2 . �
Our aim in the next result is to improve (1.6) under some mild conditions. To

do this end, we need the following refinement of arithmetic-geometric mean inequality
[9, 10].
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LEMMA 2.4. Suppose that a,b > 0 and positive real numbers m, M satisfy
min{a,b} � m < M � max{a,b} . Then

M +m

2
√

Mm

√
ab � a+b

2
.

Proof. Consider f (x)= 2
√

x
1+x on (1 �) M

m � x . Since f ′ (x) = 1−x√
x(x+1)2

� 0,(x � 1)

we get f (x) � f
(

M
m

)
, which implies the result by a simple calculation. �

THEOREM 2.2. Let A,B,X ∈ B(H ) , f and g be non-negative functions on
[0,∞) which are continuous and satisfy the relation f (t)g(t) = t for all t ∈ [0,∞) ,
and let h be a non-negative increasing convex function on [0,∞) . If

0 < B∗ f 2 (|X |)B � m < M � A∗g2 (|X∗|)A

or
0 < A∗g2 (|X∗|)A � m < M � B∗ f 2 (|X |)B,

then

h(w(A∗XB)) �
√

Mm
M +m

∥∥h
(
B∗ f 2 (|X |)B

)
+h

(
A∗g2 (|X∗|)A

)∥∥ . (2.9)

Proof. It follows from Lemma 2.1 that

|〈A∗XBx,x〉| �
√
〈B∗ f 2 (|X |)Bx,x〉〈A∗g2 (|X∗|)Ax,x〉. (2.10)

Lemma 2.4 ensures that√
〈B∗ f 2(|X |)Bx,x〉〈A∗g2(|X∗|)Ax,x〉 �

√
Mm

M +m

(〈
B∗ f 2 (|X |)Bx,x

〉
+

〈
A∗g2(|X∗|)Ax,x

〉)
=
√

Mm
M +m

〈
B∗ f 2 (|X |)B+A∗g2 (|X∗|)Ax,x

〉
.

(2.11)
Combining (2.10) and (2.11), we get

|〈A∗XBx,x〉| �
√

Mm
M +m

〈
B∗ f 2 (|X |)B+A∗g2 (|X∗|)Ax,x

〉
.

Taking the supremum over x ∈ H with ‖x‖ = 1, we infer that

w(A∗XB) �
√

Mm
M +m

∥∥B∗ f 2 (|X |)B+A∗g2 (|X∗|)A
∥∥ .

Now, since h is a non-negative increasing convex function, we have

h(w(A∗XB)) � h

(
2
√

Mm
M +m

∥∥∥∥B∗ f 2 (|X |)B+A∗g2 (|X∗|)A
2

∥∥∥∥
)
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� 2
√

Mm
M +m

h

(∥∥∥∥B∗ f 2 (|X |)B+A∗g2 (|X∗|)A
2

∥∥∥∥
)

(2.12)

=
2
√

Mm
M +m

∥∥∥∥h

(
B∗ f 2 (|X |)B+A∗g2 (|X∗|)A

2

)∥∥∥∥
�

√
Mm

M +m

∥∥h
(
B∗ f 2 (|X |)B

)
+h

(
A∗g2 (|X∗|)A

)∥∥ , (2.13)

where the inequality (2.12) follows from the fact if f is non-negative convex function

and α � 1, then f (αt) � α f (t) (of course, 2
√

Mm
M+m � 1), and the inequality (2.13) is

due to Lemma 2.3. �

REMARK 2.2. Following (2.9), we list here some particular inequalities of inter-
est.

• If r � 1 and 0 � v � 1, then

wr (A∗XB) �
√

Mm
M +m

∥∥∥(
B∗|X |2(1−v)B

)r
+

(
A∗|X∗|2vA

)r∥∥∥ ,

whenever 0 < B∗|X |2(1−v)B � m < M � A∗|X∗|2vA or 0 < A∗|X∗|2vA � m < M �
B∗|X |2(1−v)B . The above inequality improves (1.6).

• If r � 1 and 0 � v � 1, then

wr (X) �
√

Mm
M +m

∥∥∥|X |2r(1−v) + |X∗|2rv
∥∥∥ ,

whenever 0 < |X |2(1−v) � m < M � |X∗|2v or 0 < |X∗|2v � m < M � |X |2(1−v) .
The above inequality improves (1.3).

• If r � 1, then

wr (A∗B) �
√

Mm
M +m

∥∥∥|B|2r + |A|2r
∥∥∥ ,

whenever 0 < |B|2 � m < M � |A|2 or 0 < |A|2 � m < M � |B|2 . The above
inequality improves (1.5).

We can show a similar improvement with different condition for A∗g2 (|X |)A and
B∗ f 2 (|X |)B . Recall that the weighted operator arithmetic mean ∇v and geometric
mean �v , for 0 < v < 1, positive invertible operator A , and positive operator B , are
defined as follows:

A∇vB = (1− v)A+ vB and A�vB = A
1
2

(
A− 1

2 BA− 1
2

)v
A

1
2 .

If v = 1
2 , we denote the arithmetic and geometric means, respectively, by ∇ and � .
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THEOREM 2.3. Let A,B,X ∈ B(H ) , f and g be non-negative functions on
[0,∞) which are continuous and satisfy the relation f (t)g(t) = t for all t ∈ [0,∞) , and
let h be a non-negative increasing convex function on [0,∞) . If for given m′,M′ > 0 ,

0 < m′ � B∗ f 2 (|X |)B � A∗g2 (|X |)A � M′

or
0 < m′ � A∗g2 (|X |)A � B∗ f 2 (|X |)B � M′,

then

h(ω (A∗XB)) � 1
2γ

∥∥h
(
B∗ f 2 (|X |)B

)
+h

(
A∗g2 (|X∗|)A

)∥∥ ,

where γ :=

(
1− 1

8

(
1− 1

h′

)2
)−1

� 1 with h′ = M′
m′ .

Proof. From [8, Corollary 3.15], we have

expr

(
v(1− v)

2

(
1− 1

h′

)2
)

A�vB � A∇vB,

for A,B > 0 with m′,M′ > 0 satisfying 0 < m′ � A � B � M′ or 0 < m′ � B � A �
M′ , where expr (x) := (1+ rx)1/r, if 1 + rx > 0, and it is undefined otherwise. Since
expr(x) is decreasing in r ∈ [−1,0) , the above inequality gives a tight lower bound
when r = −1. After all, we have the scalar inequality: γ

√
ab � a+b

2 , for a,b > 0 and
m′,M′ > 0 such that 0 < m′ � min{a,b} � max{a,b} � M′ . Applying this inequality
with a similar argument as in Theorem 2.2, we obtain the desired result. �

We also obtain the similar remarks with Remark 2.2, we omit them.
As we have seen, Lemma 2.3 played an essential role in Proposition 2.1 and The-

orem 2.2. In the following, we aim to improve Lemma 2.3.

PROPOSITION 2.2. Let the assumptions of Lemma 2.3 hold. Then

‖ f ((1− v)A+ vB)‖ � ‖(1− v) f (A)+ v f (B)‖− rμ ( f ) (2.14)

where r = min{v,1− v} , and

μ ( f ) = inf
‖x‖=1

{
f (〈Ax,x〉)+ f (〈Bx,x〉)−2 f

(〈(
A+B

2

)
x,x

〉)}
. (2.15)

Proof. We assume 0 � v � 1
2 . For each unit vector x ∈ H ,

f (〈((1− v)A+ vB)x,x〉)+ rμ ( f ) = f ((1− v)〈Ax,x〉+ v〈Bx,x〉)+ rμ ( f )

= f

(
(1−2v)〈Ax,x〉+2v

〈(
A+B

2

)
x,x

〉)
+ rμ ( f )
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�(1−2v) f (〈Ax,x〉)+2v f

(〈(
A+B

2

)
x,x

〉)
+ rμ ( f ) (2.16)

�(1−2v) f (〈Ax,x〉)+2v f

(〈(
A+B

2

)
x,x

〉)

+ r

(
f (〈Ax,x〉)+ f (〈Bx,x〉)−2 f

(〈(
A+B

2

)
x,x

〉))
(2.17)

=(1− v) f (〈Ax,x〉)+ v f (〈Bx,x〉)
�(1− v)〈 f (A)x,x〉+ v〈 f (B)x,x〉 (2.18)

=〈((1− v) f (A)+ v f (B))x,x〉 ,

where (2.16) follows from convexity of f , the relation (2.15) implies (2.17), and (2.18)
follows from Lemma 2.2.

If we apply similar arguments for 1
2 � v � 1, then we can write

f (〈((1− v)A+ vB)x,x〉) � 〈((1− v) f (A)+ v f (B))x,x〉− rμ ( f ) .

We know that if A ∈ B(H ) is a positive operator, then ‖A‖ = sup‖x‖=1 〈Ax,x〉 . By
using this, the continuity and the increase of f , we have

f (‖(1− v)A+ vB‖) = f

(
sup
‖x‖=1

〈((1− v)A+ vB)x,x〉
)

= sup
‖x‖=1

f (〈((1−v)A+vB)x,x〉)

� sup
‖x‖=1

(〈((1− v) f (A)+ v f (B))x,x〉)− rμ ( f )

= ‖(1− v) f (A)+ v f (B)‖− rμ ( f ) .

On the other hand, if X ∈ B(H ) , and if f is a non-negative increasing function on
[0,∞) , then f (‖X‖) = ‖ f (|X |)‖ , so we get the desired result. �

REMARK 2.3. With inequality (2.14) in hand, we can improve Proposition 2.1
and Theorem 2.2. For instance, under the assumptions of Proposition 2.1, we have

h
(
w2 (A∗XB)

)
�

∥∥∥∥(1− v)h
((

B∗ f 2 (|X |)B
) 1

1−v

)
+ vh

((
A∗g2 (|X∗|)A

) 1
v

)∥∥∥∥− rγ ( f ) ,

where

γ ( f ) = inf
‖x‖=1

{
h

(〈(
B∗ f 2 (|X |)B

) 1
1−v x,x

〉)
+h

(〈(
A∗g2 (|X∗|)A

) 1
v x,x

〉)

−2h

⎛
⎝

〈⎛
⎝(

B∗ f 2 (|X |)B
) 1

1−v +
(
A∗g2 (|X∗|)A

) 1
v

2

⎞
⎠x,x

〉⎞
⎠

⎫⎬
⎭ .

Now we present some inequalities for the numerical radius and operator norm, but
under the effect of a superquadratic function. Recall that a function f : [0,∞) → R is
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said to be superquadratic provided that for all s � 0, there exists a constant Cs ∈R such
that

f (|t − s|)+Cs (t− s)+ f (s) � f (t) (2.19)

for all t � 0.
The following useful lemma is well known [1, Lemma 2.1].

LEMMA 2.5. Suppose that f is superquadratic and non-negative. Then f is con-
vex and increasing. Also, if Cs is as in (2.19), then Cs � 0 .

By adopting the above notions, we can refine the second inequality in (1.1).

THEOREM 2.4. Let A∈B(H ) and let f be a non-negative superquadratic func-
tion. Then

f (w(A)) � ‖ f (|A|)‖− inf
‖x‖=1

∥∥∥ f (||A|−w(A)|) 1
2 x

∥∥∥2
. (2.20)

Proof. Letting s = w(A) in the inequality (2.19), we get

f (|t−w(A)|)+Cw(A) (t−w(A))+ f (w(A)) � f (t) . (2.21)

By applying functional calculus for the operator |A| in (2.21) we get

f (||A|−w(A)|)+Cw(A) (|A|−w(A))+ f (w(A)) � f (|A|) . (2.22)

Consequently,

∥∥∥ f (||A|−w(A)|) 1
2 x

∥∥∥2
+Cw(A) (〈|A|x,x〉−w(A))+ f (w(A)) � 〈 f (|A|)x,x〉 , (2.23)

for any unit vector x ∈ H .
Now, by taking supremum over x ∈ H with ‖x‖ = 1 in (2.23), and using the fact

w(|A|) = ‖A‖ � w(A) , we deduce the desired inequality (2.20). �
Applying Theorem 2.4 to the superquadratic function f (t) = tr (r � 2) , we reach

the following corollary:

COROLLARY 2.2. Let A ∈ B(H ) . Then for any r � 2 ,

wr (A) � ‖A‖r − inf
‖x‖=1

∥∥∥||A|−w(A)| r
2 x

∥∥∥2
.

In particular,

w(A) �
√
‖A‖2− inf

‖x‖=1
‖||A|−w(A)|x‖2 � ‖A‖ .
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3. An inequality related to f–connection of operators

In the forthcoming, we aim to extend the main result of [17].
In [17, Theorem 2.3], the author tried to prove the numerical radius version of

operator arithmetic-geometric mean inequality

wr ((A�B)X) � w

(
A

rp
2

p
+

(X∗BX)
rq
2

q

)
− 1

p
inf

‖x‖=1
δ (x)

where A,B,X ∈ B(H ) such that A,B are positive invertible operators, p � q > 1,
1
p + 1

q = 1, r � 2
q , and δ (x) =

(
〈Ax,x〉 rp

4 −〈X∗BXx,x〉 rq
4

)2
.

Of course, A
rp
2
p + (X∗BX)

rq
2

q is positive. On the other hand, it is well-known to
all that if X is positive operator then w(X) = ‖X‖ . On taking into account these
considerations, it should be written to the following form:

wr ((A�B)X) �
∥∥∥∥∥A

rp
2

p
+

(X∗BX)
rq
2

q

∥∥∥∥∥− 1
p

inf
‖x‖=1

δ (x) .

Of course, the geometric mean (resp. arithmetic mean) of two positive operators is also
a positive operator. So Corollary 2.6, Corollary 2.7, Remark 2.8, and Corollary 2.10 in
[17] should be written in the following way, respectively,

‖A�B‖r �
∥∥∥∥∥A

rp
2

p
+

B
rq
2

q

∥∥∥∥∥− 1
p

inf
‖x‖=1

{(
〈Ax,x〉 rp

4 −〈Bx,x〉 rq
4

)2
}

,

‖A�B‖2r �
∥∥∥∥Arp

p
+

Brq

q

∥∥∥∥− 1
p

inf
‖x‖=1

{(
〈Ax,x〉 rp

2 −〈Bx,x〉 rq
2

)2
}

,

‖A�B‖2 �
∥∥∥∥A2 +B2

2

∥∥∥∥− 1
2

inf
‖x‖=1

{
〈A−Bx,x〉2

}
, and

√
2‖A�B‖ � we (A,B) �

∥∥A2 +B2
∥∥ 1

2 .

Here we (A,B) = sup
‖x‖=1

(
|〈Ax,x〉|2 + |〈Bx,x〉|2

) 1
2
.

Let f be a continuous function defined on the real interval J containing the spec-
trum of A− 1

2 BA− 1
2 , where B is a self-adjoint operator and A is a positive invertible op-

erator. Then by using the continuous functional calculus, we can define f -connection
σ f as follows

Aσ f B = A
1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2 . (3.1)

Note that for the functions (1− v)+ vt and tv , the definition in (3.1) leads to the arith-
metic and geometric operator means, respectively.

Now, we give our numerical radius inequality concerning f -connection of opera-
tors.
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THEOREM 3.1. Let A,B,X ∈ B(H ) such that A,B be two positive operators.
Then

w
((

Aσ f B
)
X

)
� 1

2

∥∥∥X∗A
1
2 f 2

(
A− 1

2 BA− 1
2

)
A

1
2 X +A

∥∥∥ . (3.2)

Proof. For any unit vector x ∈ H , we have

∣∣〈(Aσ f B
)
Xx,x

〉∣∣ =
∣∣∣〈A

1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2 Xx,x

〉∣∣∣ =
∣∣∣〈 f

(
A− 1

2 BA− 1
2

)
A

1
2 Xx,A

1
2 x

〉∣∣∣
�

∥∥∥ f
(
A− 1

2 BA− 1
2

)
A

1
2 Xx

∥∥∥∥∥∥A
1
2 x

∥∥∥
=

√〈
f
(
A− 1

2 BA− 1
2

)
A

1
2 Xx, f

(
A− 1

2 BA− 1
2

)
A

1
2 Xx

〉〈
A

1
2 x,A

1
2 x

〉

=
√〈

X∗A
1
2 f 2

(
A− 1

2 BA− 1
2

)
A

1
2 Xx,x

〉
〈Ax,x〉

� 1
2

〈
X∗A

1
2 f 2

(
A− 1

2 BA− 1
2

)
A

1
2 X +Ax,x

〉
.

Now, the result follows by taking the supremum over x ∈ H with ‖x‖ = 1. �
By choosing f (t) =

√
t , in Theorem 3.1 we reach the following result:

COROLLARY 3.1. Let A,B,X ∈ B(H ) such that A,B be two positive operators.
Then

w((A�B)X) � 1
2
‖X∗BX +A‖ .

REMARK 3.1. The interested reader can construct refinements of inequality (3.2)
using improvements of weighted arithmetic-geometric mean inequality. We leave the
details of this idea to the interested reader, as it is just an application of our result.

Acknowledgement. The authors would like to thank the anonymous reviewer for
his/her comments.

RE F ER EN C ES

[1] S. ABRAMOVICH, G. JAMESON AND G. SINNAMON, Inequalities for averages of convex and su-
perquadratic functions, J. Inequal. Pure Appl. Math., 5(4) (2004), 1–14.

[2] A. ABU-OMAR AND F. KITTANEH, A numerical radius inequality involving the generalized Aluthge
transform, Studia Math., 216(1) (2013), 69–75.

[3] J. S. AUJLA AND F. C. SILVA, Weak majorization inequalities and convex functions, Linear Algebra
Appl., 369 (2003), 217–233.

[4] S. S. DRAGOMIR, Inequalities for the numerical radius of linear operators in Hilbert spaces, Springer
Briefs in Mathematics. Springer, Cham, 2013.

[5] S. S. DRAGOMIR, Power inequalities for the numerical radius of a product of two operators in Hilbert
spaces, Sarajevo J Math., 5(18) (2009), 269–278.

[6] S. S. DRAGOMIR, Some inequalities for the Euclidean operator radius of two operators in Hilbert
spaces, Linear Algebra Appl., 419 (2006), 256–264.

[7] M. EL-HADDAD AND F. KITTANEH, Numerical radius inequalities for Hilbert space operators. II,
Studia Math., 182(2) (2007), 133–140.



FURTHER INEQUALITIES FOR THE NUMERICAL RADIUS OF HILBERT SPACE OPERATORS 967

[8] S. FURUICHI, Further improvements of Young inequality, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser.
A Mat., 113 (2019), 255–266.

[9] S. FURUICHI, H. R. MORADI AND M. SABABHEH, New sharp inequalities for operator means,
Linear Multilinear Algebra., 67(8) (2019), 1567–1578.

[10] S. FURUICHI AND H. R. MORADI, On further refinements for Young inequalities, Open Math., 16
(2018), 1478–1482.

[11] K. E. GUSTAFSON, D. K. M. RAO, Numerical range, the field of values of linear operators and
matrices, Springer-Verlag, Berlin, 1997.

[12] F. KITTANEH,Numerical radius inequalities for Hilbert space operators, Studia Math., 168(1) (2005),
73–80.

[13] F. KITTANEH,A numerical radius inequality and an estimate for the numerical radius of the Frobenius
companion matrix, Studia Math., 158 (2003), 11–17.

[14] F. KITTANEH, Note on some inequalities for Hilbert space operators, Publ. RIMS Kyoto Univ., 24
(1988), 283–293.
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