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AN INEQUALITY FOR DISTANCES AMONG n

POINTS AND DISTANCE PRESERVING MAPPINGS
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(Communicated by J. Pečarić)

Abstract. Using familiar properties of norm and inner product, we will prove a new inequality
concerning distances between each pair of n points in an inner product space, where n is an
integer larger than 3 . Moreover, we investigate the Aleksandrov-Rassias problem by proving
that if the distance 1 is contractive and the golden ratio is extensive by a mapping f , then f is
a linear isometry up to translation.

1. Introduction

Throughout this paper, V denotes a real (or complex) inner product space with
inner product 〈·, ·〉 and the corresponding norm ‖ · ‖ defined as ‖x‖ =

√〈x,x〉 for all
x ∈ V . If three points (vectors) x1,x2,x3 are the vertices of an acute triangle or a right
triangle in two dimensional Euclidean space E

2 , then the inequality

‖x1− x3‖2 � ‖x1− x2‖2 +‖x2− x3‖2

is true. The equality sign holds true if and only if x1,x2,x3 are the vertices of a right
triangle and the vectors x1− x2 and x2− x3 are orthogonal to each other. This is called
the Pythagorean theorem which is the most famous theorem in mathematics.

In connection with this subject, Jung [5] and Jung and Lee [6] proved theorems
concerning the inequalities for distances between every two points among 2n points.
We will introduce the main theorem of [6] and remark that all distances between each
pair of distinct two points among 2n points are involved in the inequality of the follow-
ing theorem, i.e., the number of distances involved in the inequality of the following
theorem is just the 2nC2 .

THEOREM 1.1. (Jung and Lee [6]) Let V be a real (or complex) inner product
space and let n � 2 be an integer. For any distinct 2n points x11,x21, . . . ,xn1,x12,x22, . . . ,
xn2 ∈V , the following inequality is true:

∑
i, j ∈ {1, . . . ,n}

k,� ∈ {1,2}
i < j

‖xik − x j�‖2 � (n−1) ∑
i∈{1,...,n}

‖xi1− xi2‖2.
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The equality sign holds if and only if for all i, j ∈ {1, . . . ,n} with i < j , the pair
of four points {xi1,xi2,x j1,x j2} comprises the vertices of an appropriate (possibly
degenerate) parallelogram such that xi1 and x j1 are the opposite vertices to xi2 and
x j2 , respectively.

It seems harder to prove an inequality for the distances between two points of odd
number of points than the even number of points. Very recently, Jung and Nam [7] have
succeeded in proving an inequality for distances between every two points among five
points. (We remark that the number of distances (between five distinct points) involved
in the inequality of the following theorem is just the 5C2 .)

THEOREM 1.2. (Jung and Nam [7]) Let V be a real (or complex) inner product

space and let φ = 1+
√

5
2 be the golden ratio. For any five points x1,x2,x3,x4,x5 ∈ V ,

the following inequality is true:

φ2{‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x1‖2}
�‖x1− x3‖2 +‖x2− x4‖2 +‖x3− x5‖2 +‖x4− x1‖2 +‖x5− x2‖2.

The equality sign is true if and only if

x4 = x1 −φx2 + φx3 and x5 = φx1 −φx2 + x3,

for any x1,x2,x3 ∈V .

In Chapter 3 of this paper, we prove a new inequality for the distances between
every pair of n points in real (or complex) inner product space, using familiar and
intrinsic properties of norm and inner product, where n is an integer greater than 3.

2. Preliminary

From now on, let n be an integer larger than 3 and let cn be defined as

cn =
sin 3π

n

sin π
n

,

where the value of cn depends on n only. Then it easily follows from (2.1) that 1 �
cn < 3.

LEMMA 2.1. Given an integer n > 3 , let

cn =
sin 3π

n

sin π
n

and An =

⎛
⎝0 1 0

0 0 1
1 −cn cn

⎞
⎠ .

Then (An)n = I .
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Proof. Since sin(α + β )− sin(α −β ) = 2cosα sinβ , it follows that

cn−1 =
sin 3π

n

sin π
n

−1 =
sin 3π

n − sin π
n

sin π
n

=
2cos 2π

n sin π
n

sin π
n

= 2cos
2π
n

. (2.1)

Using (2.1), the characteristic polynomial of An , denoted by φn(t) , is

φn(t) = det(tI−An) = det

⎛
⎝ t −1 0

0 t −1
−1 cn t− cn

⎞
⎠ = (t −1)

(
t2 +(1− cn)t +1

)

= (t−1)
(

t2−2t cos
2π
n

+1

)
.

Let ω = cos 2π
n + isin 2π

n , and let ω = cos 2π
n − isin 2π

n . Then the eigenvalues of An

are 1, ω , and ω . Because the eigenvalues of An are all distinct, their corresponding
eigenvectors are linearly independent. Thus An is diagonalizable.

Define P by

P =

⎛
⎝1 0 0

0 ω 0
0 0 ω

⎞
⎠ .

Then there exists a matrix U satisfying U−1AnU = P . Hence,

U−1(An)nU = Pn =

⎛
⎝1 0 0

0 ωn 0
0 0 ωn

⎞
⎠ = I.

Therefore (An)n = UIU−1 = I . �

3. An inequality for distances among n points

The number of distances between n distinct points that are involved in the inequal-
ity of the following theorem is 3n , which is not equal to nC2 unless n = 7. Neverthe-
less, this inequality is new and interesting enough.

THEOREM 3.1. Given an integer n > 3 , let cn = sin 3π
n

sin π
n

and V a real or com-

plex inner product space. If arbitrary n points x1,x2, . . . ,xn are given in V , then the
following inequality holds:

(
c2
n +2cn

) n

∑
i=1

‖xi− xi+1‖2 +
n

∑
i=1

‖xi − xi+3‖2 � 2cn

n

∑
i=1

‖xi− xi+2‖2, (3.1)

where xn+1 = x1 , xn+2 = x2 , and xn+3 = x3 for notational convenience. The equality
sign holds if and only if for previously given x1,x2,x3 ∈V , the points x4,x5, . . . ,xn are
determined by the recursion formula

xi+3 = xi − cnxi+1 + cnxi+2, (3.2)

for all i ∈ {1,2, . . . ,n−3} .
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Proof. Because the proof of this theorem for real inner product spaces is similar
as the complex case, we will prove this theorem when V is a complex inner product
space.

Let S j =
n
∑
i=1

〈xi,xi+ j〉 for each j ∈ {0,1,2,3} . Then for each j ∈ {0,1,2,3} , we

get

n

∑
i=1

‖xi− xi+ j‖2 =
n

∑
i=1

〈xi − xi+ j, xi − xi+ j〉

=
n

∑
i=1

{〈xi,xi〉− 〈xi,xi+ j〉− 〈xi,xi+ j〉+ 〈xi+ j,xi+ j〉
}

=
n

∑
i=1

{
2〈xi,xi〉− 〈xi,xi+ j〉− 〈xi,xi+ j〉

}
= 2S0−S j −Sj,

(3.3)

where c denotes the complex conjugation of a complex number c .
Since

n

∑
i=1

〈xi − xi+3, xi+1− xi+2〉 =
n

∑
i=1

{〈xi,xi+1〉+ 〈xi+2,xi+3〉− 〈xi+1,xi+3〉− 〈xi,xi+2〉
}

=
n

∑
i=1

〈xi,xi+1〉+
n

∑
i=1

〈xi,xi+1〉−
n

∑
i=1

〈xi,xi+2〉−
n

∑
i=1

〈xi,xi+2〉

= (S1 +S1)− (S2 +S2),
(3.4)

it follows that
n

∑
i=1

〈xi − xi+3, xi+1− xi+2〉 = (S1 +S1)− (S2 +S2), (3.5)

and by (3.3), (3.4) and (3.5), the following inequality is true:

0 �
n

∑
i=1

‖xi− xi+3− cn(xi+1− xi+2)‖2 (3.6)

=
n

∑
i=1

〈
(xi − xi+3)− cn(xi+1− xi+2), (xi − xi+3)− cn(xi+1− xi+2)

〉

=
n

∑
i=1

‖xi− xi+3‖2− cn

n

∑
i=1

〈xi − xi+3, xi+1− xi+2〉

−cn

n

∑
i=1

〈xi − xi+3, xi+1− xi+2〉+ c2
n

n

∑
i=1

‖xi+1− xi+2‖2

=
n

∑
i=1

‖xi− xi+3‖2−2cn(S1 +S1−S2−S2)+ c2
n

n

∑
i=1

‖xi− xi+1‖2

=
n

∑
i=1

‖xi− xi+3‖2−2cn{(2S0−S2−S2)− (2S0−S1−S1)}+ c2
n

n

∑
i=1

‖xi− xi+1‖2
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=
n

∑
i=1

‖xi− xi+3‖2−2cn

n

∑
i=1

‖xi − xi+2‖2 +2cn

n

∑
i=1

‖xi − xi+1‖2 + c2
n

n

∑
i=1

‖xi− xi+1‖2

= (c2
n +2cn)

n

∑
i=1

‖xi− xi+1‖2 +
n

∑
i=1

‖xi− xi+3‖2−2cn

n

∑
i=1

‖xi− xi+2‖2.

Hence, inequality (3.1) is true.
Equality condition. If we choose arbitrary x1,x2,x3 ∈ V , and define x4, . . . ,xn

recursively by substituting i with 1,2, . . . ,n− 3 in (3.2), then (3.2) is satisfied for all
i ∈ {1,2, . . . ,n−3} . Hence, with the same An in Lemma 2.1, it follows that

An

⎛
⎝ xi

xi+1

xi+2

⎞
⎠ =

⎛
⎝0 1 0

0 0 1
1 −cn cn

⎞
⎠

⎛
⎝ xi

xi+1

xi+2

⎞
⎠ =

⎛
⎝ xi+1

xi+2

xi − cnxi+1 + cnxi+2

⎞
⎠ =

⎛
⎝xi+1

xi+2

xi+3

⎞
⎠

for all i ∈ {1,2, . . . ,n−3} .
Temporarily, let us set

y1 = xn−2− cnxn−1 + cnxn,

y2 = xn−1− cnxn + cny1,

y3 = xn− cny1 + cny2.

Since (An)n = I by Lemma 2.1, it follows that

⎛
⎝x1

x2

x3

⎞
⎠ = (An)n

⎛
⎝x1

x2

x3

⎞
⎠ = (An)3(An)n−3

⎛
⎝x1

x2

x3

⎞
⎠ = (An)3

⎛
⎝xn−2

xn−1

xn

⎞
⎠

= (An)2

⎛
⎝ xn−1

xn

xn−2− cnxn−1 + cnxn

⎞
⎠ = (An)2

⎛
⎝xn−1

xn

y1

⎞
⎠ = An

⎛
⎝ xn

y1

xn−1− cnxn + cny1

⎞
⎠

= An

⎛
⎝xn

y1

y2

⎞
⎠ =

⎛
⎝ y1

y2

xn− cny1 + cny2

⎞
⎠ =

⎛
⎝y1

y2

y3

⎞
⎠ .

Therefore, y1 = x1 , y2 = x2 , y3 = x3 , and

x1 = xn−2− cnxn−1 + cnxn,

x2 = xn−1− cnxn + cnx1,

x3 = xn− cnx1 + cnx2.

Hence, condition (3.2) is satisfied for each i ∈ {1,2, . . . ,n} .
Finally, it is obvious that the right-hand side of (3.6) is zero if and only if condition

(3.2) is satisfied for all i ∈ {1,2, . . . ,n} . �
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4. Applications to Aleksandrov-Rassias problem

In this section, suppose both V1 and V2 are real (or complex) normed spaces. We
call a distance ρ contractive (or non-expanding) by a mapping f : V1 →V2 if and only
if ‖ f (x)− f (y)‖ � ρ for all x,y ∈ V1 with ‖x− y‖ = ρ , while we call a distance ρ
extensive (or non-shrinking) by f if and only if ‖ f (x)− f (y)‖ � ρ for all x,y ∈ V1

with ‖x− y‖ = ρ . In particular, ρ is called preserved (or conservative) provided ρ is
contractive and extensive simultaneously.

Because every distance ρ is preserved by an isometry, we may raise a question: Is
a mapping an isometry if the mapping preserves certain distances? Indeed, Aleksan-
drov [1] raised a question whether a mapping f : V1 → V1 is an isometry provided f
preserves a distance ρ , which is now known as the Aleksandrov problem. Without loss
of generality, we may assume ρ = 1 when V1 is a normed space (see [10]).

About 20 years earlier than Aleksandrov, the Aleksandrov problem was investi-
gated by Beckman and Quarles [2] for the n -dimensional real Euclidean space E

n .

THEOREM 4.1. (Beckman and Quarles [2]) Assume that n is an integer larger
than 1 and ρ is an arbitrarily given positive number. Every mapping f : E

n → E
n

preserving the distance ρ is a linear isometry up to translation.

They could construct non-isometric mappings preserving unit distance for one-
dimensional or for infinite-dimensional real Euclidean spaces (cf. [8]). Thereafter,
Rassias [9] raised the question: Is a mapping between normed spaces an isometry if it
preserves two (or more) distances? Such a problem is called the Aleksandrov-Rassias
problem. For a strictly convex vector space, Benz gave an affirmative answer to this
problem (see [3] and also [4]):

THEOREM 4.2. (Benz [3]) Assume that V1 is a real normed space with dimV1 � 2
and V2 is a real normed space which is strictly convex. Suppose N is an integer larger
than 1 . If a distance ρ is contractive and Nρ is extensive by a mapping f : V1 → V2 ,
then f is a linear isometry up to translation.

Now, assume that V1 is a real (or complex) inner product space and c12 , c23 , c34 ,
c45 , c56 , c67 , c71 , e13 , e24 , e35 , e46 , e57 , e61 , e72 , c14 , c25 , c36 , c47 , c51 , c62 , c73

are positive numbers such that there exist points (vectors) x1 , x2 , x3 , x4 , x5 , x6 , x7 of
V1 such that they satisfy the condition (3.2) as well as

‖x1− x2‖ = c12, ‖x1− x3‖ = e13, ‖x1− x4‖ = c14,

‖x2− x3‖ = c23, ‖x2− x4‖ = e24, ‖x2− x5‖ = c25,

‖x3− x4‖ = c34, ‖x3− x5‖ = e35, ‖x3− x6‖ = c36,

‖x4− x5‖ = c45, ‖x4− x6‖ = e46, ‖x4− x7‖ = c47,

‖x5− x6‖ = c56, ‖x5− x7‖ = e57, ‖x5− x1‖ = c51,

‖x6− x7‖ = c67, ‖x6− x1‖ = e61, ‖x6− x2‖ = c62,

‖x7− x1‖ = c71, ‖x7− x2‖ = e72, ‖x7− x3‖ = c73,

(4.1)
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as we see in the following figure. (Obviously, due to (3.2), the seven points x1 , x2 , x3 ,
x4 , x5 , x6 , x7 lie on a two dimensional subspace of V1 .)

Figure 4.1. xi+3 = xi− c7xi+1 + c7xi+2

THEOREM 4.3. Let V1 and V2 be either real inner product spaces or complex
inner product spaces. Assume that the distances c12 , c23 , c34 , c45 , c56 , c67 , c71 , c14 ,
c25 , c36 , c47 , c51 , c62 , c73 are contractive and the distances e13 , e24 , e35 , e46 , e57 ,
e61 , e72 are extensive by a mapping f : V1 → V2 , where ci j ’s and ei j ’s are given by
(4.1) and the corresponding xi ’s satisfy the condition (3.2) with n = 7 (see Figure
4.1) . Then f preserves all the distances ci j ’s and ei j ’s.

Proof. First, we set x′i = f (xi) for all i ∈ {1,2, . . . ,7} . Because the distances c12 ,
c23 , c34 , c45 , c56 , c67 , c71 , c14 , c25 , c36 , c47 , c51 , c62 , c73 are contractive and the
distances e13 , e24 , e35 , e46 , e57 , e61 , e72 are extensive by f , we can use Theorem 3.1
to get

(
c2
7 +2c7

)(‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x6‖2

+‖x6− x7‖2 +‖x7− x1‖2)+‖x1− x4‖2 +‖x2− x5‖2 +‖x3− x6‖2 +‖x4− x7‖2

+‖x5− x1‖2 +‖x6− x2‖2 +‖x7− x3‖2

�
(
c2
7 +2c7

)(‖x′1− x′2‖2 +‖x′2− x′3‖2 +‖x′3− x′4‖2 +‖x′4− x′5‖2 +‖x′5− x′6‖2

+‖x′6− x′7‖2 +‖x′7− x′1‖2)+‖x′1− x′4‖2 +‖x′2− x′5‖2 +‖x′3− x′6‖2 +‖x′4− x′7‖2

+‖x′5− x′1‖2 +‖x′6− x′2‖2 +‖x′7− x′3‖2

� 2c7
(‖x′1− x′3‖2 +‖x′2− x′4‖2 +‖x′3− x′5‖2 +‖x′4− x′6‖2 +‖x′5− x′7‖2 (4.2)

+‖x′6− x′1‖2 +‖x′7− x′2‖2)
� 2c7

(‖x1− x3‖2 +‖x2− x4‖2 +‖x3− x5‖2 +‖x4− x6‖2 +‖x5− x7‖2 +‖x6− x1‖2

+‖x7− x2‖2)
=

(
c2
7 +2c7

)(‖x1− x2‖2 +‖x2− x3‖2 +‖x3− x4‖2 +‖x4− x5‖2 +‖x5− x6‖2
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+‖x6− x7‖2 +‖x7− x1‖2)+‖x1− x4‖2 +‖x2− x5‖2 +‖x3− x6‖2 +‖x4− x7‖2

+‖x5− x1‖2 +‖x6− x2‖2 +‖x7− x3‖2,

where the last equality follows from the condition (3.2).
On the other hand, our hypotheses imply that

c12 = ‖x1− x2‖ � ‖x′1− x′2‖, c14 = ‖x1− x4‖ � ‖x′1− x′4‖,
c23 = ‖x2− x3‖ � ‖x′2− x′3‖, c25 = ‖x2− x5‖ � ‖x′2− x′5‖,
c34 = ‖x3− x4‖ � ‖x′3− x′4‖, c36 = ‖x3− x6‖ � ‖x′3− x′6‖,
c45 = ‖x4− x5‖ � ‖x′4− x′5‖, c47 = ‖x4− x7‖ � ‖x′4− x′7‖,
c56 = ‖x5− x6‖ � ‖x′5− x′6‖, c51 = ‖x5− x1‖ � ‖x′5− x′1‖,
c67 = ‖x6− x7‖ � ‖x′6− x′7‖, c62 = ‖x6− x2‖ � ‖x′6− x′2‖,
c71 = ‖x7− x1‖ � ‖x′7− x′1‖, c73 = ‖x7− x3‖ � ‖x′7− x′3‖,
e13 = ‖x1− x3‖ � ‖x′1− x′3‖, e24 = ‖x2− x4‖ � ‖x′2− x′4‖,
e35 = ‖x3− x5‖ � ‖x′3− x′5‖, e46 = ‖x4− x6‖ � ‖x′4− x′6‖,
e57 = ‖x5− x7‖ � ‖x′5− x′7‖, e61 = ‖x6− x1‖ � ‖x′6− x′1‖,
e72 = ‖x7− x2‖ � ‖x′7− x′2‖.

(4.3)

By combining (4.2) and (4.3), we conclude that

‖x1− x2‖ = c12 = ‖x′1− x′2‖, ‖x1− x4‖ = c14 = ‖x′1− x′4‖,
‖x2− x3‖ = c23 = ‖x′2− x′3‖, ‖x2− x5‖ = c25 = ‖x′2− x′5‖,
‖x3− x4‖ = c34 = ‖x′3− x′4‖, ‖x3− x6‖ = c36 = ‖x′3− x′6‖,
‖x4− x5‖ = c45 = ‖x′4− x′5‖, ‖x4− x7‖ = c47 = ‖x′4− x′7‖,
‖x5− x6‖ = c56 = ‖x′5− x′6‖, ‖x5− x1‖ = c51 = ‖x′5− x′1‖,
‖x6− x7‖ = c67 = ‖x′6− x′7‖, ‖x6− x2‖ = c62 = ‖x′6− x′2‖,
‖x7− x1‖ = c71 = ‖x′7− x′1‖, ‖x7− x3‖ = c73 = ‖x′7− x′3‖,
‖x1− x3‖ = e13 = ‖x′1− x′3‖, ‖x2− x4‖ = e24 = ‖x′2− x′4‖,
‖x3− x5‖ = e35 = ‖x′3− x′5‖, ‖x4− x6‖ = e46 = ‖x′4− x′6‖,
‖x5− x7‖ = e57 = ‖x′5− x′7‖, ‖x6− x1‖ = e61 = ‖x′6− x′1‖,
‖x7− x2‖ = e72 = ‖x′7− x′2‖.

For arbitrarily given x1,x2 ∈ V1 with ‖x1 − x2‖ = c12 , we can choose five points
(vectors) x3,x4,x5,x6,x7 in V1 such that x1, . . . ,x7 determine a geometrical figure con-
gruent to the one in Figure 4.1. In view of the above argument, we may conclude that
‖x′1 − x′2‖ = c12 . For other distances such as c23 , c34 , c45 , c56 , c67 , c71 , c14 , c25 ,
c36 , c47 , c51 , c62 , c73 , e13 , e24 , e35 , e46 , e57 , e61 , and e72 , we can apply a similar
argument. Therefore, f preserves the distances c12 , c23 , c34 , c45 , c56 , c67 , c71 , c14 ,
c25 , c36 , c47 , c51 , c62 , c73 , e13 , e24 , e35 , e46 , e57 , e61 , and e72 . �
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REMARK 4.4. Assume that x1 , x2 , x3 , x4 , x5 , x6 , x7 are the vertices of a regular

heptagon S with a unit side length (see Figure 4.2 below) . Let α = sin 2π
7

sin π
7
≈ 1.8019 . . .

be the shorter diagonal and β = c7 = sin 3π
7

sin π
7
≈ 2.2469 . . . be the longer diagonal of S .

If we set c12 = c23 = c34 = c45 = c56 = c67 = c71 = 1, e13 = e24 = e35 = e46 = e57 =
e61 = e72 = α and c14 = c25 = c36 = c47 = c51 = c62 = c73 = β in Theorem 4.3, then
the function f given in Theorem 4.3 preserves the distances 1, α , and β .

Figure 4.2. Regular heptagon

THEOREM 4.5. Assume that V1 and V2 are real inner product spaces, and let
f be a function from V1 into V2 . Let v1 , v2 , v3 , v4 be arbitrary four points in V1

and let wi = f (vi) be four points in V2 . If v1 , v2 , v3 , v4 lie on one plane, and if
‖vi − v j‖ = ‖wi −wj‖ for all 1 � i < j � 4 , then w1 , w2 , w3 , w4 also lie on one
plane.

Proof. Translation preserves distances between points, and does not affect copla-
narity of four points. Hence, we can assume that v4 = w4 = 0. Then the condition of
this theorem becomes simple:

‖v1‖ = ‖w1‖, ‖v1− v2‖ = ‖w1−w2‖,
‖v2‖ = ‖w2‖, ‖v2− v3‖ = ‖w2−w3‖,
‖v3‖ = ‖w3‖, ‖v3− v1‖ = ‖w3−w1‖.

From the above condition we obtain

〈v1,v2〉=
1
2
(‖v1‖2+‖v2‖2−‖v1−v2‖2)=

1
2
(‖w1‖2+‖w2‖2−‖w1−w2‖2)= 〈w1,w2〉,

and in similar way we get 〈v2,v3〉 = 〈w2,w3〉 and 〈v3,v1〉 = 〈w3,w1〉 .
Because v1 , v2 , v3 , v4(= 0) lie on one plane, i.e., they are coplanar, there exists

r1,r2 ∈ R satisfying v3 = r1v1 + r2v2 . Hence, 0 = v3− r1v1− r2v2 , and so

0 = ‖v3− r1v1− r2v2‖2

= ‖v3‖2 + r2
1‖v1‖2 + r2

2‖v2‖2−2r1〈v3,v1〉−2r2〈v3,v2〉+2r1r2〈v1,v2〉
= ‖w3‖2 + r2

1‖w1‖2 + r2
2‖w2‖2−2r1〈w3,w1〉−2r2〈w3,w2〉+2r1r2〈w1,w2〉

= ‖w3− r1w1 − r2w2‖2
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Figure 4.3. f preserves coplanarity

is satisfied, i.e., 0 = w3− r1w1− r2w2 . Therefore, w3 = r1w1 + r2w2 , and w1 , w2 , w3 ,
w4(= 0) also lie on one plane. �

THEOREM 4.6. Assume that V1 and V2 are real Hilbert spaces with dimV1 � 3 .
If the distances 1 and α are contractive and the distance β is extensive by a mapping
f : V1 →V2 , then f is a linear isometry up to translation.

Proof. By regarding Theorem 4.3 and Remark 4.4, f preserves the distances 1,
α , and β . We will show that f preserves the distance

√
2. Then because f preserves

the distances 1 and
√

2, we can conclude that f is an isometry up to translation by [11,
Theorem 2.8].

Assume that the distance between v1 and v3 of V1 is
√

2, i.e., ‖v1 − v3‖ =
√

2.
Because dimV1 � 3, there exists a subspace U of V1 containing v1 and v3 such that
dimU = 3. It is well-known that if two finite dimensional inner product spaces have
same dimension, then there exists an inner product space isomorphism between them.
Hence because dimU = 3 = dimE

3 , there exists an inner product space isomorphism
L1 : E

3 →U . From a regular heptagon having unit side length, we can get an isosceles
trapezoid whose shape is illustrated in Figure 4.4.

Let “shape 1” denote the isosceles trapezoid illustrated in Figure 4.4, “shape 2”
denote a triangle whose side lengths are 1, α , α , and “shape 3” denote a square whose
side length is 1. By attaching two “shape 1”, two “shape 2”, and one “shape 3” in E

3 ,
we can get the geometrical figure illustrated in Figure 4.5.

Let “shape 4” denote this figure. There exists u1,u3 ∈ E
3 satisfying L1(u1) = v1

and L1(u3) = v3 . Because inner product space isomorphism preserves distance, we
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Figure 4.4. Shape 1, shape 2, and shape 3

Figure 4.5. Shape 4

get ‖u1 − u3‖ = ‖L1(u1)−L1(u3)‖ = ‖v1 − v3‖ =
√

2. Because ‖u1 − u3‖ =
√

2, we
can choose u2 , u4 , u5 , and u6 in E

3 such that {u1, . . . ,u6} composes “shape 4”. Let
vi = L1(ui) and wi = f (vi) for i ∈ {1, . . . ,6} .

We know each of {u1,u2,u5,u6} and {u3,u4,u5,u6} is coplanar. Because both
L1 and f preserve the distances 1, α , and β , we conclude that each of {v1,v2,v5,v6}
and {v3,v4,v5,v6} is coplanar, and each of {w1,w2,w5,w6} and {w3,w4,w5,w6} is
coplanar by Theorem 4.5. All of them compose “shape 1”. Note that we want to show
‖w1−w3‖ =

√
2.

Define T :V2 →V2 by T (x) = x−w6 . Let w′
i = T (wi) = wi−w6 for i∈ {1, . . . ,5} .

Since T is a translation, T preserves distance. By Theorem 4.5, each of {0,w′
1,w

′
2,w

′
5}

and {0,w′
3,w

′
4,w

′
5} is coplanar, and all of them compose “shape 1”. Thus w′

1 is a linear
combination of {w′

2,w
′
5} , and w′

4 is a linear combination of {w′
3,w

′
5} . Let W be a

subspace of V2 spanned by {w′
2,w

′
3,w

′
5} . Then {0,w′

1, . . . ,w
′
5} ⊂W and dimW � 3.
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Figure 4.6. Diagram for L1 and f

Figure 4.7. Diagram for T and L2

Thus there exists an inner product space isomorphism L2 : W → E
n with n � 3. L2

preserves distance.
Let L2(w′

i) = xi for i ∈ {1, . . . ,5} and L2(0) = x6 . Then each of {x1,x2,x5,x6}
and {x3,x4,x5,x6} is coplanar by Theorem 4.5. Hence, each of {x1,x2,x5,x6} and
{x3,x4,x5,x6} composes “shape 1”. And each of {x1,x4,x5} and {x2,x3,x6} composes
“shape 2”, and we know ‖x2−x3‖= ‖x1−x4‖= 1. To make such a structure, n should
be 3.

Because {x1, . . . ,x6} is located in E
3 with the condition that each of {x1,x2,x5,x6}

and {x3,x4,x5,x6} composes “shape 1”, and each of {x1,x4,x5} and {x2,x3,x6} com-
poses “shape 2”, we conclude that {x1,x2,x3,x4} should composes “shape 3”. Thus
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‖x3 − x1‖ =
√

2. Because T and L2 preserves distance, we get ‖w3 −w1‖ =
√

2.
Hence f preserves distance

√
2. Since f preserves distances 1 and

√
2, we conclude

that f is an isometry up to translation by using [11, Theorem 2.8]. �
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