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THE SZEGŐ–MARKOV–BERNSTEIN INEQUALITIES AND

BARYCENTRIC REPRESENTATIONS OF THE OSCULATORY

INTERPOLATING OPERATORS FOR CLASSICAL ITERATED WEIGHTS

PRZEMYSŁAW RUTKA AND RYSZARD SMARZEWSKI ∗

(Communicated by J. Pečarić)

Abstract. We study inequalities of Szegő-Markov-Bernstein types, barycentric representations
of the Lagrange, Fejér and Hermite interpolating operators, and the Gauss quadrature formulae
for all iterated weights wk (x) = Ak (x)w(x) of classical weight functions w(x) . In particular,
we establish the explicit formulae for the best constants, extremal polynomials and Christoffel
numbers, associated with the iterated weight functions of six basic classical weights of Hermite,
Laguerre, Jacobi, generalized Bessel, Jacobi on (0,+∞) and pseudo-Jacobi kind. It should be
noted that the results on Markov-Bernstein inequalites continue the investigations of the best
constants and extremal polynomials by Guessab and Milovanović [J. Math. Anal. Appl. 182
(1994), pp. 244-249] and Agarwal and Milovanović [Appl. Math. Comput. 128 (2002), pp. 151-
166], without any additional assumptions on classical weight functions. Moreover, the presented
generic formulae for the Christoffel numbers of the iterated Gauss quadrature rules, together with
the corresponding representations of the barycentric weights of Lagrange, Fejér and Hermite
type, complete the recent results of Wang et al. and the authors, published in [Math. Comp. 81
(2012) and 83 (2014), pp. 861-877 and 2893-2914, respectively] and [Math. Comp. 86 (2017),
pp. 2409-2427].

1. Introduction

Let {pn (x)}0�n<nw
be a finite or infinite sequence of polynomials pn (x) of degree

n , which are orthonormal with respect to the weighted L2
w (a,b)-inner product∫ b

a
pn (x) pm (x)w(x)dx = δn,m, 0 � n,m < nw, nw ∈ N∪{+∞} .

Here δn,m denotes the Kronecker delta. According to Chihara [6], Koekoek et al. [15],
Lesky [22, 23] and Nikiforov and Uvarov [30], the weight function w(x) and the cor-
responding orthogonal polynomials pn (x) are called classical provided that w(x) is a
positive solution of the Pearson differential equation

d
dx

[A(x)w(x)] = B(x)w(x) , a < x < b,

Mathematics subject classification (2010): 41A17, 41A44, 33C45, 65D05, 65D32.
Keywords and phrases: Classical orthogonal polynomials, reproducing kernel, Szegő-type inequali-
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with boundary conditions

A(x)w(x)x j
∣∣
x=a,b = 0, 0 � j < nw, (1)

where the polynomial coefficients

A(x) = a2x
2 +a1x+a0 and B(x) = b1x+b0

are such that b1 �= 0 and A(x) > 0 on (a,b) .
It is of importance that the derivatives Dkpn (x) of classical orthogonal polyno-

mials pn (x) are also classical [18, 19, 20, 27, 30] with respect to the iterated weight
functions

wk (x) = Ak (x)w(x) , k = 0,1, . . . ,n,

which are the solutions of differential equation of the Pearson type

d
dx

[A(x)wk (x)] =
[
B(x)+ kA′ (x)

]
wk (x) , a < x < b, (2)

with the boundary conditions of the type (1) . The corresponding weighted L2
wk

(a,b)-

inner product (p,q)wk
and norm ‖p‖wk

=
√

(p, p)wk
are defined, on the space Pn−k

of all polynomials of degree less or equal to n− k , by the formula

(p,q)wk
=

∫ b

a
p(x)q(x)wk (x)dx.

In Section 2 of this paper we shortly discuss properties of classical weights and
orthogonal polynomials, which are necessary in Sections 3, 4 and 5. Next, in Section 3
we study generic properties [15, 17, 32] of the following extremal Szegő-type problem∣∣∣Dkp∗ (y)

∣∣∣2 = max
p∈Pn

{∣∣∣Dkp(y)
∣∣∣2 :

∥∥∥Dkp
∥∥∥

wk

= 1

}
, k = 0,1, . . . ,n, (3)

for all iterated weights wk (x) . More precisely, we show that the best constants Cn,k (y)=∣∣Dkp∗ (y)
∣∣2 in the Szegő-type inequalities∣∣∣Dkp(y)

∣∣∣2 � Cn,k (y)
∥∥∥Dkp

∥∥∥2

wk

, p ∈ Pn,

are equal to

Cn,k (y) = γk,n

∣∣∣∣Dk+1pn+1 (y) Dkpn+1 (y)
Dk+1pn (y) Dkpn (y)

∣∣∣∣ .
Moreover, the extremal polynomials p(x) = p∗ (x) , for which these inequalities be-
come identities, satisfy the formulae

Dkp∗ (x)
∣∣∣Dkp∗ (y)

∣∣∣ = ±γk,n

∣∣∣∣Dkpn+1 (x) Dkpn+1 (y)
Dkpn (x) Dkpn (y)

∣∣∣∣
x− y

,
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where y ∈ R is arbitrary and constant factors γk,n are as in Theorem 1.
It is of interest that the Szegő-type problem is strictly connected with proving both

generic formulae for the Christoffel numbers Ak,ν of the Gauss quadrature rule

Gn,k ( f ) =
n−k

∑
ν=1

Ak,ν f
(
xk,ν

)
, 1 � k < n,

at the roots
(
xk,ν

)n−k
ν=1 of the iterated orthogonal polynomials Dkpn (x) and the corre-

sponding representations for the barycentric weights for the Lagrange, Fejér and Her-
mite interpolating operators; cf. Theorem 2 and Corollary 1 in Section 4. It is also
connected with the problem of computing the operator norms∥∥∥Dk

∥∥∥2

wj
= max

p∈Pn

{∥∥∥Dkp
∥∥∥2

wj
: ‖p‖w = 1

}
, k = 0,1, . . . ,n, j = 0,1, . . . ,k,

of the differential operators

Dk : Pn (w) � p → Dkp ∈ Pn−k (wj) .

Here Pn (w) denotes the space of all polynomials of degree not greater than n , equipped
with the weighted L2 (w) -norm, or more generally with the weighted Ls -norm, where
1 � s � +∞ . Usually, the last problem is replaced by the equivalent problem of comput-

ing the best constants Cn,k (wj) =
∥∥Dk

∥∥2
wj

and characterizing the extremal polynomials

p(x) = p∗ (x) for Markov-Bernstein-type inequalities of the form∥∥∥Dkp
∥∥∥2

wj
� Cn,k (wj)‖p‖2

w , p ∈ Pn. (4)

We note that a complete solution of this difficult problem is known only for a few par-
ticular values of the indices k, j and s , whenever w(x) is either classical or Freud-type
weight; cf. Freud [9,10], Kroó [21], Guessab and Milovanović [13], Agarwal and Milo-
vanović [2], Marcellán et al. [25], Milovanović [28], Nevai [29] and the bibliography
quoted there. In particular, Kroó [21] proved that in the case of classical weight func-
tion w(x) = 1 on (−1,1) , the best constant Cn,1 (w) coincides with the squared largest
positive root of the equation


(n+1)/2�
∑

ν=0
(−1)ν (n−2ν +2)4ν

4ν (2ν)!
x−2ν = 0,

where 
u� and (u)k denote the floor function and the Pochhammer symbol, respec-
tively.

The connection between above-mentioned problems of Szegő and Markov-Bernst-
ein is pointed out at Section 5, where we extend the beautiful results of Agarwal-
Milovanović [2] and Guessab-Milovanović [13] on the best L2 -constants Cn,k (wk) for
the Hermite, Laguerre and Jacobi weights to all remaining classical weights, e.g., to
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generalized Bessel, Jacobi on (0,+∞) and pseudo-Jacobi weights. More precisely, in
Theorem 3 we show, for all classical weight functions w(x) , that∥∥∥Dk

∥∥∥2

wk

=
∥∥∥Dkpn

∥∥∥2

wk

= σk,n−k,

where constant factors σk,n−k are as in Lemma 1. This means that the best constants
Cn,k (wk) are equal to σk,n−k and p∗ (x) = pn (x) are corresponding extremal polyno-
mials for the Markov-Bernstein inequalities (4), whenever j = k .

2. Auxiliary properties of classical orthogonal polynomials

Among classical orthogonal polynomials there are exactly three infinite sequences
of orthogonal polynomials of Hermite, Laguerre and Jacobi [37], and exactly three, less
known, finite sequences of generalized Bessel, Jacobi on (0,+∞) and pseudo-Jacobi
orthogonal polynomials, up to a linear change of variable; cf. [15, 17, 23, 24]. The
lengths nw = 
(1−b1)/2� of the finite polynomial sequences {pn (x)}0�n<nw

depend
only on the leading coefficients b1 = α, 2−α, 2(1−α) of the polynomials B(x) ,
presented in Table 1. In the last row of Table 1 we use the following additional notation

a1 = 2
A B +CD

A 2 +C 2 , a0 =
B2 +D2

A 2 +C 2 , ζ =
A D −BC

A 2 +C 2 > 0,

b0 = (1−α)a1 + β ζ , E (x) =
1
ζ

(
x+

1
2
a1

)
,

to define the pseudo-Jacobi classical weights and polynomials. It should be noted that
Koepf and Masjed-Jamei [16] have observed recently that these weights generalize the
Student t -distribution, one of the most important distributions in the sampling problems
of normal population. According to [16, 26], they also extend the F -distribution.

The classical orthogonal polynomials were studied in a large number of articles
and monographs, see e.g. Agarwal and Milovanović [1, 2], Al-Salam [3], Bochner
[5], Koekoek et al. [15], Lesky [22], Mastroianni and Milovanović [27], Nikiforov and
Uvarov [30], Suetin [36], Valent and Van Assche [38], and the authors [31, 32, 33, 35].
In almost all these studies an essential role has been played by the three-term and Al-
Salam-Chihara recurrence relations and the Sturm-Liouville differential equations [6,
14, 18, 19, 20]

q0 (x) = 1, q1 (x) = x− c0,

qn+1 (x) = (x− cn)qn (x)−dnqn−1 (x) , n = 1,2, . . . ,
(5)

A(x)q′n (x) = (na2x+ ηn)qn (x)+ ρnqn−1 (x) , n = 1,2, . . . , (6)

d
dx

[
wk+1 (x)Dk+1qn (x)

]
= λn,kwk (x)Dkqn (x) , a < x < b, (7)

for the monic classical orthogonal polynomials qn (x) and their derivatives, where
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Table 1: ([34]) The basic types of classical weights w(x) . All remaining classi-
cal weights ŵ(x̂) = w((x̂−β0)/β1) and polynomials Â(x̂) = A((x̂−β0)/β1) and
B̂(x̂) = 1

β1
B((x̂−β0)/β1) can be obtained from the basic w(x) , A(x) and B(x) by

an appropriate change of variable x̂ = β1x+ β0 , β1 > 0.

Weights A(x) B(x)

Hermite,

e−x2
on (−∞,+∞)

1 −2x

Laguerre,
xαe−x on (0,+∞) x

−x+ α +1
α > −1

Jacobi,
(1− x)α (1+ x)β on (−1,1)

−x2 +1
−(α + β +2)x+ β −α
α > −1, β > −1

Generalized Bessel,

xα−2e−
β
x on (0,+∞)

x2

αx+ β
α < −1
α /∈ {−2,−3, . . .}
β > 0

Jacobi,
xβ

(1+x)α+β on (0,+∞) x2 + x
(2−α)x+ β +1
α � 3, β > −1

Pseudo-Jacobi,
eβ arctanE(x)

Aα (x) on (−∞,+∞)
x2 +a1x+a0

2(1−α)x+b0

α � 3
2 , β ∈ R

coefficients cn , dn = hn/hn−1 , ηn , ρn and λn,k are defined by

cn = −2na1rn−1 −b0 (2a2−b1)
r2n−2r2n

,

dn = nrn−2
sn−1 (rn−1a1−a2b0)−a0r2

2n−2

r2n−3r2
2n−2r2n−1

,

ηn = n
(n−1)a1a2 +a1b1−a2b0

2(n−1)a2 +b1
, (8)

ρn = −dnr2n−1,

λn,k = (n− k)[(n+ k−1)a2 +b1] .

Here we use the following notation:

hn = ‖qn‖2
w , rk = ka2 +b1, sk = ka1 +b0. (9)
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3. Inequalities of Szegő type

Throughout the rest of the paper we assume that
{

pν,wk (x)
}

0�ν�n−k are finite or
infinite sequences of classical polynomials of degree ν , orthonormal with respect to
the classical iterated weight functions of the form

wk (x) = Ak (x)w(x) , k = 0,1, . . . ,n, 0 � n < nw.

Moreover, we denote by Pn−k = Pn−k (wk) the (n− k+1)-dimensional Hilbert space
of all polynomials of degree less or equal to n− k equipped with the weighted inner
product (p,q)wk

. Then the function

Kn,wk (x,y) =
n−k

∑
ν=0

pν,wk (x) pν,wk (y)

is the reproducing kernel of Pn−k = Pn−k (wk) [4, 7, 37]. In view of the Christoffel-
Darboux identity [37] it follows that

Kn,wk (x,y) =
αn−k,k

αn−k+1,k

∣∣∣∣ pn−k+1,wk (x) pn−k+1,wk (y)
pn−k,wk (x) pn−k,wk (y)

∣∣∣∣
x− y

(10)

and

Kn,wk (y,y) =
αn−k,k

αn−k+1,k

∣∣∣∣ p′n−k+1,wk
(y) pn−k+1,wk (y)

p′n−k,wk
(y) pn−k,wk (y)

∣∣∣∣ .
Here αm,k is the leading coefficient of the orthonormal polynomial pm,wk (x) .

According to Szegő [37, Theorem 3.1.3], the solution of problem (3) is given by
the polynomial p∗ (x) in Pn such that

Dkp∗ (x) = ± Kn,wk (x,y)√
Kn,wk (y,y)

, a < x < b, (11)

for which ∣∣∣Dkp∗ (y)
∣∣∣ =

√
Kn,wk (y,y). (12)

His proof is based on the Parseval identity and Cauchy-Schwarz inequality, applied to
the polynomial

Dkp(y) =
n−k

∑
ν=0

(
Dkp, pν,wk

)
wk

pν,wk (y) .

Until now we have not used the fact that the orthonormal polynomials pn,wk (x)
were supposed to be classical. However this assumption is both necessary and sufficient
in the next lemma. In other words, it is a generic property for the family of all classical
orthogonal polynomials [15, 17, 31, 32]. For the simplicity, we shall write below w(x)
and pn (x) instead of w0 (x) and pn,w0 (x) .
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LEMMA 1. Let {pn (x)}0�n<nw
be classical polynomials, orthonormal with re-

spect to a classical weight w(x) on (a,b) . If 0 � k � n, y ∈ R , σ0,ν = 1 and

σk,ν = (−1)k (ν +1)k
k−1

∏
s=0

[(k+ ν + s−1)a2 +b1] , k > 1, (13)

then the best constants in the Szegő inequalities∣∣∣Dkp(y)
∣∣∣2 � Cn,k (y)

∥∥∥Dkp
∥∥∥2

wk

, p ∈ Pn,

are equal to

Cn,k (y) = Kn,wk (y,y) =
n−k

∑
ν=0

[
Dkpk+ν (y)

]2

σk,ν
.

Additionally, the extremal polynomials p(x) = p∗ (x) , for which these inequalities be-
come identities, are characterized by the equation

Dkp∗ (x)
∣∣∣Dkp∗ (y)

∣∣∣ = ±
n−k

∑
ν=0

Dkpk+ν (x)Dkpk+ν (y)
σk,ν

.

In particular, the constant factors σk,ν are as in Table 2 for all basic classical orthog-
onal polynomials.

Proof. Since we have

pν,wk (x) =
Dkpk+ν (x)
‖Dkpk+ν‖wk

, wk (x) = Ak (x)w(x) ,

we conclude from formulae (11) and (12) that it remains to show that∥∥∥Dkpk+ν

∥∥∥2

wk

= σk,ν (14)

and to evaluate the constants σk,ν in the case when w(x) is an arbitrary classical weight.
For this purpose, denote by qr,ws (x) = ‖qr,ws‖ws

pr,ws (x) the monic classical polynomial
of degree r , orthogonal with respect to the iterated weight ws (x) . Since its derivative
Dqr,ws (x) is also classical orthogonal polynomial with respect to the weight ws+1 (x)
[30], it follows inductively from the uniqueness, up to a constant factor [7], of the
orthogonalization process that

Dkqr,ws (x) = (r− k+1)k qr−k,ws+k (x) , 1 � k � r. (15)

On the other hand, we can apply the orthogonality of qr−1,ws+1 (x) and integrate by
parts to get

r
∥∥qr−1,ws+1

∥∥2
ws+1

= r
∫ b

a

[
qr−1,ws+1 (x)

]2
ws+1 (x)dx

=
∫ b

a
xr−1Dqr,ws (x)ws+1 (x)dx

= xr−1qr,ws (x)ws+1 (x)
∣∣b
a −

∫ b

a
qr,ws (x)

[
xr−1ws+1 (x)

]′
dx.
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Further, by the Pearson boundary conditions (1) for the classical weight ws+1 (x) , the
right-hand side is equal to

−
∫ b

a
qr,ws (x)

{
(r−1)A(x)+ x

[
B(x)+ sA′ (x)

]}
xr−2ws (x)dx

=βr,s

∫ b

a
qr,ws (x)xrws (x)dx = βr,s‖qr,ws‖2

ws
,

where βr,s =− [(r+2s−1)a2 +b1] . Now one can apply k times the recurrent formula∥∥qr−1,ws+1

∥∥2
ws+1

=
βr,s

r
‖qr,ws‖2

ws

in order to obtain∥∥qν+k,w0

∥∥2
w0

=
k−1

∏
s=0

ν + k− s
βν+k−s,s

·∥∥qν,wk

∥∥2
wk

=
(ν +1)2k

σk,ν

∥∥qν,wk

∥∥2
wk

. (16)

Thus it follows from (15) and (16) that

Dkpν+k (x) =
Dkqν+k,w0 (x)∥∥qν+k,w0

∥∥
w0

=
√σk,ν pν,wk (x) , (17)

which finishes the proof of (14). In order to calculate σk,ν for all classical basic weights
of Hermite, Laguerre, Jacobi, generalized Bessel, Jacobi on (0,+∞) and pseudo-Jacobi,
it is sufficient to substitute values of coefficients a2 and b1 of polynomials A(x) and
B(x) from Table 1 into formula (13) for σk,ν . �

By using the Christoffel-Darboux identity the solution of problem (3) can be con-
siderably improved and written in the following equivalent form.

THEOREM 1. Let {pn (x)}0�n<nw
be classical orthonormal polynomials associ-

ated with a classical weight w(x) on (a,b) , and let dn+1 = hn+1/hn be the coefficient
of the three-term recurrence relation (5) with n replaced by n+1 . If 0 � k � n, y ∈ R

and σk,n−k are as in Lemma 1, then the best constants in the Szegő inequalities∣∣∣Dkp(y)
∣∣∣2 � Cn,k (y)

∥∥∥Dkp
∥∥∥2

wk

, p ∈ Pn,

are equal to

Cn,k (y) = γk,n

∣∣∣∣Dk+1pn+1 (y) Dkpn+1 (y)
Dk+1pn (y) Dkpn (y)

∣∣∣∣ ,
where

γk,n =
(n− k+1)

√
dn+1

(n+1)σk,n−k
.

These inequalities become identities for the extremal polynomials p∗ ∈ Pn such that

Dkp∗ (x)
∣∣∣Dkp∗ (y)

∣∣∣ = ±γk,n

∣∣∣∣Dkpn+1 (x) Dkpn+1 (y)
Dkpn (x) Dkpn (y)

∣∣∣∣
x− y

.
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In particular, values of the constant factors γk,n , σk,n−k and dn+1 are as in Table 2 and
in Table 3 [34] for all basic classical orthogonal polynomials.

Proof. In view of (16) the leading coefficient αm,k of the orthonormal polynomial
pm,wk (x) is equal to

αm,k =
∥∥qm,wk

∥∥−1
wk

=
(m+1)k√σk,m

∥∥qm+k,w0

∥∥−1
w0

, (18)

where the factor σk,m is as in (13) . Moreover, it follows from (17) that∥∥∥Dkpk+ν

∥∥∥2

wk

= σk,ν
∥∥pν,wk

∥∥2
wk

= σk,ν .

Hence we introduce the orthonormal polynomials Dkpk+ν (x)/√σk,ν into the Christoffel-
Darboux identity (10) in order to get

n−k

∑
ν=0

Dkpk+ν (x)Dkpk+ν (y)
σk,ν

=
αn−k,k

αn−k+1,k

∣∣∣∣Dkpn+1 (x) Dkpn+1 (y)
Dkpn (x) Dkpn (y)

∣∣∣∣
√σk,n−k+1σk,n−k (x− y)

.

By (18) the constant factors on the right-hand side simplify to

(n− k+1)k
(n− k+2)k σk,n−k

∥∥qn+1,w0

∥∥
w0∥∥qn,w0

∥∥
w0

=
(n− k+1)

(n+1)σk,n−k

√
dn+1 = γk,n.

Additionally, if we pass to the limit x → y and use the l’Hospital’s rule, then we obtain

n−k

∑
ν=0

[
Dkpk+ν (y)

]2

σk,ν
= γk,n

∣∣∣∣Dk+1pn+1 (y) Dkpn+1 (y)
Dk+1pn (y) Dkpn (y)

∣∣∣∣ .
Thus the proof of theorem is a direct consequence of Lemma 1. �

4. Iterated quadrature rules and barycentric weights

Throughout this section we shall assume that
(
xk,ν

)n−k
ν=1 are the zeros of the monic

classical orthogonal polynomials

qn−k,wk (x) =

√
σk,n−khn

(n− k+1)k
pn−k,wk (x) =

√
hn

(n− k+1)k
Dk pn (x) , 0 � k < n, (19)

of degree n−k < nw/2, where hn = ‖qn‖2
w , w0 (x) = w(x) and qn,w0 (x) = qn (x) . Note

that the inequality n− k < nw/2 means that P2n is a subspace of L2
w (a,b) .

Now we can proceed to investigate the iterated Gauss quadrature formulae with the
nodes xk,1 < xk,2 < .. . < xk,n−k . For this purpose we first observe that the reproducing
kernels Kn,wk (x,y) satisfy

Kn,wk

(
x,xk,ν

)
= Kn−1,wk

(
x,xk,ν

)
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Table 2: The parameters γk,n of the solutions of problem (3) for the classical
weight functions of Hermite, Laguerre, Jacobi, generalized Bessel, Jacobi on (0,+∞)
and pseudo-Jacobi type. Here (v)0 = 1, (v)k = v(v+1) · · ·(v+ k−1) denotes the

Pochhammer symbol, and σk,ν =
∥∥Dkpν+k

∥∥2
wk

and dn = hn/hn−1 are as in Lemma 1

and Table 3 [34], respectively. Moreover χk,n = ka2 [(n−2)a2 +b1]
−1 are parameters

of generic formulae for Christoffel numbers given in Theorem 2.

a2 b1 σk,ν γk,n χk,n

0 −2 2k (ν +1)k

√
dn+1

2k(n−k+2)k
0

0 −1 (ν +1)k

√
dn+1

(n−k+2)k
0

−1 −(α +β +2) (ν +1)k (ν + k+α +β +1)k

√
dn+1

(n−k+2)k(n+α+β+1)k
k

n+α+β

1 α (−1)k (ν +1)k (ν + k+α −1)k

(−1)k
√

dn+1
(n−k+2)k(n+α−1)k

k
n+α−2

1 2−α (−1)k (ν +1)k (ν + k+1−α)k

(−1)k
√

dn+1
(n−k+2)k(n−α+1)k

k
n−α

1 2−2α (−1)k (ν +1)k (ν + k+1−2α)k

(−1)k
√

dn+1

(n−k+2)k(n−2α+1)k
k

n−2α

and

Kn,wk

(
xk,ν ,xk,ν

)
= Kn−1,wk

(
xk,ν ,xk,ν

)
= γk,n−1D

k+1pn
(
xk,ν

)
Dkpn−1

(
xk,ν

)
,

at the zeros y = xk,ν . These formulae enable to derive the representations

Ak,ν =
1

γk,n−1Dk+1pn
(
xk,ν

)
Dkpn−1

(
xk,ν

) (20)

for the Christoffel numbers

Ak,ν =
∫ b

a
lk,ν (x)wk (x)dx =

∫ b

a
l2k,ν (x)wk (x)dx

of the iterated Gauss quadrature rules, determined uniquely by the conditions∫ b

a
p(x)wk (x)dx = Gn,k (p) :=

n−k

∑
ν=1

Ak,ν p
(
xk,ν

)
, p ∈ P2(n−k)−1.

Here lk,ν (x) are the fundamental Langrange polynomials defined by

lk,ν (x) =
qn−k,wk (x)(

x− xk,ν
)
q′n−k,wk

(
xk,ν

) .
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For the completeness, we note that identities (19) for the monic orthogonal polynomials
qn−k,wk (x) follow easily from (14) and the identities∥∥qn−k,wk

∥∥2
wk

=
σk,n−k

(n− k+1)2k
‖qn‖2

w =
σk,n−k

(n− k+1)2k
hn, (21)

which are implied by (16) and (9). Moreover, formulae (20) follow from the identity
Ak,νKn,wk

(
xk,ν ,xk,ν

)
= 1, presented in Theorem 3.4.2 of Szegő [37]. By (19) and (20)

we can also express the Christoffel numbers in the form

Ak,ν =
√

hnhn−1

γk,n−1Dk+1qn
(
xk,ν

)
Dkqn−1

(
xk,ν

) ,

dependent on the derivatives and norms of the monic polynomials, orthogonal with
respect to a classical weight w(x) . It should be noted that values of hn are listed in
Table 2 of our paper [34] for all basic classical weights.

Now we can extend our recent generic results, presented for the Christoffel num-
bers Aν = A0,ν of the Gauss quadrature rules with respect to an arbitrary classical
weight w(x) in the paper [34]. For this purpose, we have to express the parameters
dn−k,wk , ρn−k,wk , hn−k,wk and r2(n−k)−1,wk

of the three-terms and Al-Salam-Chihara re-
currence relations (5) and (6), for the monic orthogonal polynomial associated with the
weight wk (x) , in terms of the corresponding parameters dn , ρn , hn and r2n−1 , which
are defined by formulae (8) and (9).

LEMMA 2. If 1 � k < n, then we have

hn−k,wk =
σk,n−k

(n− k+1)2k
hn, dn−k,wk =

(n− k)2 σk,n−k

n2σk,n−k−1
dn

and

ρn−k,wk =

(
1− k

n

)2 σk,n−k

σk,n−k−1
ρn.

Proof. Since hn−k,wk =
∥∥qn−k,wk

∥∥2
wk

and dn−k,wk = hn−k,wk/hn−k−1,wk , the first two
formulae are direct consequences of equations (21). Further we have

B(x)+ kA′ (x) = (b1 +2ka2)x+b0 + ka1

in the Pearson differential equation (2) for the weight wk (x) . Hence we obtain
r2(n−k)−1,wk

= r2n−1 and

ρn−k,wk = −dn−k,wkr2n−1 = − (n− k)2 σk,n−k

n2σk,n−k−1
dnr2n−1,

which finishes the proof. �
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The following theorem completes Theorem 3.1 [34] for iterated classical weights.
It establishes two generic formulae for the Christoffel numbers, which are especially
convenient in numerical computations [11, 12, 40, 41]. The second formula uses the
constant factors χk,n defined by

χk,n =
n− k

n

σk,n−k

σk,n−k−1
−1 =

ka2

(n−2)a2 +b1
. (22)

Their values have been listed in Table 2 for all six basic classical weight functions.

THEOREM 2. Let
(
xk,ν

)n−k
ν=1 be the zeros of a derivative Dkqn (x) , 1 � k < n, of

the monic polynomial qn (x) , orthogonal with respect to a classical weight w(x) . Then
the Christoffel numbers Ak,ν of the Gauss quadrature formula Gn,k (p) satisfy

Ak,ν =
ρnhn−1σk,n−k

A
(
xk,ν

)[
Dk+1qn

(
xk,ν

)]2 =
nσk,n−k−1hn−1A

(
xk,ν

)
(n− k)

(
1+ χk,n

)
ρn

[
Dkqn−1

(
xk,ν

)]2 .

In the case of all six basic classical weight functions the parameters ρn , hn−1 , σk,ν
and χk,n are listed in Tables 2 from this paper and [34].

Proof. Apply Theorem 3.1 [34] to the classical weight function wk (x) to get the
formulae

Ak,ν =
ρn−k,wkhn−k−1,wk

A
(
xk,ν

)[
Dqn−k,wk

(
xk,ν

)]2 =
hn−k−1,wkA

(
xk,ν

)
ρn−k,wk

[
qn−k−1,wk

(
xk,ν

)]2 .

Next, transform the first formula to the desired form by using Lemma 2 and the identi-
ties

qn−k,wk (x) =
√

hn

(n− k+1)k
Dkpn (x) =

Dkqn (x)
(n− k+1)k

.

In the same way, the second formula can be transformed to

Ak,ν =
n2σ2

k,n−k−1hn−1A
(
xk,ν

)
(n− k)2 σk,n−kρn

[
Dkqn−1

(
xk,ν

)]2 .

Hence, it is sufficient to apply formula (22) in order to finish the proof. �
According to Wang et al. [40,41] and the authors [34], it is of interest that Christof-

fel numbers Ak,ν are extremly useful during numerical computations of the barycentric
weights of the Lagrange, Fejér and Hermite type:

Ln,k f (x) =
Dkqn (x)

(n− k+1)k

n−k

∑
ν=1

f
(
xk,ν

) Bk,ν
x− xk,ν

,

Fn,k f (x) = w1 (x)

[
Dkqn (x)

]2

(n− k+1)2k

n−k

∑
ν=1

f
(
xk,ν

) Ck,ν(
x− xk,ν

)2 ,

Hn,k f (x) =

[
Dkqn (x)

]2

(n− k+1)2k

n−k

∑
ν=1

⎡⎣ f
(
xk,ν

)
D(0)

k,ν(
x− xk,ν

)2 +
f ′

(
xk,ν

)
D(0)

k,ν + f
(
xk,ν

)
D(1)

k,ν
x− xk,ν

⎤⎦ .
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This is a consequence of the following corollary, which refines Theorem 3.2 [34] in the
case of iterated classical weight functions.

COROLLARY 1. Let xk,1 < xk,2 < .. . < xk,n−k , 1 � k < n, be zeros of the deriva-
tive Dkqn (x) of the monic polynomial qn (x) , orthogonal with respect to any classical

weight w(x) . Then the barycentric weights Bk,ν , Ck,ν , D(0)
k,ν and D(1)

k,ν of Lagrange,
Fejér and Hermite interpolating operators have the following representations:

Bk,ν = (−1)ν−1

√
(n− k+1)2k A

(
xk,ν

)
σk,n−kρnhn−1

Ak,ν ,

Ck,ν =
(n− k+1)2k

σk,n−kρnhn−1wk
(
xk,ν

)Ak,ν ,

D(0)
k,ν =

(n− k+1)2k A
(
xk,ν

)
σk,n−kρnhn−1

Ak,ν ,

D(1)
k,ν =

(n− k+1)2k
[
B

(
xk,ν

)
+ kA′ (xk,ν

)]
σk,n−kρnhn−1

Ak,ν .

Here the constant factors ρn , hn−1 , σk,ν and χk,n are as in Theorem 2.

Proof. Following the proof of Theorem 2, we have to use only Lemma 2, Theorem
2 and Theorem 3.2 [34]. �

5. Inequalities of Markov-Bernstein type

Before we compute the squares of weighted operator norms∥∥∥Dk
∥∥∥2

wk

:= max
p∈Pn

{∥∥∥Dkp
∥∥∥2

wk

: ‖p‖w = 1

}
of the differential operators

Dk : Pn (w) � p → Dkp ∈ Pn−k (wk) ,

we note that Agarwal, Guessab and Milovanović [2, 13] proved the formula∥∥∥Dk
∥∥∥2

wk

= λn,0λn,1 · · ·λn,k−1

for the iterated weights wk (x) , associated with the classical basic weights w(x) of Her-
mite, Laguerre and Jacobi type. Here λn,k are the eigenvalues of the Sturm-Liouville
differential equation (7).

In the following theorem we extend their result to an arbitrary classical weight

function ŵ(x̂) on
(
â, b̂

)
. For this purpose suppose that a classical weight ŵ(x̂) ,
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â < x < b̂ , is transformed to the basic classical weight w(x) , a < x < b , by chang-
ing variable x̂ = β1x+ β0 , β1 > 0. It is clear that this change of variable preserves the
Pearson differential equation and orthonormality of the corresponding basic polynomi-
als pν (x) , provided that the normalizations

B̂(x̂) =
1
β1

B

(
x̂−β0

β1

)
and p̂ν (x̂) =

1√
β1

pν

(
x̂−β0

β1

)
(23)

are preassumed. Indeed, these normalizations guarantee that

d
dx̂

(
Â(x̂) ŵ(x̂)

)
= B̂(x̂) ŵ(x̂)

and

‖ p̂ν‖2
ŵ =

1
β1

∫ b̂

â
p2

ν

(
x̂−β0

β1

)
w

(
x̂−β0

β1

)
dx̂ =

∫ b

a
p2

ν (x)w(x)dx = 1.

THEOREM 3. Let wk (x) = Ak (x)w(x) , 0 � k � n, be an iterated weight corre-
sponding to an arbitrary classical weight w(x) = w0 (x) on (a,b) . If {pn (x)}0�n<nw
are classical orthonormal polynomials associated with the weight w(x) , then the best
constants in the Markov-Bernstein inequalities∥∥∥Dkp

∥∥∥2

wk

� Cn,k (wk)‖p‖2
w , p ∈ Pn,

are equal to

Cn,k (wk) =
∥∥∥Dk

∥∥∥2

wk

=
∥∥∥Dkpn

∥∥∥2

wk

= σk,n−k,

where σk,n−k are defined as in Lemma 1. Additionally, the constants σk,n−k are as in
Table 2 in the case of all six basic classical weight functions of the Hermite, Laguerre,
Jacobi, generalized Bessel, Jacobi on (0,+∞) and pseudo-Jacobi type.

Proof. Since the weight w(x) is classical, it follows that the polynomials{
Dkpν (x)

}
k�ν�n are orthogonal with respect to the weight wk (x) . Hence we get∥∥∥Dkp

∥∥∥2

wk

=
n

∑
ν=k

(p, pν)2
w

∥∥∥Dkpν

∥∥∥2

wk

� max
k�ν�n

∥∥∥Dkpν

∥∥∥2

wk

, p ∈ Pn,

whenever

‖p‖2
w =

n

∑
ν=0

(p, pν)2
w = 1.

On the other hand, it has been established in the proof of Theorem 1.1 from [35] that

the sequence
{∥∥Dkpν

∥∥2
wk

}
k�ν<nw

is strictly increasing, whenever w(x) is an arbitrary

basic classical weight function. Consequently, we conclude that∥∥∥Dkp
∥∥∥2

wk

�
∥∥∥Dkpn

∥∥∥2

wk

, (24)
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with the equality holding when p(x) = pn (x) . Hence the theorem is a direct con-
sequence of Lemma 1 for all six basic classical weights w(x) . Therefore it remains

to consider an arbitrary classical weight function ŵ(x̂) on the interval
(
â, b̂

)
, which

is not basic. Then there exist the unique basic weight w(x) on (a,b) and the linear

transformation x̂ = β1x+ β0 , β1 > 0, of (a,b) onto
(
â, b̂

)
such that

ŵ(x̂) = w

(
x̂−β0

β1

)
.

Hence we obtain∥∥∥Dk p̂ν

∥∥∥2

ŵk

=
1
β1

∫ b̂

â

[
dk

dx̂k pν

(
x̂−β0

β1

)]2

wk

(
x̂−β0

β1

)
dx̂

=
1

β 2k
1

∫ b

a

[
dk

dxk pν (x)
]2

wk (x)dx =
1

β 2k
1

∥∥∥Dkpν

∥∥∥2

wk

.

Thus the sequence
{∥∥Dk p̂ν

∥∥2
ŵk

}
k�ν<nw

strictly increases. Consequently, we can apply

formulae (23) and (24) in order to get∥∥∥Dkp
∥∥∥2

ŵk

�
∥∥∥Dk p̂n

∥∥∥2

ŵk

= σ̂k,n−k =
1

β 2k
1

σk,n−k, p ∈ Pn,

which completes the proof of the theorem. �
If 0 � j < k is arbitrary, then the problem of calculation of the norms

∥∥Dk
∥∥

wj
is

much more difficult, except the Hermite iterated weights wj (x) = e−x2
. In the case of

the Legendre weight w(x) ≡ 1, it has been already observed by Kroó [21] for j = 0
and k = 1. In fact this extremaly difficult problem remains open and its solving requires
different techniques than those used above. Of course, in the Hermite case it follows

from Theorem 3 that the norms
∥∥Dk

∥∥2
wj

are independent of j and that we have

∥∥∥Dk
∥∥∥2

wj
= σk,n−k = 2k (n− k+1)k .

Here the norms are attained by the Hermite orthonormal polynomials pn (x) . It has
been already proved by Dörfler [8]. On the other hand, we note that Varma [39] charac-
terized Hermite orthogonal polynomials by a Pythagorean-type inequality in terms of
the norms of their first and second derivatives. It was generalized by Agarwal and Milo-
vanović to the classical polynomials of Hermite, Laguerre and Jacobi in the paper [1].
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