
Journal of
Mathematical

Inequalities

Volume 13, Number 4 (2019), 1001–1009 doi:10.7153/jmi-2019-13-71

A PROOF OF HILBERT’S THEOREM ON TERNARY QUARTIC FORMS

JIA XU ∗ AND YONG YAO

(Communicated by L. Yang)

Abstract. Hilbert’s theorem states that every positive semi-definite real ternary quartic form can
be written as a sum of squares of quadratic forms. In this paper, a constructive proof based on
the method called ladder technique is presented. A practical example is proposed to illustrate
that this method can be used to prove some hard inequalities on ternary quartic forms.

1. Introduction

In 1888, David Hilbert published a paper [5] on the problem whether a positive
semi-definite real polynomial is inevitably a sum of squares of other real polynomials.
This work is influential and inspires a lot of great works in researchers even today. In
the exceptional case, Hilbert proved that a positive semi-definite real ternary quartic
form can be written as a sum of squares of quadratic forms. Hilbert’s proof is very brief
but rather hard, because some complicated mathematical tools are used (see comments
in [2] and [8]). Furthermore, Hilbert’s method did not lend itself to a really practical
construction. In 1977, Choi and Lam [2] showed a graceful elementary proof, in which
only the rudiments of real analysis and the representation theorem of convex set are
utilized. However,this method is not constructive either.

The objective of the paper is to fill this gap. Comparatively to [2], we suggest a new
method called the ladder technique instead of the representation theorem of convex set.
It is obvious from the context that the ladder technique is elementary. Furthermore, it is
constructive, whereas representation theorem of convex set is not. Thus, for a positive
semi-definite ternary quartic form, its explicit representation as a sum of squares can be
constructed step by step according to the method addressed in this paper.

The rest of this paper is organized as follows. In Section 2, four lemmas are pre-
sented. Each of them is like a step of the ladder, and the highest one (Lemma 4) achieves
the goal. With the ladder technique, the Hilbert’s theorem is proved easily. In Section
3, the computation of real zero points is discussed, which provides the concrete details
for the construction of sum of squares. Moreover, a practical example is provided to
show the constructive process.
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2. Proof of Hilbert’s theorem

Firstly, the following are required. A form f ∈ R[x,y,z] is said to be positive
semi-definite (psd) if

f (P) � 0, ∀P ∈ R
3,

and PSD4
3 represents the set of all positive semi-definite ternary quartic forms. SOS

stands for the set of sum of squares of polynomials.
Given P1,P2 ∈ R

3 \ {(0,0,0)} satisfying f (P1) = f (P2) = 0, we call P1 and P2

are same if there is a non-zero number λ such that P1 = λP2 . That is, we discuss the
zeros of f in the real projective space P2(R) . The set of zeros in P2(R) is denoted by
Z( f ) , and |Z( f )| stands for the number of elements of Z( f ) . The unit sphere is written
as S2 = {(x,y,z)| x2 + y2 + z2 = 1} .

Next, we will present four lemmas.

LEMMA 1. If the psd quartic form f ∈R[x,y,z] has no zero in P2(R) (i.e. |Z( f )|=
0 ), then there is a quadratic form g ∈R[x,y,z] such that f −g2 is positive semi-definite
and has at least one zero in P2(R) (i.e. |Z( f −g2)| � 1 ).

Proof. Since f is continuous on the unit sphere S2 , f inevitably attains a mini-
mum λ . It is obvious that λ > 0 and

f −λ (x2 + y2 + z2)2 � 0.

Let g =
√

λ (x2 + y2 + z2) , and then f −g2 is positive semi-definite and |Z( f −g2)| �
1. �

LEMMA 2. If the psd quartic form f ∈ R[x,y,z] has only one zero in P2(R) (i.e.
|Z( f )| = 1 ), then there are quadratic forms g1,g2 ∈ R[x,y,z] and non-negative real
numbers a and b with a2 + b2 �= 0 such that f − ag2

1 − bg2
2 is positive semi-definite

and |Z( f −ag2
1−bg2

2)| � 2 .

Proof. By coordinates transformation, we can assume that f (1,0,0) = 0, and f
can be written as

f = x2p(y,z)+2xq(y,z)+ r(y,z), (1)

where p � 0, r � 0, and pr−q2 � 0. There are three cases of p to be discussed.
Case (i): p = 0 ( 0 form). It is clearly that q is necessarily a 0 form. Then

f = r(y,z).

Since f has only one zero (1,0,0) , it holds that r(y,z) > 0 for all (y,z) ∈ S1 = {(y,z) ∈
R

2| y2 + z2 = 1}. Furthermore, f is continuous on the unit circle S1 , so f has the
minimum λ on S1 . It is obviously that λ > 0 and

f −λ (y2 + z2)2 � 0.
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Let g =
√

λ(y2 + z2) . Thus f −g2 is positive semi-definite and |Z( f −g2)| � 2.
Case (ii): The rank of p is 1 . By coordinate transformation, assume that p = y2 .

The condition pr−q2 � 0 implies that q is divided by y (the coefficient of z3 in q is
0). That is, there is q1 satisfying q = yq1 . Substituting it into (1) one has

f = x2y2 +2xyq1 + r = (xy+q1)2 + r−q2
1.

Notice that r−q2
1 (� 0) is not a 0 form, otherwise f would have infinite zeros on S2 .

There are two situations to be considered.
Subcase (a): r−q2

1 has a zero (y0,z0) on S1 , then it has at least 2 zeros (1,0,0)
and (0,y0,z0) on S2 . Hence f − (xy+q1)2 is positive semi-definite and |Z( f − (xy+
q1)2)| � 2.

Subcase (b): r− q2
1 has no zero on S1 , then f − (xy + q1)2 yields case (i), so

that there is a quadratic form g such that f − (xy+ q1)2 − g2 is positive semi-definite
and | f − (xy+q1)2 −g2| � 2.

Case (iii): The rank of p is 2 . By coordinate transformation, p may take the
form p = y2 + z2 . Consequently, we claim that pr − q2 > 0 on S1 . Otherwise if
pr− q2|(y0,z0) = 0 for (y0,z0) �= (0,0) , then (−q(y0,z0)/p(y0,z0),y0,z0) is a zero of
f , conflicting with the fact that f only has the zero (1,0,0) . Thus pr−q2 attains the
minimum λ > 0 on S1 . As a result,

(pr−q2)−λ (y2 + z2)3 � 0,

with equality at (y0,z0) ∈ S1 . Hence

f −λ (y2 + z2)2

is still positive semi-definite by its discriminant, and has at least two zeros: (1,0,0)
and (−q(y0,z0)/p(y0,z0),y0,z0) .

It follows from Case (i) to Case (iii) that Lemma 2 holds. �

LEMMA 3. If the psd quartic form f ∈ R[x,y,z] has only two zeros in P2(R) (i.e.
|Z( f )| = 2 ), then there are quadratic forms g1,g2,g3 ∈ R[x,y,z] and non-negative real
numbers a,b,c with a2 + b2 + c2 �= 0 such that f − ag2

1 − bg2
2− cg2

3 is positive semi-
definite and |Z( f −ag2

1−bg2
2− cg2

3)| � 3 .

Proof. Change coordinates so that f (1,0,0) = f (0,1,0) = 0. Write

f = x2p(y,z)+2xzq(y,z)+ z2r(y,z), (2)

where p, q and r are quadratic forms with p � 0, r � 0, and pr−q2 � 0. Next the
proof will be split into two cases.

Case (i): If at least one of p and r has a zero on S1 , then let (y0,z0) be the zero
of r without loss of generality. Substituting it into (2), one yields

f (x,y0,z0) = x2p(y0,z0)+2xz0q(y0,z0).
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Then (0,y0,z0) is also a zero of f , hence y0 = 1,z0 = 0. Substituting them into
quadratic form r(y,z) , it is reduced to the form

r(y,z) = tz2, t > 0.

From pr−q2 = t pz2−q2 � 0, q must be divided by z . Thus q =
√

tzq1 , where q1 is
a linear form. Therefore,

pr−q2 = tz2(p−q2
1) � 0 =⇒ p−q2

1 � 0,

and
f = x2p+2xz2√tq1 + z2(tz2) = (

√
tz2 + xq1)2 + x2(p−q2

1).

Then f − (
√

tz2 + xq1)2 = x2(p − q2
1) is positive semi-definite and has infinite ze-

ros (0,y,z) . Hence
|Z( f − (

√
tz2 + xq1)2)| > 3.

Case (ii): If neither p nor r is supposed to have a zero on S1 (both p and r are
strictly positive on S1 ), then discuss two possibilities of the discriminant pr−q2 .

Subcase (a): The discriminant pr − q2 has a zero (y0,z0) ∈ S1 , and let λ =
− q(y0,z0)

p(y0,z0)
. Then one has

f1(x,y,z) = f (x+ λ z,y,z) = x2p+2xz(q+ λ p)+ z2(r+2λq+ λ 2p).

Since (y0,z0) is a zero of r+2λq+ λ 2p , f1 is reduced to the Case (i).
Subcase (b): The discriminant pr− q2 has no zero on S1 . Since p and r are

strictly positive on S1 , the function

pr−q2

p(y2 + z2)

is also strictly positive on S1 , and its minimum λ > 0. Thus pr− q2 � λ p(y2 + z2),
and f − λ z2(y2 + z2) is positive semi-definite. If r− λ (y2 + z2) has zeros, then f −
λ z2(y2 + z2) is reduced to the Case (i). In contrast, if r−λ (y2 + z2) has no zero on S1 ,
then f −λ z2(y2 + z2) is reduced to the Case (ii) (a).

Because we have considered all two cases, we can conclude that Lemma 3 holds. �

LEMMA 4. If the number of zeros of the psd quartic form f ∈ R[x,y,z] in P2(R)
is more than 3 (i.e. |Z( f )| � 3 ), then f is a sum of squares of quadratic forms.

Proof. The proof will be split into two cases.
Case(i): If there are three zeros not on the same line, then by arranging coordi-

nates, we may assume that

f (1,0,0) = f (0,1,0) = f (0,0,1) = 0.

This implies that the degree of each variable is less than or equal to 2. Write

f = ax2y2 +by2z2 + cz2x2 +a1x
2yz+b1y

2xz+ c1z
2xy, a,b,c,a1,b1,c1 ∈ R.
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Do substitution xy = X ,yz = Y,zx = Z , and f can be transformed into a positive semi-
definite form in X ,Y,Z . It is obvious that f is a sum of squares of quadratic forms.

Case (ii): If all of the zeros are on the same line, then it can be split into two
subcases.

Subcase (a): f has infinite zeros. Then f has linear factors by Bézout’s theorem.
Since f is positive semi-definite, the degree of the linear factors is even. Hence they
are

l2h2, l4,

where l is linear form and h2 is positive semi-definite quadratic form (maybe degener-
ate). It is obvious that all of them are sum of squares of quadratic forms.

Subcase (b): f has finite zeros. we claim that this case will never happen. The
reason is as follows.

Arrange coordinates so that f (1,0,0) = f (0,1,0)= f (x0,y0,0)= 0 with x0y0 �= 0.
Write

f = x2p(y,z)+2xzq(y,z)+ z2r(y,z), (3)

where p,q and r are quadratic forms with p � 0,r � 0, pr−q2 � 0. Therefore,

f (x0,y0,0) = x2
0p(y0,0) = 0.

Furthermore, x0 �= 0 yields p(y0,0) = 0, where p is a quadratic form only in y and z .
Let

p = ay2 +2byz+ cz2,a,b,c ∈ R.

Consequently p(y0,0) = ay2
0 = 0, and a = 0 for y0 �= 0. Thus z divides f in (3), and

all of the points on the line z = 0 are zeros of f . This contradicts the premise that f
has finite zeros on the line z = 0. �

With the above 4 lemmas, Hilbert’s theorem will be proved with a chart.

THEOREM 1. (Hilbert) A positive semi-definite ternary quartic form over the re-
als can be written as a sum of squares of quadratic forms.

Proof. The following chart will present the process of proof.

|Z( f )| � 3 (SOS,Lemma 4)
↗ ⇑

|Z( f )| � 2 ‖ Lemma 3
↗ ⇑ ↘ ‖

|Z( f )| � 1 ‖ Lemma 2 |Z( f )| = 2
↗ ⇑ ↘ ‖

PSD4
3 ‖ Lemma 1 |Z( f )| = 1
↘ ‖

|Z( f )| = 0

The set PSD4
3 is divided into two disjoint subsets, that is, the subset with |Z( f )|= 0 and

the other one with |Z( f )| � 1. According to Lemma 1, the former can be transformed
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into the latter by minus a square of a quadratic form. Furthermore, the subset with
|Z( f )| � 1 can be dealt with in the same way according to Lemma 2 and so forth.
Finally the theorem holds according to Lemma 4. �

REMARK 1. Theorem 1 is the weak edition of Hilbert’s theorem. The strong edi-
tion is that the positive semi-definite ternary quartic forms are sum of no more than
three squares of quadratic forms. The proof of the strong edition can see [8], [9] and
[11].

REMARK 2. The real zeros are assumed to be known in the above proof. To
achieve the goal of really practical construction , we still need some method in solving
the real zeros of ternary quartic forms. This problem will be conquered in Section 3,
and we will really obtain the practically constructive proof of Hilbert’s theorem.

3. Computation of zeros

In this section, we will discuss the problem of computing zeros. Lemma 4 presents
a key of constructing sum of squares, that is, finding out at least three real zeros of a
positive semi-definite ternary quartic form. Next we will prove a proposition (Lemma 5)
that can solve the problem of computing the real zeros of positive semi-definite ternary
forms. The fundamental idea comes from [12, 13].

LEMMA 5. Given positive semi-definite form f ∈R[x,y,z] , let f ′x be the derivative
of f with respect to x , and res( f , f ′x,x) be the resultant of f and f ′x with respect to x .
Then the equation { f = 0} and the equations { f = 0, res( f , f ′x,x) = 0} are equivalent
in the projective space P2(R) .

Proof. It is obvious that Z( f ) ⊇ Z( f , res( f , f ′x,x)) . Next we will prove Z( f ) ⊆
Z( f , res( f , f ′x,x)).

It is easy to get that the real zero (x0,y0,z0) ∈ S2 of positive semi-definite form f
need to satisfy the following equations for solving stationary points.

⎧⎨
⎩

f ′x = 0,
f ′y = 0,
f ′z = 0.

(4)

This is because of the fact that if at least one of the following values

f ′x|(x0,y0,z0), f ′y|(x0,y0,z0), f ′z |(x0,y0,z0)

is not zero, then f can be approximated by linear functions on a neighborhood of the
point (x0,y0,z0) . So f is not nonnegative on a neighborhood of the point (x0,y0,z0) .
This contradicts the premise that f is positive semi-definite. Thus x0 satisfies the
following equations. {

f (x,y0,z0) = 0,
f ′x(x,y0,z0) = 0.

(5)
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Then res( f , f ′x,x)|(y0,z0) = 0 according to the fundamental property of resultant. That
is, Z( f ) ⊆ Z( f , res( f , f ′x,x)). �

REMARK 3. In Lemma 5 f cannot include square factors, otherwise res( f , f ′x,x)
would identically equal to 0. Thus the equations { f = 0, res( f , f ′x,x) = 0} in P2(R) is
zero dimension, and we can solve the above equations with various efficient methods
such as method of resultant [1, 6], rational single variable present method [10], etc.

REMARK 4. The general version of Lemma 5 (successive resultant method [12,
13]) also ensure the minimum of Lemma 1, Lemma 2 and Lemma 3 can be computed
accurately, and then ensure the above proof of Hilbert’s theorem is completely con-
structive.

Next we will present one computing example.

EXAMPLE 1. [4] Compute the sum of squares of the following ternary quartic
form,

f = 4(x4 + y4 + z4)+21(xy+ yz+ zx)2−10(x2 + y2 + z2)(xy+ yz+ zx)
−37xyz(x+ y+ z).

Firstly compute

f ′x = 16x3 +42(xy+ xz+ yz)(y+ z)−20x(xy+ xz+ yz)−10(x2+ y2 + z2)(y+ z)
−37yz(x+ y+ z)−37xyz.

Then compute the resultant res( f , f ′x,x) ,

res( f , f ′x,x) = 7056(81y4−90y3z+19y2z2−90yz3+81z4)(3y−2z)2(2y−3z)2(y−z)4.

By Gram matrix method [3, 7], one yields

h = 81y4−90y3z+19y2z2 −90yz3 +81z4

= (9y2−5yz− 32
9

z2)2 +58(yz− 565
522

z2)2 +
1921
4698

z4.

Thus h is strictly positive on S1 . Hence

res( f , f ′x,x) = 0 ⇐⇒ (3y−2z)(2y−3z)(y− z)= 0.

Then we know that the equation res( f , f ′x,x) = 0 has three real zeros in the projective
space P(R) :

(1,1), (3,2), (2,3).

Substituting all the above points into the polynomial f , and we have four real zeros of
f = 0 in the real projective space P2(R) . There are

(1,1,1), (3,2,2), (2,3,2), (2,2,3). (6)
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Select three of them and construct the following matrix (each column is a zero of
f )

A =

⎡
⎣1 3 2

1 2 3
1 2 2

⎤
⎦ .

Do linear transformation ⎡
⎣x

y
z

⎤
⎦ = A

⎡
⎣x

y
z

⎤
⎦ .

By computing, we have

f (A[x , y, z ]T ) = x2y2 +49y2 z2 + z2x2 − x2y z +7y2 z x +7z2 y x

=
1
2

(
(x y − z x)2 +(x y +7y z)2 +(z x +7y z)2) . (7)

Compute the inverse matrix of A ,

A−1 =

⎡
⎣−2 −2 5

1 0 −1
0 1 −1

⎤
⎦ .

Let ⎡
⎣x

y
z

⎤
⎦ = A−1

⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣−2x−2y+5z

x− z
x− y

⎤
⎦ ,

and substitute it into (7), we obtain

1
2

[
(−2x2 +5xz+2y2−5yz)2+(−2y2 +5yx+2z2−5zx)2+(−2z2 +5zy+2x2−5xy)2] .

Then the sum of squares of f is as follows.

f =
1
2 ∑

cyc
(−2x2 +5xz+2y2−5yz)2.

4. Conclusion

In this paper, we give a proof of Hilbert’s theorem via four lemmas with the lad-
der technique. According to the proof, catching at least three real zeros of a positive
semi-definite ternary quartic form is necessary for constructing its sum of squares. Con-
sequently, we present the method of locating the zeros based on the property that zeros
of a positive semi-definite form satisfy the equations for stationary points. Finally, a
practical example is proposed to illustrate that this method can be used to prove some
hard inequalities on ternary quartic forms.
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