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SHARP Lp HARDY TYPE AND UNCERTAINTY

PRINCIPLE INEQUALITIES ON THE SPHERE

ABIMBOLA ABOLARINWA ∗ , KAMILU RAUF AND SONGTING YIN

(Communicated by G. Sinnamon)

Abstract. This paper studies Lp - version of the Hardy type inequalities on the geodesic sphere
of constant sectional curvature and establishes that the corresponding constant is sharp. Further-
more, the inequalities obtained are used to derive an uncertainty principle inequality and another
inequality involving the first nonzero eigenvalue of the p -Laplacian on the sphere.

1. Introduction

In this paper, we present some new version of Lp Hardy inequalities on the unit
N -sphere and show that the associated constant is the best possible. Applications of this
inequality yield an uncertainty principle inequality and inequality involving the bottom
of the spectrum of the p -Laplacian.

1.1. Preliminaries

Let R
N , N � 3 be the N -dimensional Euclidean space, the classical Hardy in-

equality for f ∈C∞
0 (RN) and p > 1 states that

∫
RN

|∇ f (x)|pdx �
(N− p

p

)p ∫
RN

| f (x)|p
|x|p dx,

where ((N − p)/p)p is the best constant. In recent years, several papers have been
devoted to improvement and extension of the above inequality owing to its numerous
applications to fields such as Analysis, Mathematical Physics and Differential Geome-
try, see [3, 5, 6, 7, 14] for instance. In paricular, see [8, 10, 16, 18] for the extension to
complete manifolds. For more exposition see [1] and the references therein.

In the Riemannian manifold setting, Carron [4] studied weighted L2 -Hardy in-
equalities under some geometric assumptions on the weight and obtained the following
weighted L2 -Hardy inequality on compact or noncompact manifold M

∫
M

ρα |∇ f |2dV �
(C+ α −1

2

)2 ∫
M

| f |2
ρ2−α dV,
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for all f ∈ C∞
0 (M) , α ∈ R, C > 1, C + α − 1 > 0 and the positive weight function

ρ satisfying |∇ρ | = 1, Δρ � C
ρ . Recently, Kombe-Özaydin [8] (see also Kombe-

Özaydin [9] and Kombe-Yener [10]) extended Caron’s result to the general case 1 <
p < ∞ . In these papers the authors proved several Hardy-type, Rellich-type and even
uncertainty principle inequalities on manifolds satisfying certain geometric restrictions.
Yang-Su-Kong [18] applied the above ideas to obtain the following Hardy inequality
on Riemannian manifold with negative sectional curvature for N � 3, 1 < p < N−α ,
α ∈ R , f ∈C∞

0 (M)
∫

M

|∇ f |p
ρα dV �

(N− p−α
p

)p ∫
M

| f |p
ρα+p dV,

where |∇ρ |p = 1, Δρ � N−1
ρ and the constant

(
N−p−α

p

)p
is sharp. Hardy-Rellich type

and uncertainty principle inequalities have also been established for various settings
such as Poincaré model [9] and Lie groups [13].

However, a few literature has been devoted to Lp Hardy type inequalities on the
sphere so far. To the best of our knowledge, the only papers found are [1] and [15],
both generalising [17] for p = 2 (see also [19, 2] for p = 2 and [18] for Riemannian
manifolds of negative sectional curvature). Recently, the third author in [19] studied the
inequality for p = 2 and derived the following for any function f ∈C∞(SN) , N � 3

N−2
2

∫
SN

f 2dV +
∫

SN
|∇ f |2dV �

(N−2
2

)2 ∫
SN

f 2

tan2 d(q,x)
dV, (1)

where q ∈ S
N is a fixed point and

(N−2)2

4
is sharp. This is the first time Hardy type

inequality is appearing with the term
f 2

tan2 d(q,x)
. The appearance of this term is due

to the application of Laplacian of the distance function Δd(q,x) = (N − 1)cotd(q,x) ,
where d(q,x) is smooth (in the sense of distribution).

1.2. Main theorem

The major aim of this paper therefore is to generalise (1) to the case of general p
and show that the corresponding constant is also sharp. The main theorem is then stated
as follows:

THEOREM 1. Let N � 3 , 1 < p < N and q ∈ S
N , then there exists a positive

constant A(N, p) such that for all f ∈C∞(SN)

A(N, p)
∫

SN

| f |p
sinp−2 d(q,x)

dV +
∫

SN
|∇ f |pdV �

(N− p
p

)p ∫
SN

| f |p
| tand(x,q)|p dV, (2)

for 2 � p < N and

A(N, p)
∫

SN
| f |pdV +

∫
SN

|∇ f |pdV �
(N− p

p

)p ∫
SN

| f |p
| tand(x,q)|p dV, (3)
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for 1 < p < 2 , where A(N, p) =
(

N−p
p

)p−1
and d(x,q) is the geodesic distance from

x to a fixed point q on S
N . Moreover, the constant

(
N−p

p

)p
is sharp.

REMARK 1. When 1 < p < 2, the term
∫
SN

| f |p
sinp−2 d(q,x)

dV cannot control the right

hand side of (3) since sinp−2 d(q,x) is large enough where x is close to q . Hence, we
use

∫
SN | f |pdV instead. Notice also that the first term in (2) (resp. (3)) cannot be

removed because it will lead to contradiction if f is a nonzero constant. It is interesting
also to note that if the coefficient A(N, p) is arbitrary, the constant (N−p

p )p is still sharp.
When p = 2, the inequality (2) (resp. (1)) reduces to (3).

1.3. Notations

The unit N -sphere is denoted by S
N = {x∈R

N+1 : |x|= 1}. By the geodesic polar
coordinate transform one writes

∫
SN

f dV = Vol(SN−1)
∫ π

0
(sin rq)N−1dr,

where rq = d(q,x) , Vol(SN−1) is the volume of the unit (N−1) sphere and dV denotes
the standard volume element on S

N . The function f = f (r) depending only on r is
called radial and its gradient is |∇ f (r)| = | f ′(r)| . In this case, the Laplacian of distance
function is given as Δd(x,q) = (N − 1)cotd(x,q) and |∇d| = 1 in the distributional
sense. Let q be the antipodal point of q . Then d(q, q) = π and for any point x ∈ S

N ,
we have rq + rq = π . We shall construct a function possessing a fair degree of bilateral
symmetry on the sphere.

Section 2 of this paper is devoted to proving the main theorem. As in [19], we
use symmetry of the sphere to modify the construction of an auxilliary function that
has been used in literature and then do the calculation in two hemispheres using an-
tipodal points. Since the auxilliary function is only continuous, we use approximation
by smooth function to show sharpness of the inequalities. The appearance of general p
makes our calculation more complicated, especially for the existence of the best con-
stant. The last two sections are devoted to some applications of our inequalities. That
is, Section 3 derives an uncertainty principle inequality, while Section 4 presents an
inequality involving the bottom of the spectrum of the p -Laplacian on the sphere.

2. Proof of the main Theorem

Recall from [11, 16] that for any ξ ,η ∈ R
N , it holds that |ξ + η |p � |ξ |p +

p|ξ |p−2〈ξ ,η〉 . Letting γ = −N−p
p , f = ργφ ∈C∞(SN) , ρ = sinrq,q ∈ S

N , we have

|∇ f |p =|∇(ργ )φ + ργ∇φ |p = |γργ−1∇ρφ + ργ∇φ |p
�|γ|pργ p−p|∇ρ |p|φ |p + p|γ|p−2γργ p−p+1|φ |p−2φ |∇ρ |p−2〈∇ρ ,∇φ〉
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=|γ|pργ p−p|∇ρ |p|φ |p +
|γ|p−2γ

γ p− p+2
〈∇ργ p−p+2,∇φ p〉

=|γ|pργ p−p|∇ρ |p|φ |p +
|γ|p−2γ

γ p− p+2
div(φ p∇ργ p−p+2)

− |γ|p−2γ
γ p− p+2

〈Δργ p−p+2,φ p〉.

A simple calculation yields

Δ(sinrq)−β = div∇(sin rq)−β

= div(−β (sinrq)−β−1 cosrq∇rq)

= −β (sinrq)−β−1 cosrqΔrq + β (β +1)(sinrq)−β−2 cos2 rq + β (sinrq)−β .

Using Δrq = (N−1)cotrq , we obtain

Δ(sinrq)−β = β (N−β −1)(sinrq)−β −β (N−β −2)(sinrq)−(β+2).

Taking β = −(γ p− p+2) , using ρ = sinrq and γ = −N−p
p , we have |∇ρ | = cosrq ,

Δργ p−p+2 = Δ(sinrq)−N+2 = (N−2)(sinrq)−(N−2) and |γ|p−2γ
γ p−p+2 = 1

N−2

(
N−p

p

)p−1
.

Therefore

|∇ f |p �
(N− p

p

)p
φ p (sinrq)γ p

| tanrq|p +
|γ|p−2γ

γ p− p+2
div(φ p∇ργ p−p+2)

− 1
N−2

(N− p
p

)p−1
Δ(sinrq)−N+2φ p.

Integrating over S
N , applying divergence theorem and using φ = ρ−γ f = (sin rq)−γ f

yield
∫

SN
|∇ f |pdV �

(N− p
p

)p ∫
SN

| f |p
| tanrq|p dV

− 1
N−2

(N− p
p

)p−1 ∫
SN

Δ(sinrq)−N+2φ pdV

=
(N− p

p

)p ∫
SN

| f |p
| tanrq|p dV −

(N− p
p

)p−1 ∫
SN

| f |p
sinp−2 rq

dV,

which recovers inequality (2) for p � 2. While for 1 < p < 2, we replace the term∫
SN

| f |p
sinp−2 rq

dV by
∫
SN | f |pdV based on the explanation in Remark 1. Hence, inequality

(3).

In what follows, we show that the constant
(N− p

p

)p
is sharp. It then suffices to

show that

(N− p
p

)p
� inf

f∈C∞(SN)\{0}

∫
SN |∇ f |pdV +

(
N−p

p

)p−1 ∫
SN

| f |p
sinp−2 rq

dV
∫
SN

| f |p
| tanrq|p dV

.
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The argument is similar to [19] and we follow it closely, see also [1, 15, 17, 18].
Let ϕ(t) : R → [0,1] be a smooth function such that 0 � ϕ(t) � 1 and ϕ(t) = 1

for |t| � 1 and ϕ(t) ≡ 0 for |t| � 2.
Set H(t) = 1−ϕ(t) . For sufficiently small ε , define

fε(rq) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, for r = 0,

H
(rq

ε

)
(tanrq)

p−N
p , for 0 < rq <

π
2

,

H
(π − rq

ε

)
(tan(π − rq)

p−N
p , for

π
2

< rq < π ,

0, for r = π .

Without loss of generality, we assume 0 < ε < 1/2 and fε(rq) can be approximated
by smooth function on S

N . Let q be the antipodal point of q on S
N and rq(x, q) =

π − rq(x) be the distance from point q . Then we have

∫
SN

| fε |p
(sin rq)p−2 dV =

∫
Bq( π

2 )

| fε |p
(sinrq)p−2 dV +

∫
Bq ( π

2 )

| fε |p
(sin rq)p−2 dV,

where

∫
Bq( π

2 )

| fε |p
(sinrq)p−2 dV = Vol(SN−1)

∫ π
2

ε
Hp

( rq

ε

)
(tanrq)p−N(sinrq)2−p(sin rq)N−1dr

� Vol(SN−1)
∫ π

2

ε
rp−N
q rN−p+1

q dr =
Vol(SN−1)

2

(π2

4
− ε2

)

and
∫

Bq ( π
2 )

| fε |p
(sinrq)p−2 dV = Vol(SN−1)

∫ π−ε

π
2

Hp
(π − rq

ε

)
(tan(π − rq)

p−N

× (sin(π − rq)2−p(sin(π − rq)N−1dr

= Vol(SN−1)
∫ π

2

ε
Hp

( rq

ε

)
(tanrq)

p−N(sinrq)
N−p+1dr

� Vol(SN−1)
∫ π

2

ε
rp−N
q rN−p+1

q dr =
Vol(SN−1)

2

(π2

4
− ε2

)
.

Therefore

∫
SN

| fε |p
(sin rq)p−2 dV � Vol(SN−1)

(π2

4
− ε2

)
.

Similarly,

∫
SN

| fε |p
tanp rq

dV =
∫

Bq( π
2 )

| fε |p
tanp rq

dV +
∫
Bq ( π

2 )

| fε |p
tanp rq

dV,
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where
∫

Bq( π
2 )

| fε |p
tanp rq

dV = Vol(SN−1)
∫ π

2

ε
Hp

( rq

ε

)
(tanrq)−N(sinrq)N−1dr

� Vol(SN−1)
∫ π

2

2ε
Hp

(rq

ε

)
(tanrq)−N(sinrq)N−1dr

= Vol(SN−1)
∫ π

2

2ε
(tanrq)−N(sinrq)N−1dr

and
∫

Bq ( π
2 )

| fε |p
tanp rq

dV = Vol(SN−1)
∫ π−ε

π
2

Hp
(π − rq

ε

)
(tan(π − rq)−N(sin(π − rq)N−1dr

= Vol(SN−1)
∫ π

2

ε
Hp

( rq

2ε

)
(tanrq)

−N(sinrq)
N−1dr

� Vol(SN−1)
∫ π

2

2ε
(tanrq)−N(sin rq)N−1dr.

Therefore
∫

SN

| fε |p
tanp rq

dV � 2Vol(SN−1)
∫ π

2

2ε
tanrq)−N(sinrq)N−1dr.

Next we want to evaluate∫
SN

|∇ fε |pdV =
∫

Bq( π
2 )
|∇ fε |pdV +

∫
Bq ( π

2 )
|∇ fε |pdV.

A straightforward computation yields
∫

Bq( π
2 )
|∇ fε |pdV

=Vol(SN−1)
∫ π

2

ε

∣∣∣1ε H ′
( rq

ε

)
(tanrq)

p−N
p +

p−N
p

H
( rq

ε

)
(tanrq)

− N
p sec2 rq

∣∣∣p
(sin rq)N−1dr

=Vol(SN−1)
∫ 2ε

ε

∣∣∣1ε H ′
(rq

ε

)
(tanrq)

p−N
p +

p−N
p

H
(rq

ε

)
(tanrq)

− N
p (1+ tan2 rq)

∣∣∣p

× (sinrq)N−1dr

+Vol(SN−1)
( p−N

p

)p ∫ π
2

2ε
H

(rq

ε

)
(tanrq)

− N
p (1+ tan2 rq)

∣∣∣p
(sinrq)N−1dr

�Vol(SN−1)
ε p

∫ 2ε

ε

∣∣∣H ′
( rq

ε

)∣∣∣p(tanrq)p−N(sinrq)N−1dr

+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ 2ε

ε
H

(rq

ε

)
(tanrq)−N(sinrq)N−1dr

+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ 2ε

ε
H

(rq

ε

)
(tanrq)−N+2p(sin rq)N−1dr
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+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ π
2

2ε
H

( rq

ε

)
(tanrq)−N(sinrq)N−1dr

+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ π
2

2ε
H

( rq

ε

)
(tanrq)−N+2p(sinrq)N−1dr

�Vol(SN−1)
ε p

(
max
t∈[0,2]

H ′(t)
)p ∫ 2ε

ε
rp−1
q dr

+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ 2ε

ε
(tanrq)−N(sin rq)N−1dr

+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ 2ε

ε
(tanrq)−N+2p(sin rq)N−1dr+Vol(SN−1)

( p−N
p

)p

×
∫ π

2

2ε
(tanrq)−N(sinrq)N−1dr+Vol(SN−1)

( p−N
p

)p ∫ π
2

2ε
(tanrq)−N+2p(sinrq)N−1dr

=
2p−1

p
Vol(SN−1)

(
max
t∈[0,2]

H ′(t)
)p

+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ π
2

ε
(tanrq)−N(sinrq)N−1dr

+Vol(SN−1)
( p−N

p

)p ∫ π
2

ε
(tanrq)−N+2p(sinrq)N−1dr.

Similarly, we compute
∫

Bq ( π
2 )
|∇ fε |pdV

�2p−1
p

Vol(SN−1)
(

max
t∈[0,2]

H ′(t)
)p

+Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ π
2

ε
(tanrq)

−N(sin rq)
N−1dr

+Vol(SN−1)
( p−N

p

)p ∫ π
2

ε
(tanrq)

−N+2p(sin rq)
N−1dr

and then
∫

SN
|∇ fε |pdV �2(2p−1)

p
Vol(SN−1)

(
max
t∈[0,2]

H ′(t)
)p

+2Vol(SN−1)
∣∣∣ p−N

p

∣∣∣p ∫ π
2

ε
(tanrq)−N(sinrq)N−1dr

+2Vol(SN−1)
( p−N

p

)p ∫ π
2

ε
(tanrq)−N+2p(sinrq)N−1dr.

Since fε (r) can be approximated by smooth functions on the sphere S
N , it follows

that

inf
f∈C∞(SN)\{0}

∫
SN |∇ f |pdV +

(
N−p

p

)p−1 ∫
SN

| f |p
sinp−2 rq

dV
∫
SN

| f |p
| tanrq|p dV
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�

∫
SN |∇ fε |pdV +

(
N−p

p

)p−1 ∫
SN

| fε |p
sinp−2 rq

dV
∫
SN

| fε |p
| tan rq|p dV

�
2(2p−1)

p Vol(SN−1)
(

maxt∈[0,2] H
′(t)

)p

2
∫ π

2
2ε (tanrq)−N(sinrq)N−1dr

+
2
∣∣∣ p−N

p

∣∣∣p ∫ π
2

ε (tanrq)−N(sinrq)N−1dr

2
∫ π

2
2ε (tanrq)−N(sinrq)N−1dr

+
2
(

p−N
p

)p ∫ π
2

ε (tanrq)−N+2p(sinrq)N−1dr

2
∫ π

2
2ε (tanrq)−N(sinrq)N−1dr

+

(
π2

4 − ε2
)

2
∫ π

2
2ε (tanrq)−N(sinrq)N−1dr

=:I + II + III + IV.

Passing to the limit as ε → 0+ gives

lim
ε→0+

∫ π
2

2ε
(tanrq)−N(sinrq)N−1dr = +∞.

Applying L’Hopital rule we have

lim
ε→0+

∫ π
2

ε (tanrq)−N(sin rq)N−1dr
∫ π

2
2ε (tanrq)−N(sin rq)N−1dr

= 1 and lim
ε→0+

∫ π
2

ε (tanrq)−N+2p(sinrq)N−1dr
∫ π

2
2ε (tanrq)−N(sinrq)N−1dr

= 0.

Thus, I ≡ 0, II ≡ 0 and IV ≡ 0, and then

inf
f∈C∞(SN)\{0}

∫
SN |∇ f |pdV +

(
N−p

p

)p−1 ∫
SN

| f |p
sinp−2 rq

dV
∫
SN

| f |p
| tan rq|p dV

�
∣∣∣ p−N

p

∣∣∣p
.

This implies that the constant
(N− p

p

)p
of the inequality (2) (resp. (3)) is sharp and

the proof is therefore complete. �

3. Uncertainty principle inequality

The classical uncertainty principle as introduced in quantum mechanics says the
position and momentum of a particle cannot be determined exactly at the same time
but only with an ’uncertainty’. The uncertainty inequality on R

N can be stated in the
following way

(∫
RN

|x|2| f (x)|2dx
)(∫

RN
|∇ f (x)|2dx

)
�

(N−2
2

)2(∫
RN

| f (x)|2dx
)2

for all f ∈ L2(RN) with inequality being attained when f is a Gaussian like function
f (x) = Aexp(−λ |x|2) for some A ∈ R and λ > 0.
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In [9], the authors proved Heisenberg uncertainty principle inequalities on com-
plete noncampact Riemannian maifolds and determined an explicit constant in the case
of hyperbolic space. In [1] we derived an analogue of these inequality on the sphere. At
present we shall apply our hardy type inequalities to derive a new form in the following
proposition.

PROPOSITION 1. Let the assumptions of Theorem 1 hold. Then there holds the
following inequality for all functions f ∈C∞(SN)

(∫
SN

| f |p| tand(x,ξ )q|dV
)p/q(∫

SN
|∇ f |pdV +A(N, p)

∫
SN

| f |p
(sinp−2 d(x,ξ )

dV
)

�
(N− p

p

)p(∫
SN

| f |pdV
)p

,

(4)

where p and q are Hölders conjugate, that is, 1/p+1/q = 1 .

Proof. By Hölder’s inequality, we have

∫
SN

| f |p
tanp d(x,ξ )

dV �
(∫

SN
| f |pdV

)p(∫
SN

| f |p| tand(x,ξ )q|dV
)−p/q

, (5)

where 1/p+ 1/q = 1. Combining (5) and the Hardy type inequality (2) (or (3)) we
obtain

C
∫

SN

| f |p
(sinp−2 d(x,ξ )

dV +
∫

SN
|∇ f |pdV

�
(N− p

p

)p(∫
SN

| f |pdV
)p(∫

SN
| f |p| tand(x,ξ )q|dV

)−p/q

from where the result follows at once. �

4. Eigenvalue of the p -Laplacian

Define a p -energy on S
N

Ep( f ) :=
∫
SN |∇ f |pdV∫
SN | f |pdV

whose infimum is the first nonzero eigenvalue, λ ∗
p , of the p -Laplacian

Δp := div(|∇ f |p−2∇ f ) . Thus λ ∗
p = infEp( f ) subject to the constraint

∫
SN | f |p−2 f dV =

0 with infimum taken over all f ∈ W 1,p(SN) . It is well known that λ ∗
p satisfies the

Euler-Langrage equation

Δp f = −λ ∗
p | f |p−2 f on S

N
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with f being the associated eigenfunction. λ ∗
p has been computed explicitly to be

λ ∗
p = N when p = 2 and λ ∗

p �
(

N−1
p−1

) p
2

for the case p � 2 [12].

We derive the following corollary from Theorem 1.

COROLLARY 1. Let the assumptions of Theorem 1 hold. Then, we have

p[(N− p)p−1 + λ ∗
p pp−1]

(N− p)p � inf
f∈C∞(SN)\{0}

∫
SN | f |p cosp d(x,q)dV∫
SN | f |p sin2 d(x,q)dV

, (6)

for 2 � p < N and

p[(N− p)p−1 + λ ∗
p pp−1]

(N− p)p � inf
f∈C∞(SN)\{0}

∫
SN | f |p cosp d(x,q)dV∫
SN | f |p sinp d(x,q)dV

, (7)

for 1 < p < 2 .

Proof. For the case 1 < p < 2. By (3) of Theorem 1, we have

(N− p
p

)p−1
+ inf

f∈C∞(SN)\{0}
Ep( f ) �

(N− p
p

)p
inf

f∈C∞(SN )\{0}

∫
SN

| f |p
tanp d(x,q)dV∫

SN | f |pdV
.

Replacing f by f sind(x,q) in the last equation we have

(N− p
p

)p−1
+ λ ∗

p �
(N− p

p

)p
inf

f∈C∞(SN )\{0}

∫
SN | f |p cosp d(x,q)dV∫
SN | f |p sinp d(x,q)dV

,

from where (7) which is the desired result follows.
For the case P � 2. By (2) of Theorem 1, we have

(N− p
p

)p−1
+ inf

f∈C∞(SN)\{0}

∫
SN |∇ f |pdV∫

SN
| f |p

sinp−2 d(x,q)
dV

�
(N− p

p

)p
inf

f∈C∞(SN)\{0}

∫
SN

| f |p
tanp d(x,q)dV

∫
SN

| f |p
sinp−2 d(x,q)

dV
.

One can show that
∫

SN

| f |p
sinp−2 d(x,q)

dV �
∫

SN
| f |pdV, p � 2

and then write

(N− p
p

)p−1
+ inf

f∈C∞(SN)\{0}
Ep( f ) �

(N− p
p

)p
inf

f∈C∞(SN )\{0}

∫
SN

| f |p
tanp d(x,q)dV

∫
SN

| f |p
sinp−2 d(x,q)

dV
.
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Replacing f by f sind(x,q) and using λ ∗
p = infEp( f ) in the last equation, we have

(N− p
p

)p−1
+ λ ∗

p �
(N− p

p

)p
inf

f∈C∞(SN )\{0}

∫
SN | f |p cosp d(x,q)dV∫
SN | f |p sin2 d(x,q)dV

,

from where (6) follows. �

REMARK 2. When p = 2 the inequality (6) (resp. (7)) reduces to [19, Corollary].
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