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COMPARISONS BETWEEN LARGEST AND SMALLEST

ORDER STATISTICS FROM PARETO DISTRIBUTIONS

JIE LING AND LONGXIANG FANG ∗

(Communicated by J. Pečarić)

Abstract. In the paper, we discuss the problem of the stochastic comparisons of the largest and
smallest order statistics from independent heterogeneous Pareto random variables with different
scale and shape parameters. We study the reversed hazard rate order of smallest order statis-
tics, usual stochastic order of the largest order statistics of type I in the sense of multivariate
chain majorization. Furthermore, we investigat hazard rate order of smallest order statistics,
usual stochastic order of the largest order statistics of type II in the sense of multivariate chain
majorization and majorization orders respectively.

1. Introduction and preliminaries

Pareto distributions are the most popular models in finance economics and related
areas. Firstly, we introduce two of the most popular Pareto distributions: the Pareto
distribution of type I and the Pareto distribution of type II. A Pareto random variable
of type I with shape parameter a and scale parameter b denoted by PI(a,b) has the
probability density and cumulative distribution by

f (x) =
a
b
(
x
b
)−a−1 and F(x) = 1− (

x
b
)−a,

respectively, for x > b > 0 and a > 0. A Pareto random variable of type II with shape
parameter a and scale parameter b denoted by PII(a,b) has the probability density
and cumulative distribution by

f (x) =
a
b
(1+

x
b
)−a−1 and F(x) = 1− (1+

x
b
)−a,

respectively, for x > 0,b > 0 and a > 0. Pareto distribution of type I and type II are
commonly used to model random variables like income, risk and price. Some properties
of Pareto distribution of type I and type II can be studied in Arnold (1985). And the
maximum likelihood estimate for the Pareto distributions also can be seen in Grimshaw
(1993).
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Secondly, we recall some notions of stochastic orders and majorizations. Let X
(Y ) be a univariate random variable with cumulative distribution function F (G), sur-
vival function F (G ), density function f (g ) , hazard rate function hF(= f/F) (hG(=
g/G) ), reverse hazard rate function r̃F(x) = ( f/F) ( r̃G(x) = (g/G)), respectively.
We say that Y is smaller than X in the usual stochastic order, denoted by X �st Y , if
F(x) � G(x) for all x ; in the hazard rate order, denoted by X �hr Y , if hF(x) � hG(x)
for all x ; in the reversed hazard rate order, denoted by X �rh Y , if r̃F(x) � r̃G(x) for
all x . Vector majorization is a very interesting and useful tool in statistics by sorting all
components of vector in nondecreasing order. Let λ(1) � . . . � λ(n) and λ ∗

(1) � . . . � λ ∗
(n)

denote ordered components corresponding to two real vectors λ = (λ1, . . . ,λn) and
λ ∗ = (λ ∗

1 , . . . ,λ ∗
n ) , respectively. Then, λ ∗ is said to be majorized by λ , denoted by

λ �m λ ∗ , if
k

∑
i=1

λ(i) �
k

∑
i=1

λ ∗
(i)

for k = 1,2, . . . ,n−1, and
n
∑
i=1

λi =
n
∑
i=1

λ ∗
i . A real valued f defined on a set A ∈ Rn is

said to be Schur-convex(Schur-concave) on A if

x �m y on A ⇒ f (x) � (�) f (y).

Last, we present the definition of multivariate chain majorization based on matrices.
Let A = {ai j} and B = {bi j} be two m× n matrices. Then, A is said to chain ma-
jorize B (denoted by A � B) if there exists a finite set of n× n T-transform matrices
Tw1 , . . . ,Twk such that B = ATw1Tw2 . . .Twk . For more details on stochastic orders and
majorizations, the readers may refer to Shaked and Shanthikumar(2007), Li and Li
(2013) and Marshall, Olkin and Arnold (2011).

Order statistics have a remarkable contribution in statistics, applied probability
theory, operations research, auction theory and so on. Let X1:n � X2:n � . . . � Xn:n

denote the order statistics corresponding to the random variables X1,X2, . . . ,Xn . Some
work on the stochastic comparisons for independent and non-identically distributed ran-
dom variables we can learn in the following papers: Torrado (2015), Li and Li (2015),
Fang and Zhang (2012, 2013) and so on. In this paper, we will utilize tool of multi-
variate chain majorization to investigate stochastic comparisons of smallest and largest
order statistics from Pareto distributions with different scale and shape parameters.

Let

Sn =
{

(x,y) =
(

x1, . . . ,xn

y1, . . . ,yn

)
: xi > 0,y j > 0 and (xi − x j)(yi − y j) � 0, i, j = 1, . . . ,n

}

Tn =
{

(x,y) =
(

x1, . . . ,xn

y1, . . . ,yn

)
: xi � 1,y j > 0 and (xi − x j)(yi − y j) � 0, i, j = 1, . . . ,n

}
THEOREM 1.1. Let φ : R+4 → R+ be a differentiable function, which satisfies

φ(A) � (�)φ(B) for all A,B such that A ∈ S2(T2) and A � B (1.1)
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if and only if
i) φ(A) = φ(AΠ) for all permutation matrices Π;

ii)
2
∑
i=1

(aik −ai j)[φik(A)−φi j(A)] � (�)0 for all j,k=1,2, where φi j(A) = ∂φ(A)/∂ai j .

THEOREM 1.2. The function φn : R+2n → R+ be defined as

φn(A) =
n

∏
i=1

ψ(a1i,a2i),

where ψ : R+2 → R+ be a differentiable function. Assume that φ2 satisfies in (1.1).
Then A ∈ Sn(Tn) and B = ATw , we have φn(A) � φn(B) .

THEOREM 1.3. The function φ ′
n : R+2n → R+ be defined as

φ
′
n(A) =

n

∑
i=1

ψ(a1i,a2i),

where ψ : R+2 → R+ be a differentiable function. Assume that φ ′
2(A) satisfies in (1.1).

Then A ∈ Sn(Tn) and B = ATw , we have φ ′
n(A) � φ ′

n(B) .

REMARK 1.1. For the sake of conciseness, we are not presented the proofs of
Theorems 1.1-1.3, since that of are similar to the proofs of Theorems 2-3 in Balakrish-
nan, Haidari and Masoumifared (2014).

2. Main results

In order to prove the main results, we need the following two lemmas.

LEMMA 2.1. Let the function ω : (0,∞)× [1,∞) be defined as

ω(a,t) =
lnt

ta−1
.

Then,

(i) for each t � 1,ω(a,t) is decreasing with respect to a;

(ii) for each a > 0,ω(a,t) is decreasing with respect to t .

Proof.

(i) For each t � 1, we can obtain

(ta−1)2 ∂ω(a,t)
∂a

= −ta(ln t)2 � 0,

which implies that ω(a,t) is decreasing with respect to a .
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(ii) For each a > 0, it is easy to show that

(ta−1)2 ∂ω(a,t)
∂ t

= t−1(ta−1)−ata−1 ln t

= t−1(ta−1−ata ln t).

Now, we let u(t) = ta−1−ata ln t,t � 1. Then, we have

∂u(t)
∂ t

= ata−1−ata−1−a2ta−1 ln t

= −a2ta−1 ln t � 0.

Therefore, u(t)� u(1) = 0, and we can get ∂ω(a,t)
∂ t � 0. So, ω(a,t) is decreasing

with respect to t . �
LEMMA 2.2. Let the function ψ : [1,∞)× [1,∞) be defined as

ψ(a,t) =
at

ta−1
.

Then,

(i) for each t � 1 , ψ(a,t) is decreasing with respect to a;

(ii) for each a � 1 , ψ(a,t) is decreasing with respect to t .

Proof.

(i) For each t � 1, we have

(ta −1)2 ∂ψ(a,t)
∂a

= t(ta−1)−ata+1 lnt

= ta+1− t−ata+1 ln t

= t(ta−1−ata ln t).

Now, we let u(a,t) = ta−1−ata lnt,a � 1. Then, we have

∂u(a,t)
∂a

= −ata(ln t)2 � 0.

So, u(a, t) � u(1,t) = t − 1− t ln t, and ∂u(1,t)
∂ t = − ln t � 0, that is, u(1,t) �

u(1,1) = 0. Therefor u(a,t) � 0, that ∂ψ(a,t)
∂a � 0. Thus, ψ(a, t) is decreasing

with respect to a .

(ii) For each a � 1, we get

(ta −1)2 ∂ψ(a,t)
∂ t

= a(ta−1)−a2ta

= ata−a−a2ta

= a(ta(1−a)−1)� 0.

Thus, ψ(a, t) is decreasing with respect to t . �
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THEOREM 2.1. Let X1,X2 be independent random variables with Xi ∼ PI(ai,bi),
i = 1,2. Further, let Y1,Y2 be another set of independent random variables with Yi ∼

PI(ci,di), i = 1,2. Then, for

(
a1 a2

b1 b2

)
∈ S2 , we have

(
a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
⇒ Y1:2 �rh X1:2.

Proof. The reversed hazard rate function of X1:2 is, for x � max(b1,b2) ,

r̃X1:2(x) =
( a1

x + a2
x )( x

b1
)−a1( x

b2
)−a2

1− ( x
b1

)−a1( x
b2

)−a2
.

So we can know that the function r̃X1:2(x) is permutation invariant in (ai,bi)
′
st ,

and so condition (i) of Theorem 1.1 is satisfied. Next, we have to show that condition
(ii) of Theorem 1.1 also holds.

Obviously, the partial derivatives of r̃X1:2(x) with respect to ai and bi are,(
1− (

x
b1

)−a1(
x
b2

)−a2

)2 ∂ r̃X1:2(x)
∂ai

=(
x
b1

)−a1(
x
b2

)−a2

(
1
x
− (

a1

x
+

a2

x
) ln

x
bi

− 1
x
(

x
b1

)−a1(
x
b2

)−a2)
)

and (
1− (

x
b1

)−a1(
x
b2

)−a2

)2 ∂ r̃X1:2(x)
∂bi

= (
a1

x
+

a2

x
)(

x
b1

)−a1(
x
b2

)−a2
ai

bi
,

respectively.

For fixed x � max(b1,b2) , let us define the function ϕ(a,b) as follows,

ϕ(a,b) =(a1−a2)(
∂ r̃X1:2(x)

∂a1
− ∂ r̃X1:2(x)

∂a2
)

+ (b1−b2)(
∂ r̃X1:2(x)

∂b1
− ∂ r̃X1:2(x)

∂b2
)

sign
= (a1−a2) ln

b1

b2
+(b1−b2)(

a1

b1
− a2

b2
).

The assumption that (a,b) ∈ S2 implies that (a1−a2)(b1−b2) � 0. This means
that a1 � a2 > 0 and 0 < b1 � b2 , or 0 < a1 � a2 and b1 � b2 > 0. We present the
proof only for the case when a1 � a2 > 0 and 0 < b1 � b2 , since the proof for the other
case is quite similar.
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According to the assumption a1 � a2 > 0 and 0 < b1 � b2 , for x � max(b1,b2) =
b2 , we have

a1

b1
� a2

b1
� a2

b2
.

So, we obtain ϕ(a,b)� 0. By Theorem 2.1, r̃X1:2(x)� r̃Y1:2(x) is hold, that is, Y1:2(x)�rh

X1:2(x) . �
THEOREM 2.2. Let X1,X2 be independent random variables with Xi ∼ PI(ai,bi),

i = 1,2. Further, let Y1,Y2 be another set of independent random variables with Yi ∼

PI(ci,di), i = 1,2. Then, for

(
a1 a2

b1 b2

)
∈ T2 , we have

(
a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
⇒ X2:2 �st Y2:2.

Proof. The distribution function of X2:2 is given by, for x � max(b1,b2) ,

FX2:2(x) =
2

∏
i=1

[1− (
x
bi

)−ai ].

We can know that the function FX2:2(x) is permutation invariant in (ai,bi)
′
st , and so

condition (i) of Theorem 1.1 is satisfied. Next, we have to show that condition (ii) of
Theorem 1.1 also holds. For fixed x � max(b1,b2) , let us define the function ϕ(a,b)
as follows:

ϕ(a,b) = ϕ1(a,b)+ ϕ2(a,b),

where

ϕ1(a,b) = (a1−a2)(
∂FX2:2(x)

∂a1
− ∂FX2:2(x)

∂a2
), (2.1)

and

ϕ2(a,b) = (b1−b2)(
∂FX2:2(x)

∂b1
− ∂FX2:2(x)

∂b2
). (2.2)

The assumption that (a,b) ∈ T2 implies that (a1−a2)(b1 −b2) � 0. This means
that a1 � a2 � 1 and 0 < b1 � b2 , or 1 � a1 � a2 and b1 � b2 > 0. We present the
proof only for the case when a1 � a2 � 1 and 0 < b1 � b2 , since the proof for the other
case is quite similar.

The partial derivatives of FX2:2(x) with respect to ai and bi are

∂FX2:2(x)
∂ai

= FX2:2(x) ·
( x

bi
)−ai ln x

bi

1− ( x
bi

)−ai
, (2.3)

and
∂FX2:2(x)

∂bi
= −1

x
FX2:2(x) ·

ai( x
bi

)1−ai

1− ( x
bi

)−ai
, (2.4)

respectively.
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Upon using (2.3) in (2.1), we get

ϕ1(a,b) = FX2:2(x)(a1 −a2)
(

ω(a1,
x
b1

)−ω(a2,
x
b2

)
)

.

From Lemma 2.1, it follows that ω(a, x
b ) is decreasing with respect to a for fixed

x
b , and is decreasing with respect to x

b for fixed a .
Therefore, we can conclude that

ω(a1,
x
b1

) � ω(a2,
x
b1

) � ω(a2,
x
b2

),

which in turn implies
ϕ1(a,b) � 0.

On the other hand, upon using (2.4) in (2.2), we get

ϕ2(a,b) = −1
x
FX2:2(x)(b1 −b2)[ψ(a1,

x
b1

)−ψ(a2,
x
b2

)].

From Lemma 2.2, it follows that ψ(a, x
b ) is decreasing with respect to a for fixed

x
b , and is decreasing with respect to x

b for fixed a . Therefore, we can conclude that

ψ(a1,
x
b1

) � ψ(a1,
x
b2

) � ψ(a2,
x
b2

),

which in turn implies
ϕ2(α,λ ) � 0.

So we get ϕ(a,b) � 0, condition (ii) of Theorem 1.1 is satisfied, and this com-
pletes the proof of the theorem. �

THEOREM 2.3. Let X1,X2 be independent random variables with Xi ∼ PII(ai,bi),
i = 1,2 . Further, let Y1,Y2 be another set of independent random variables with

Yi ∼ PII(ci,di), i = 1,2 . Then, for

(
a1 a2

b1 b2

)
∈ S2 , we have

(
a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
⇒ Y1:2 �hr X1:2.

Proof. The hazard rate function of X1:2 is, for x > 0,

hX1:2(x) =
2

∑
i=1

ai

x+bi
.

So we can know that the function hX1:2(x) is permutation invariant in (ai,bi)
′
st ,

and so condition (i) of Theorem 1.1 is satisfied. Next, we have to show that condition
(ii) of Theorem 1.1 also holds.
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Obviously, the partial derivatives of hX1:2(x) with respect to ai and bi are,

∂hX1:2(x)
∂ai

=
1

x+bi
,

and
∂hX1:2(x)

∂bi
= − ai

(x+bi)2 ,

respectively.

For fixed x > 0, let us define the function ϕ(a,b) as follows,

φ(a,b) = (a1−a2)(
1

x+b1
− 1

x+b2
)+ (b1−b2)

(
− a1

(x+b1)2 +
a2

(x+b2)2

)
.

The assumption that (a,b) ∈ S2 implies that (a1−a2)(b1−b2) � 0. This means
that a1 � a2 > 0 and 0 < b1 � b2 , or 0 < a1 � a2 and b1 � b2 > 0. We present the
proof only for the case when a1 � a2 > 0 and 0 < b1 � b2 , since the proof for the other
case is quite similar.

According to the assumption a1 � a2 > 0 and 0 < b1 � b2 , for x > 0, we have

1
x+b1

� 1
x+b2

,

and a1

(x+b1)2 � a2

(x+b2)2 .

we can easily obtain that φ(a,b) � 0. By Theorem 1.1, hX1:2(x) � hY1:2(x) is hold, that
is, Y1:2(x) �hr X1:2(x) . �

We can illustrate the results in Theorem 2.1, 2.2 and 2.3 by the following examples.

EXAMPLE 2.1. Let X1,X2 be independent random variables with Xi ∼ PI(ai,bi),
i = 1,2. Further, let Y1,Y2 be another set of independent random variables with Yi ∼
PI(ci,di), i = 1,2. Then,

(i) Set

(
a1 a2

b1 b2

)
=
(

5 4
3 6

)
∈ S2 and

(
c1 c2

d1 d2

)
=
(

4.44 4.56
4.68 4.32

)
.

Consider the following T-transform matrices:

T0.2 = 0.2

(
1 0
0 1

)
+0.8

(
0 1
1 0

)
and T0.6 = 0.6

(
1 0
0 1

)
+0.4

(
0 1
1 0

)
.

So, we have

(
c1 c2

d1 d2

)
=
(

a1 a2

b1 b2

)
T0.2T0.6 , implies that(

a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
.

Therefore from Theorem 2.1, we obtain that Y1:2 �rh X1:2 .
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(ii) Set

(
a1 a2

b1 b2

)
=
(

7 2
3 5

)
∈ T2 and

(
c1 c2

d1 d2

)
=
(

4.7 4.3
3.92 4.08

)
.

Consider the following T-transform matrices:

T0.3 = 0.3

(
1 0
0 1

)
+0.7

(
0 1
1 0

)
and T0.4 = 0.4

(
1 0
0 1

)
+0.6

(
0 1
1 0

)
.

So, we have

(
c1 c2

d1 d2

)
=
(

a1 a2

b1 b2

)
T0.3T0.4 , implies that

(
a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
.

Therefore from Theorem 2.2, we obtain that X2:2 �st Y2:2 .

EXAMPLE 2.2. Let X1,X2 be independent random variables with Xi ∼ PII(ai,bi),
i = 1,2. Further, let Y1,Y2 be another set of independent random variables with Yi ∼

PII(ci,di), i = 1,2. Then, Set

(
a1 a2

b1 b2

)
=
(

2 0.8
0.6 1

)
∈ S2 and(

c1 c2

d1 d2

)
=
(

1.208 1.592
0.864 0.736

)
.

Consider the following T-transform matrices:

T0.9 = 0.9

(
1 0
0 1

)
+0.1

(
0 1
1 0

)
and T0.3 = 0.3

(
1 0
0 1

)
+0.7

(
0 1
1 0

)
.

So, we have

(
c1 c2

d1 d2

)
=
(

a1 a2

b1 b2

)
T0.9T0.3 , implies that

(
a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
.

Therefore from Theorem 2.3, we obtain that Y1:2 �hr X1:2 .

In the following examples, we will show that the results in Theorem 2.1 and 2.3
may not hold if both matrices of parameters are not in the corresponding conditions.

EXAMPLE 2.3. Let X1,X2 be independent random variables with Xi ∼ PI(ai,bi),
i = 1,2. Further, let Y1,Y2 be another set of independent random variables with Yi ∼
PI(ci,di), i = 1,2. Then,

Set

(
a1 a2

b1 b2

)
=
(

1 2
6 12

)
and

(
c1 c2

d1 d2

)
=
(

1.7 1.3
10.2 7.8

)
.

We find that above both matrices are not in S2. Considering the following T-
transform matrices:
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T0.3 = 0.3

(
1 0
0 1

)
+0.7

(
0 1
1 0

)
, we have

(
c1 c2

d1 d2

)
=
(

a1 a2

b1 b2

)
T0.3 , implies that(

a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
.

On the other hand, by calculating, we have

r̃X1:2(15) = 0.069, r̃Y1:2(15) = 0.057.

Thus, which means that Y1:2 �rh X1:2 .

EXAMPLE 2.4. Let X1,X2 be independent random variables with Xi ∼ PII(ai,bi),
i = 1,2. Further, let Y1,Y2 be another set of independent random variables with Yi ∼
PII(ci,di), i = 1,2. Let(

a1 a2

b1 b2

)
=
(

3 2
4 1

)
and

(
c1 c2

d1 d2

)
=
(

2.4 2.6
2.2 2.8

)
.

We find that above both matrices are not in S2. Considering the following T-
transform matrices:

T0.4 = 0.4

(
1 0
0 1

)
+0.6

(
0 1
1 0

)
, we have

(
c1 c2

d1 d2

)
=
(

a1 a2

b1 b2

)
T0.4 , implies that(

a1 a2

b1 b2

)
�
(

c1 c2

d1 d2

)
.

On the other hand, by calculating, we have

hX1:2(6) = 0.5857, hY1:2(6) = 0.5881,

Thus, which means that Y1:2 �hr X1:2 .
Now, we can extend the special form of Theorems 2.1-2.3 to the case of n > 2.

THEOREM 2.4. Let X1, . . . ,Xn be independent random variables with Xi ∼ PI(ai,bi),
i = 1, . . . ,n. Further, let Y1, . . . ,Yn be independent random variables with Yi ∼ PI(ci,di),
i = 1, . . . ,n.
Assume that (

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Sn

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw.

Then, we have Y1:n �st X1:n .

Proof. For fixed x � max(b1, . . .bn) , let φn(a,b)= FX1:n(x) and ψ(a,b)= ( x
bl

)−al .

Then, we have φn(a,b) =
n
∏
l=1

ψ(al,bl) . According to Theorem 3.1, we know φ2(a,b)

is satisfied in (1.1) and according to the fact that reversed hazard rate order can imply
usual stochastic order. Now, the desired result follows from Theorem 1.2. �
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THEOREM 2.5. Let X1, . . . ,Xn be independent random variables with Xi ∼ PI(ai,bi),
i = 1, . . . ,n. Further, let Y1, . . . ,Yn be independent random variables with Yi ∼ PI(ci,di),
i = 1, . . . ,n. Assume that (

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Tn

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw.

Then, we have Xn:n �st Yn:n .

Proof. For fixed x � max(b1, . . .bn) , let φn(a,b) = FXn:n(x) and ψ(a,b) = 1−
( x

bl
)−al . Then, we have φn(a,b) =

n
∏
l=1

ψ(al,bl) . According to Theorem 2.2, we know

φ ′
2(a,b) is satisfied in (1.1). Now, the desired result follows from Theorem 1.2. �

THEOREM 2.6. Let X1, . . . ,Xn be independent random variables with Xi ∼ PI(ai,bi) ,
i = 1, . . . ,n. Further, let Y1, . . . ,Yn be independent random variables with Yi ∼ PII(ci,di),
i = 1, . . . ,n. Assume that (

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Sn

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw.

Then, we have Y1:n �hr X1:n .

Proof. For fixed x > 0, let φ ′
n(a,b) = hX1:n(x) and ψ(a,b) = al

x+bl
. Then, we have

φ ′
n(a,b) =

n
∑
l=1

ψ(al,bl) . According to Theorem 2.3, we know φ2(a,b) is satisfied in

(1.1). Now, the desired result follows from Theorem 1.3. �
Since the finite product of the T-transform matrices with the same structures is also

a T-transform matrix. So, we can obtain the following results.

COROLLARY 2.1. Let X1, . . . ,Xn be independent random variables with Xi ∼
PI(ai,bi), i = 1, . . . ,n. Further, let Y1, . . . ,Yn be another set of independent random
variables with Yi ∼ PI(ci,di), i = 1, . . . ,n. Assume that(

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Sn

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twk ,

where Twi , i = 1, . . . ,k have the same structures. Then, we have Y1:n �st X1:n.
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COROLLARY 2.2. Let X1, . . . ,Xn be independent random variables with Xi ∼
PI(ai,bi), i = 1, . . . ,n. Further, let Y1, . . . ,Yn be another set of independent random
variables with Yi ∼ PI(ci,di), i = 1, . . . ,n. Assume that(

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Tn

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twk ,

where Twi , i = 1, . . . ,k have the same structures. Then, we have Xn:n �st Yn:n.

COROLLARY 2.3. Let X1, . . . ,Xn be independent random variables with Xi ∼
PII(ai,bi), i = 1, . . . ,n. Further, let Y1, . . . ,Yn be another set of independent random
variables with Yi ∼ PII(ci,di), i = 1, . . . ,n. Assume that(

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Sn

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twk ,

where Twi , i = 1, . . . ,k have the same structures. Then, we have Y1:n �hr X1:n.

Since the finite product of the T-transform matrices with different structures may
not be a T-transform matrix. For this case, we also have discussed and given the results.

THEOREM 2.7. Let X1, . . . ,Xn be independent random variables with Xi ∼ PI(ai,bi),
i = 1, . . . ,n. Further, let Y1, . . . ,Yn be another set of independent random variables with
Yi ∼ PI(ci,di), i = 1, . . . ,n. Assume that(

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Sn,

(
a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twi ∈ Sn, for i = 1, . . . ,k−1,

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twk .

Then, we have Y1:n �st X1:n .

Proof. Set

(
a( j)

1 . . . a( j)
n

b( j)
1 . . . b( j)

n

)
=
(

a1 . . . an

b1 . . . bn

)
Tw1 . . .Twj , j = 1, . . . ,k−1. Let

Z( j)
1 , . . . ,Z( j)

n , j = 1, . . . ,k−1, be the sets of independent random variables with Y ( j)
i ∼
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PI(a( j)
i ,b( j)

i ) , i = 1, . . . ,n and j = 1, . . . ,k−1. From the assumption of the theorem, it
follows that (

a( j)
1 . . . a( j)

n

b( j)
1 . . . b( j)

n

)
∈ Sn

for j = 1, . . . ,k−1.
Using these observations and the results of Theorem2.4, it follows that Y1:n �st Z(k−1)

1:n �st

. . . �st Z(1)
1:n �st X1:n . �

THEOREM 2.8. Let X1, . . . ,Xn be independent random variables with Xi ∼ PI(ai,bi),
i = 1, . . . ,n. Further, let Y1, . . . ,Yn be another set of independent random variables with
Yi ∼ PI(ci,di), i = 1, . . . ,n. Assume that(

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Tn,

(
a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twi ∈ Tn, for i = 1, . . . ,k−1,

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twk .

Then, we have Xn:n �st Yn:n .

THEOREM 2.9. Let X1, . . . ,Xn be independent random variables with Xi ∼
PII(ai,bi), i = 1, . . . ,n. Further, let Y1, . . . ,Yn be another set of independent random
variables with Yi ∼ PII(ci,di), i = 1, . . . ,n. Assume that(

a1 a2 . . . an

b1 b2 . . . bn

)
∈ Sn,

(
a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twi ∈ Sn, for i = 1, . . . ,k−1,

and (
c1 c2 . . . cn

d1 d2 . . . dn

)
=
(

a1 a2 . . . an

b1 b2 . . . bn

)
Tw1 . . .Twk .

Then, we have Y1:n �hr X1:n .

The proofs of Theorem 2.8 and Theorem 2.9 are similar to that of Theorem 3.7.

The following result we obtain usual stochastic order of the largest order statistics
from type II in the condition of majorization orders.
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THEOREM 2.10. Let X1, . . . ,Xn be independent random variables with Xi ∼
PII(ai,b), i = 1, . . . ,n. Further, let Y1, . . . ,Yn be independent random variables with
Yi ∼ PII(ci,b), i = 1, . . . ,n. Then (a1,a2, . . . ,an)�m (c1,c2, . . . ,cn) imples Xn:n �st Yn:n .

Proof. The distribution function of Xn:n is given by, for x > 0,

FXn:n(x) =
n

∏
i=1

[1− (1+
x
b
)−ai ].

From the condition of (a1,a2, . . . ,an)�m (c1,c2, . . . ,cn) , we only want to show FXn:n(x)
is Schur-concave in (a1,a2, . . . ,an) . The partial derivative of FXn:n(x) with respect to
ai is

∂FXn:n(x)
∂ai

= FXn:n(x) ·
(1+ x

b)−ai ln(1+ x
b )

1− (1+ x
b )−ai

.

Let

ϕ(x) = (ai −a j)
(

∂FXn:n(x)
∂ai

− ∂FXn:n(x)
∂a j

)
= FXn:n(x)(ai −a j)

(
ω(ai,1+

x
b
)−ω(a j,1+

x
b
)
)

.

From Lemma 2.1 we complete the proof. �
Lastly, we will illustrate the results of Theorems 2.7-2.9 by three numerical exam-

ples.

Example 2.5. Let X1,X2,X3 be independent randomvariables with Xi ∼ PI(ai,bi),
i = 1,2,3. Further, let Y1,Y2,Y3 be another set of independent random variables with
Yi ∼ PI(ci,di), i = 1,2,3.
Set (

a1 a2 a3

b1 b2 b3

)
=
(

6 4 1
2 3 5

)
∈ S3

and

(
c1 c2 c3

d1 d2 d3

)
=
(

4.14 2.72 4.14
3.04 3.92 3.04

)
.

Considering the following three T-transform matrices:

T0.3 =

⎛⎝1 0 0
0 0.3 0.7
0 0.7 0.3

⎞⎠ , T0.8 =

⎛⎝0.8 0.2 0
0.2 0.8 0
0 0 1

⎞⎠ , T0.5 =

⎛⎝0.5 0 0.5
0 1 0

0.5 0 0.5

⎞⎠ .

Then, we have (
a1 a2 a3

b1 b2 b3

)
T0.3 =

(
6 1.9 3.1
2 4.4 3.6

)
∈ S3,(

a1 a2 a3

b1 b2 b3

)
T0.3T0.8 =

(
5.18 2.72 3.1
2.48 3.92 3.6

)
∈ S3,
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(
c1 c2 c3

d1 d2 d3

)
=
(

a1 a2 a3

b1 b2 b3

)
T0.3T0.8T0.5.

So, the condition of Theorem 2.7 is satisfied which means that Y1:3 �st X1:3 .

EXAMPLE 2.6. Let X1,X2,X3 be independent random variables with Xi ∼ PI(ai,bi) ,
i = 1,2,3. Further, let Y1,Y2,Y3 be another set of independent random variables with
Yi ∼ PI(ci,di), i = 1,2,3.
Set (

a1 a2 a3

b1 b2 b3

)
=
(

5 4 2
2 6 8

)
∈ T3

and

(
c1 c2 c3

d1 d2 d3

)
=
(

3.17 3.17 4.66
6.58 6.58 2.94

)
.

Considering the following three T-transform matrices:

T0.35 =

⎛⎝1 0 0
0 0.35 0.65
0 0.65 0.35

⎞⎠ , T0.2 =

⎛⎝0.2 0 0.8
0 1 0

0.8 0 0.2

⎞⎠ , T0.5 =

⎛⎝0.5 0.5 0
0.5 0.5 0
0 0 1

⎞⎠ .

Then, we have (
a1 a2 a3

b1 b2 b3

)
T0.35 =

(
5 2.7 3.3
2 7.4 6.7

)
∈ T3,(

a1 a2 a3

b1 b2 b3

)
T0.35T0.2 =

(
3.64 2.7 4.66
5.76 7.4 2.94

)
∈ T3,(

c1 c2 c3

d1 d2 d3

)
=
(

a1 a2 a3

b1 b2 b3

)
T0.35T0.2T0.5.

So, the condition of Theorem 2.8 is satisfied which means that X3:3 �st Y3:3 .

EXAMPLE 2.7. Let X1,X2,X3 be independent random variables with Xi ∼
PII(ai,bi), i = 1,2,3. Further, let Y1,Y2,Y3 be another set of independent random vari-
ables with Yi ∼ PII(ci,di), i = 1,2,3.
Set (

a1 a2 a3

b1 b2 b3

)
=
(

0.8 0.3 0.1
0.6 1 2

)
∈ S3

and

(
c1 c2 c3

d1 d2 d3

)
=
(

0.326 0.458 0.416
1.523 1.069 1.008

)
.

Considering the following three T-transform matrices:

T0.3 =

⎛⎝0.3 0 0.7
0 1 0

0.7 0 0.3

⎞⎠ , T0.4 =

⎛⎝1 0 0
0 0.4 0.6
0 0.6 0.4

⎞⎠ , T0.9 =

⎛⎝0.9 0.1 0
0.1 0.9 0
0 0 1

⎞⎠ .
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Then, we have

(
a1 a2 a3

b1 b2 b3

)
T0.3 =

(
0.31 0.3 0.59
1.58 1 1.02

)
∈ S3,

(
a1 a2 a3

b1 b2 b3

)
T0.3T0.4 =

(
0.31 0.474 0.416
1.58 1.012 1.008

)
∈ S3,

(
c1 c2 c3

d1 d2 d3

)
=
(

a1 a2 a3

b1 b2 b3

)
T0.3T0.4T0.9.

So, the condition of Theorem 3.9 is satisfied which means that Y1:3 �hr X1:3 .
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