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Abstract. In this paper, we give some improvements on the Lp(0 < p < α) inequalities for
diffusion processes. We obtain smaller constants in the Lp inequalities and derive that the growth

rates of the constants, as p → 0+ , grows like O
(

1
pα

)
, instead of the exponential of 1

p . Finally,

we apply the improved inequalities to the Ornstein-Uhlenbeck processes, Bessel processes and
reflected Brownian motion with drift and get better constants.

1. Introduction

Diffusion processes are a class of stochastic processes with wide applications.
Many mathematical models in engineering and finance are related to diffusion pro-
cesses. In the applications, the Lp inequalities for diffusion processes are basic tools
and the constants in the inequalities are also important when the estimations should
be exact. Lp inequalities and Davis-type inequalities for diffusion processes have
been extensively studied for a long time. Gordon[5], Burkholder[2], Rosenkrantz and
Sawyer[13] and DeBlassie[3, 4] studied Lp inequalities for Bessel processes. Gra-
versen and Peskir [6, 7], Peskir and Shiryaev[10] and Botnikov[1] established Lp in-
equalities and Davis-type inequalities for Ornstein-Uhlenbeck processes and reflected
Brownian motion with drift. Yan and Zhu[15] introduced the condition S(γ,K1,K2) and
established Lp inequalities for diffusion processes satisfying the condition S(γ,K1,K2) .
The Lp(0 < p < α) inequalities established before are all based on the well-known
domination inequalities or domination principles, which established by Lenglart[8] and
improved by Yor [12, 16].

Diffusion processes satisfying the condition S(γ,K1,K2) are more general. They
contain Bessel processes, Ornstein-Uhlenbeck processes and reflected Brownian mo-
tion with drift and others as special cases. In this paper, we study the constants in the
Lp(0 < p< α) inequalities for diffusion processes satisfying the condition S(γ,K1,K2) .
We obtain smaller constants in the Lp inequalities and derive that the growth rates of

the constants, as p → 0+ , grows like O
(

1
pα

)
, instead of the exponential of 1

p .
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Let X = (Xt ,Ft )t�0 be a diffusion process given by

dXt = μ (Xt)dt + σ (Xt)dBt , X0 = x0, (1)

where B = (Bt)t�0 is a standard Brownian motion starting at zero and μ(x),σ(x) are
continuous functions.

If σ(x) > 0, for x �= 0 and there exist constants γ , K2 � K1 > 0 such that

K1|x|γ σ2(x) � |μ(x)| � K2|x|γσ2(x), −∞ < x < ∞, (2)

we say that the diffusion process X satisfies the condition S(γ,K1,K2) or μ(x) and
σ(x) satisfy the condition S(γ,K1,K2) .

Let f (x) be a positive function and g(x) be a positive increasing function. We
denote f (x) = O(g(x)) , as x → 0, if there exists a constant C > 0 such that

limsup
x→0

f (x)
g(x)

� C.

For a stochastic process X = (Xt)t�0 and a stopping time τ , we write

X∗
τ = sup

s�τ
|Xs|, X∗

∞ = sup
s<∞

|Xs|.

Let F(x) be the solution of the equation

σ2(x)
d2y
d2x

+2μ(x)
dy
dx

= 2ϕ(x) (3)

such that y(0) = 0,y′(0) = 0, where μ(x),σ(x),ϕ(x) are continuous functions on R
and ϕ(x) � 0.

For a nonnegative continuous function ϕ , define

Jt =
∫ t

0
ϕ (Xs)ds, t � 0,

then (Jt)t�0 is a continuous increasing process.
One of the main Lp inequalities established by Yan and Zhu[15] is the follow-

ing. Let X be a diffusion process given by (1), starting at zero such that the condition
S(γ,K1,K2) be satisfied and μ(x) � 0, for x � 0. Assume that ϕ satisfies the following
condition

N1|x|γ−1σ2(x) � |ϕ(x)| � N2|x|γ−1σ2(x)eN3|x|γ+1/γ+1,

with constants Ni > 0, (i = 1,2,3). If either Xt � 0 or the function F(x) is an even
function, then the following inequality

cp,γ

∥∥∥ln
1

1+γ (1+ Jτ)
∥∥∥

p
� ‖X∗

τ ‖p � Cp,γ

∥∥∥ln
1

1+γ (1+ Jτ)
∥∥∥

p
(4)

holds, for 0 < p < γ +1 and any stopping time τ .
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As in the theory of martingale inequalities, one interesting problem for Lp in-
equalities of diffusion processes is to find the best constants or the growth rates of the
constants in the inequalities as p → ∞ and p → 0+ . Since the Lp inequalities estab-
lished by the domination inequality are only the type of inequalities for 0 < p < α , we
study the growth rates of the constants as p → 0+ . Simple calculations show that all
the growth rates of the constants obtained by the approach of domination inequality are

1
cp,γ

= O
(
2

1
p

)
, Cp,γ = O

(
2

1
p

)
, p → 0+.

This approach yields only the exponential of 1
p estimate, for 1

cp,γ
and Cp,γ .

Recently, Ren and Shen[11] established an improved domination inequality. By
this inequality, we can show that the growth rates of the constants depend on the func-
tion ϕ and

1
cp,γ

= O

(
1

p
1

1+γ

)
, Cp,γ = O

(
1

p
1

1+γ

)
, p → 0+.

This gives us more information for the growth rates of the constants in the Lp

inequalities, as p → 0+.
Throughout this paper, we shall use the standard notions of general theory of

stochastic processes and thus consider stochastic processes with cadlag paths. We sup-
pose that (Ω,F , Ft ,P) is a filtered probability space with filtration (Ft)t�0 satisfy-
ing the usual conditions, B = (Bt)t�0 is a standard Brownian motion with B0 = 0. A
stochastic process A = (At)t�0 is called an increasing process if it is adapted to the fam-
ily (Ft) , whose paths are positive, increasing, finite and right continuous on [0,+∞) .
An adapted positive cadlag process X is called dominated by an adapted increasing
process A with A0 � 0, if

E(Xτ) � E(Aτ), (5)

for any bounded stopping time τ .
For a continuous increasing function H(x) from R+ to R+ with H(0) = 0, set

H̃(x) = H(x)+ x
∫ ∞

x

dH(u)
u

.

Ren and Shen established the following improved domination inequality.

LEMMA 1. Let X be an adapted positive cadlag process and be dominated by a
predictable increasing process A with X0 = A0 = 0 , H(x) be a continuous increasing
function from R+ to R+ with H(0) = 0 . Then for any stopping time τ and any 0 <
λ � 1, the following inequality holds

E [H (X∗
τ )] � E

[(
H + λ H̃

)(
Aτ
λ

)]
. (6)

Using this improved domination inequality, we give some improvements on the Lp

inequalities for diffusion processes and, as applications, obtain some new Lp inequali-
ties for the Ornstein-Uhlenbeck processes, Bessel processes and the reflected Brownian
motion with drift.
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2. Main results and proofs

Let F(x) be the solution of the equation (3)

σ2(x)
d2y
d2x

+2μ(x)
dy
dx

= 2ϕ(x), y(0) = 0,y′(0) = 0.

Then

F(x) =
∫ x

0
e
−∫ t

0
2μ(u)
σ2(u)

du
dt

∫ t

0

2ϕ(s)
σ2(s)

e
∫ s
0

2μ(u)
σ2(u)

du
ds. (7)

Since μ(x),σ(x),ϕ(x) are continuous functions on R and ϕ(x) � 0, F(x) is a
continuous increasing function on R+ with F(0) = 0.

If μ(x) is an odd fuction, σ2(x) and ϕ(x) are even functions, F(x) is an even
function.

Denote by H(x) = F−1(x) the inverse of F(x) on R+ . Let Hp(x) = [H(x)]p =
[F−1(x)]p , for p > 0. Then Hp(x) is a continuous increasing function from R+ to R+
with Hp(0) = 0 and for x � 0, p > 0

Hp[F(x)] = xp.

For x � 0, define the function H̃p(x) by

H̃p(x) = Hp(x)+ x
∫ ∞

x

dHp(u)
u

, p > 0.

We have the following inequality.

THEOREM 1. Let X be a diffusion process given by (1), starting at zero , F(x) be
the solution of the equation (3), μ(x),σ(x),ϕ(x) be continuous functions and ϕ(x)� 0 ,
Jt =

∫ t
0 ϕ (Xs)ds. If either Xt � 0 or the function F(x) is an even function and

H̃p(x) � CpHp(x), x � 0, (8)

for some p > 0, then for 0 < λ � 1

1
λCp +1

E [Hp (λJτ)] � E [(X∗
τ )p] � (λCp +1)E

[
Hp

(
Jτ

λ

)]
(9)

hold for any stopping time τ, where Cp is a constant.

Proof. Since F(x) is the solution of the equation (3), Xt � 0 or the function F(x)
is an even function, by Itô formula we have

F (|Xt |) = F (Xt) = F (X0)+
∫ t

0
ϕ (Xs)ds+

∫ t

0
σ (Xs)F ′ (Xs)dBs.

By the optional sampling theorem of martingale theory, we get

E [F (|Xτ |)] = E

[∫ τ

0
ϕ (Xs)ds

]
= E (Jτ) , (10)
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for any bounded stopping time τ . This shows that F (|Xt |) is dominated by Jt and Jt

is dominated by F (X∗
t ) . By Lemma 1, we have

E [(X∗
τ )p] = E [Hp (F(X∗

τ ))p] � E

[(
Hp + λ H̃p

)(
Jτ
λ

)]
� (λCp +1)E

[
Hp

(
Jτ
λ

)]
,

for 0 < λ � 1. By the same approach for Xt = λJt and At = λF (X∗
t ) in Lemma 1, we

have

E [Hp (λJτ)] � E
[(

Hp + λ H̃p

)
(F(X∗

τ ))
]

� (λCp +1)E [(X∗
τ )p] .

This completes the proof of Theorem 1. �
By Theorem 1, we can establish some Lp inequalities for diffusion processes sat-

isfying the inequality (8) and study the constants in these Lp inequalities as p → 0+ .

2.1. ϕ(x) = Nxν σ2(x)

THEOREM 2. Let X be a diffusion process given by (1), starting at zero, μ(x) and
σ(x) be continuous functions with x|μ(x)| = Kσ2(x), ϕ(x) = Nxν σ2(x)(ν � −1) , for
some constants K > 0, N > 0 and μ(x) � 0 for x � 0 or μ(x) � 0 and ν +1 > 2K.
Jt =

∫ t
0 ϕ (Xs)ds. If Xt � 0 or F(x) is even, then for 0 < p < 2+ ν and any stopping

time τ, we have

a
cp,ν

∥∥∥∥J
1

2+ν
τ

∥∥∥∥
p
� ‖X∗

τ ‖p � acp,ν

∥∥∥∥J
1

2+ν
τ

∥∥∥∥
p
, (11)

where a is an absolute constant and

cp,ν =
(

2+ ν
2+ ν − p

) 1
p

·
(

2+ ν
p

) 1
2+ν

= O

(
1

p
1

2+ν

)
, p → 0+.

Proof. Let F(x) be the solution of the equation (3)

σ2(x)
d2y
d2x

+2μ(x)
dy
dx

= 2ϕ(x),y(0) = y′(0) = 0.

For μ(x) � 0, from (7) we have

F(x) =
2N

(2K + ν +1)(2+ ν)
x2+ν ,

Hp =
(

(2K + ν +1)(2+ ν)
2N

) p
2+ν

x
p

2+ν , p > 0,

H̃p(x) =
2+ ν

2+ ν − p
Hp(x), 0 < p < 2+ ν.
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For μ(x) � 0 and ν +1 > 2K ,

F(x) =
2N

(ν −2K +1)(2+ ν)
x2+ν ,

Hp =
(

(ν −2K +1)(2+ ν)
2N

) p
2+ν

x
p

2+ν , p > 0,

H̃p(x) =
2+ ν

2+ ν − p
Hp(x), 0 < p < 2+ ν.

Let

a = max

{(
(2K + ν +1)(2+ ν)

2N

) 1
2+ν

,

(
(ν −2K +1)(2+ ν)

2N

) 1
2+ν

}
.

By Theorem 1, we obtain

E [(X∗
τ )p] � E

[(
λ

2+ ν
2+ ν − p

+1

)
·ap ·

(
Jτ
λ

) p
2+ν

]

= ap ·
(

λ
2+ ν

2+ ν − p
+1

)
·λ −p

2+ν E

(
J

p
2+ν

τ

)
.

Let

φp,ν(λ ) = λ
−p
2+ν

(
λ

2+ ν
2+ ν − p

+1

)
,

then φp,ν is strictly decreasing in (0, p
2+ν ) , and strictly increasing in ( p

2+ν ,1]. φp,ν
takes its minimum at λ = p

2+ν and yields the desired inequality

E [(X∗
τ )p] � ap · 2+ ν

2+ ν − p
·
(

2+ ν
p

) p
2+ν

E

(
J

p
2+ν

τ

)
.

For the left hand, by Theorem 1

E

(
ap · J

p
2+ν

τ

)
� λ

−p
2+ν

(
λ

2+ ν
2+ ν − p

+1

)
E [(X∗

τ )p] .

Take λ = p
2+ν , we get

apE

(
J

p
2+ν

τ

)
� 2+ ν

2+ ν − p
·
(

2+ ν
p

) p
2+ν

E [(X∗
τ )p] .

This completes the proof of Theorem 2. �

REMARK 1. Since

2+ ν
2+ ν − p

·
(

2+ ν
p

) p
2+ν

< φp,ν(1) =
4+2ν − p
2+ ν − p
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and when ν = 0, we have

2
2− p

·
(

2
p

) p
2

<
4− p
2− p

.

We obtain some constants smaller than the constants widely used.

2.2. N1|x|γ σ2(x) � ϕ(x) � N2|x|γ σ2(x)eN3|x|γ+1/γ+1

THEOREM 3. Let X be a diffusion process given by (1), starting at zero, μ(x)
and σ(x) be continuous functions satisfying the condition S(γ,K1,K2),N1|x|γσ2(x) �
ϕ(x) � N2|x|γ σ2(x)eN3|x|γ+1/γ+1 , for some constants γ > −1,Ki > 0(i = 1,2),Ni >
0(i = 1,2,3) and μ(x) � 0 , for x � 0 . Jt =

∫ t
0 ϕ (Xs)ds. If Xt � 0 or F(x) is even,

then for 0 < p < 2+ γ and any stopping time τ , we have

a1

cp,γ

∥∥∥∥ln
1

1+γ

(
1+ J

1+γ
2+γ
τ

)∥∥∥∥
p
� ‖X∗

τ ‖p � a2cp,γ

∥∥∥∥ln
1

1+γ

(
1+ J

1+γ
2+γ
τ

)∥∥∥∥
p
, (12)

where a1 and a2 are absolute constants and

cp,γ =
(

2+ γ
2+ γ − p

) 1
p

·
(

2+ γ
p

) 1
2+γ

= O

(
1

p
1

2+γ

)
, p → 0+.

Proof. Let F(x) be the solution of the equation (3). Since μ(x) and σ(x) satisfy
condition S(γ,K1,K2) and μ(x) � 0, for x � 0,

−K2x
γσ2(x) � μ(x) � −K1x

γσ2(x).

Yan and Zhu[15] proved that there exist constants ci > 0,di > 0(i = 1,2) depending
only on γ,Ki,Ni such that

c1

∫ x

0
t1+γed1t

1+γ
dt � F(x) � c2

∫ x

0
t1+γed2t

1+γ
dt (x � 0).

From this inequality, we can show that there exist constants η2 � η1 > 0 depending
only on γ such that(

eη1t
1+γ −1

) 1+γ
2+γ �

∫ x

0
t1+γed1t

1+γ
dt �

(
eη2t

1+γ −1
) 1+γ

2+γ

holds, for all x � 0. Thus there exist constants b2 � b1 > 0 depending only on γ,Ki,Ni

such that (
eb1t

1+γ −1
) 1+γ

2+γ � F(x) �
(
eb2t

1+γ −1
) 1+γ

2+γ
,

for x � 0. Hence, for x � 0 and 0 < p < ∞ , we have(
1
b2

) p
1+γ

ln
p

1+γ

(
1+ x

1+γ
2+γ

)
� Hp(x) �

(
1
b1

) p
1+γ

ln
p

1+γ

(
1+ x

1+γ
2+γ

)
. (13)
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For the functions of type

Hp(x) = A
p

1+γ ln
p

1+γ

(
1+Bx

1+γ
2+γ

)
,

for some constants A > 0,B > 0 and 0 < p < ∞. Let

Gp(x) =
x

Hp(x)

∫ ∞

x

dHp(u)
u

.

Elementary calculations show that

0 � Gp(x) � p
2+ γ − p

,

for all x � 0 and 0 < p < 2+ γ. Hence, we get

H̃p(x) = Hp(x)+ x
∫ ∞

x

dHp(u)
u

� 2+ γ
2+ γ − p

Hp(x), (14)

for all x � 0 and 0 < p < 2+ γ . By Theorem 1, for 0 < λ � 1, we have

E [(X∗
τ )p] � (λCp +1)E

[
Hp

(
Jτ
λ

)]

�
(

λ
2+ γ

2+ γ − p
+1

)
·
(

1
b1

) p
1+γ

E

⎡⎣ln
p

1+γ

⎛⎝1+
(

Jτ
λ

) 1+γ
2+γ

⎞⎠⎤⎦
= λ

−p
2+γ

(
2+ γ

2+ γ − p
+1

)
·
(

1
b1

) p
1+γ

E

[
ln

p
1+γ

(
1+ J

1+γ
2+γ
τ

)]
.

Let

a2 =
(

1
b1

) 1
1+γ

, φp,γ(λ ) = λ
−p
2+γ

(
λ

2+ γ
2+ γ − p

+1

)
,

then φp,γ takes its minimum at λ = p
2+γ and yields the desired inequality

E [(X∗
τ )p] � ap

2 ·
2+ γ

2+ γ − p
·
(

2+ γ
p

) p
2+γ

E

[
ln

p
1+γ

(
1+ J

1+γ
2+γ
τ

)]
.

For the left hand, by Theorem 1

E [Hp (λJτ)] � (λCp +1)E [(X∗
τ )p] .

From (13), we have(
1
b2

) p
1+γ

E

[
ln

p
1+γ

(
1+ J

1+γ
2+γ
τ

)]
� λ

−p
2+γ

(
2+ γ

2+ γ − p
+1

)
E [(X∗

τ )p] .

Let a1 =
(

1
b2

) 1
1+γ

and take λ = p
2+γ , we get

ap
1E

[
ln

p
1+γ

(
1+ J

1+γ
2+γ
τ

)]
� 2+ γ

2+ γ − p
·
(

2+ γ
p

) p
2+γ

E [(X∗
τ )p] .

This completes the proof of Theorem 3. �
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2.3. N1|x|γ−1σ2(x) � ϕ(x) � N2|x|γ−1σ2(x)eN3|x|γ+1/γ+1

As in the proof of Theorem 3, we can give the following theorem.

THEOREM 4. Let X be a diffusion process given by (1), starting at zero, μ(x) and
σ(x) be continuous functions satisfying the condition S(γ,K1,K2),N1|x|γ−1σ2(x) �
ϕ(x) � N2|x|γ−1σ2(x)eN3|x|γ+1/γ+1 , for some constants γ > 0,Ki > 0(i = 1,2),Ni >
0(i = 1,2,3) and μ(x) � 0 , for x � 0,Jt =

∫ t
0 ϕ (Xs)ds. If Xt � 0 or F(x) is even, then

for 0 < p < 1+ γ and any stopping time τ , we have

a1

cp,γ

∥∥∥ln
1

1+γ (1+ Jτ)
∥∥∥

p
� ‖X∗

τ ‖p � a2cp,γ

∥∥∥ln
1

1+γ (1+ Jτ)
∥∥∥

p
, (15)

where a1 and a2 are absolute constants and

cp,γ =
(

1+ γ
1+ γ − p

) 1
p

·
(

1+ γ
p

) 1
1+γ

= O

(
1

p
1

1+γ

)
, p → 0+.

If F(x) is not even, by the method of Peskir[9], define the functions F1(x) and
F2(x) on R+ as follows

F1(x) = max{F(−x),F(x)}, F2(x) = min{F(−x),F(x)}

and let Hi(x) = F−1
i (x) be the inverse of Fi(x) , for x � 0, Hip(x) = [F−1

i (x)]p , for
p > 0 ( i = 1,2).

H̃ip(x) = Hip(x)+ x
∫ ∞

x

dHip(u)
u

, p > 0.

As in the proof of Theorem 1, we can give the following inequality.

THEOREM 5. Let X be a diffusion process given by (1), starting at zero, F(x)
be the solution of equation (3), μ(x),σ(x),ϕ(x) be continuous functions and ϕ(x) �
0,Jt =

∫ t
0 ϕ (Xs)ds. If

H̃ip(x) � CipHip(x), i = 1,2, (16)

for some p > 0 and all x � 0. Then for 0 < λ � 1, we have

1
λC1p +1

E [H1p (λJτ)] � E [(X∗
τ )p] � (λC2p +1)E

[
H2p

(
Jτ
λ

)]
, (17)

for any stopping time τ, where C1p and C2p are constants.

As in the Theorem 2, Theorem 3 and Theorem 4, similar inequalities can also be
established.
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3. Applications

3.1. Lp inequalities for the Ornstein-Uhlenbeck process

Let V = (Vt)t�0 be an Ornstein-Uhlenbeck velocity process solving the Langevin
equation

dVt = −βVtdt +dBt , (18)

with V0 = 0, where β > 0 and B = (Bt)t�0 is a standard Brownian motion. μ(x) =
−βx is an odd function and σ2(x) = 1 is an even function. The Ornstein-Uhlenbeck
process satisfies the condition S(1,β ,β ). Graversen and Peskir[7] introduced the func-
tional

It =
∫ t

0
eβV2

r dr

and established the following Davis-type inequality

A1√
β

E
[√

ln(1+ β Iτ)
]

� E

(
sup

0�t�τ
|Vt |

)
� A2√

β
E
[√

ln(1+ β Iτ)
]
, (19)

for any stopping time τ with A1 = 1
3 and A2 = 3.

Take ϕ(x) = eβ x2
, then F(x) = 1

β

(
eβ x2 −1

)
is an even function. By Theorem 3,

with more accurate calculation, for 0 < p < 2 and any stopping time τ, we have

1

cp
√

β

∥∥∥ln
1
2 (1+ β Iτ)

∥∥∥
p
� ‖V ∗

τ ‖p � cp√
β

∥∥∥ln
1
2 (1+ β Iτ)

∥∥∥
p
, (20)

with cp =
(

2
2−p

) 1
p
√

2
p = O

(
1√
p

)
, as p → 0+.

If p = 1, we get the inequality of Graversen and Peskir (19) with smaller constants
A1 = 1

2
√

2
and A2 = 2

√
2.

Take ϕ(x) = 3β 3
2 |x|eβ x2

, Jt =
∫ t
0 ϕ (Xs)ds. Then F(x) is an even function and for

x � 0

F(x) = 3β
3
2

∫ x

0
t2eβ t2dt,

(
e

2
3 β x2 −1

) 3
2 � F(x) �

(
eβ x2 −1

) 3
2
.

By Theorem 3, for 0 < p < 2 and any stopping time τ , we have

1

cp
√

β

∥∥∥∥ln
1
2

(
1+ J

2
3
τ

)∥∥∥∥
p
� ‖V ∗

τ ‖p �
√

3
2

cp√
β

∥∥∥∥ln
1
2

(
1+ J

2
3
τ

)∥∥∥∥
p
, (21)

with cp =
(

3
3−p

) 1
p
(

3
p

) 1
3 = O

(
1
3√p

)
, as p → 0+.
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3.2. Lp inequalities for Bessel processes

Let δ � 0 and x � 0. The unique strong solution of the stochastic differential
equation

dYt = δdt +2
√
|Yt |dBt , Y0 = x (22)

is called a squared Bessel process of dimension δ , started at x and the process Z =√|Y | is called a Bessel process of dimension δ .
For the squared Bessel process Y and Bessel process Z started at 0 , Yan and

Zhu[15] established the following inequalities

δ
ap

‖τ‖p � ‖Y ∗
τ ‖p � apδ‖τ‖p, 0 < p < 1,

with ap =
(

2−p
1−p

) 1
p

= O
(
2

1
p

)
as p → 0+ .

√
δ

bp
‖√τ‖p � ‖Z∗

τ‖p � bp

√
δ‖√τ‖p, 0 < p < 2,

with bp =
(

4−p
2−p

) 1
p = O

(
2

1
p

)
as p → 0+ .

Since Y and Z are positive processes, we get the following inequalities from The-
orem 2 with ϕ(x) = 1

δ
cp

δ‖τ‖p � ‖Y ∗
τ ‖p � cpδ‖τ‖p, 0 < p < 1, (23)

with cp =
(

1
1−p

) 1
p 1

p = O
(

1
p

)
as p → 0+ .

√
δ

dp
‖√τ‖p � ‖Z∗

τ‖p � dp

√
δ‖√τ‖p, 0 < p < 2, (24)

dp =
(

2
2−p

) 1
p
√

2
p = O

(
1√
p

)
as p → 0+ .

REMARK 2. The constants obtained by Lenglart domination inequalities are:

ap =
(

2− p
1− p

) 1
p

=
(

2+
p

1− p

) 1
p

= O
(
2

1
p

)
, p → 0+,

bp =
(

4− p
2− p

) 1
p

=
(

2+
p

2− p

) 1
p

= O
(
2

1
p

)
, p → 0+.

The growth rate of ap and bp , as p → 0+ , are the exponential of 1
p .

REMARK 3. The constants we obtained are O
(

1
p

)
or O

(
1√
p

)
. The growth rates

of constants as p → 0+ are substantially improved.
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3.3. Lp inequalities for reflected Brownian motion with drift

Let X = (Xt)t�0 be the strong solution of the SDE

dXt = −μsgn(Xt)dt +dBt , X0 = 0, (25)

where μ > 0 and B = (Bt) is a standard Brownian motion. |X |= (|Xt |)t�0 is a realiza-
tion of the reflected Brownian motion with drift −μ . μ(x) = −μsgn(x) and σ(x) = 1
satisfies the condition S(0,μ ,μ) . Take ϕ(x) = 1, then F(x) is an even function and
for x � 0

F(x) =
1

2μ2

(
e2μx−2μx−1

)
.

Since

1
μ2

(
e

μx
2 −1

)2
� F(x) � 1

μ2 (eμx −1)2 ,

1
μ

ln
(
1+ μ

√
x
)

� H(x) � 2
μ

ln
(
1+ μ

√
x
)
.

As in the proof of Theorem 3, we can obtain the following inequality

1
μcp

∥∥ln
(
1+ μ

√
τ
)∥∥

p � ‖X∗
τ ‖p � 2cp

μ
∥∥ln

(
1+ μ

√
τ
)∥∥

p , 0 < p < 2, (26)

for any stopping time τ of X . And cp =
(

2
2−p

) 1
p
√

2
p = O

(
1√
p

)
as p → 0+ .

For p = 1, we get the following inequality

1

2
√

2μ
E
[
ln
(
1+ μ

√
τ
)]

� E (X∗
τ ) � 4

√
2

μ
E
[
ln
(
1+ μ

√
τ
)]

. (27)
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