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COMMUTATORS OF MULTILINEAR CALDERON-ZYGMUND
OPERATORS WITH KERNELS OF DINI’S TYPE AND APPLICATIONS

PU ZHANG™ AND JIE SUN

(Communicated by J. Pecari¢)

Abstract. Let T be a multilinear Calderén-Zygmund operator of type @ with ®(z) being non-
decreasing and satisfying a kind of Dini’s type condition. Let 7} ; be the iterated commutators
of T with BMO functions. The weighted strong and weak L(logL)-type endpoint estimates
for Tp; with multiple weights are established. Some boundedness properties on weighted vari-
able exponent Lebesgue spaces are also obtained. As applications, multiple weighted estimates
for iterated commutators of bilinear pseudo-differential operators and paraproducts with mild
regularity are given.

1. Introduction and Main Results

The study of multilinear Calderén-Zygmund theory goes back to the pioneering
works of Coifman and Meyer in 1970s, see e.g. [1,2]. This topic was then further
investigated by many authors in the last few decades, see for example [8, 12,13, 14, 15,
16,17,19,20,22,23].

Let T be a multilinear Calderén-Zygmund operator with associated kernel satis-
fying the standard estimates as in [13] and [16]. For b= (b1, ,bm) € BMO™, that is
bj € BMO(R") for j=1,---,m, the m-linear commutator of 7" with b is defined by

TZB(fl:"'afm) = 2 Tb,j(f)a
=

where o

Thjj(f) :bjT(fh7fj77fm)_T(fla7bjfjv7fm) (11)
The iterated commutators of T with b is defined by

T (D)) = (b1, (b2, (Bt (B, Thnlm—1--J2. 11 (F) (). (12)
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For an m-linear Calder6n-Zygmund operator with associated kernel K(x,y), the
iterated commutator 7j; can also be given formally by

m

(0= [, (H () - bj(yj)))K(XJ)fl 1)+ fn () 5.

j=1

Here and in what follows, ¥y = (v, ,ym)» (x,¥) = (x,y1,--+,vm) and dy=dy; - - - dym, .

In 2009, Lerner et al. [16] developed a multiple weight theory that adapts to mul-
tilinear Calderén-Zygmund operators. They established multiple weighted norm in-
equalities for multilinear Calder6n-Zygmund operators and their commutators 7y; . Re-
cently, Pérez et al. [22] studied the iterated commutators 7jy; in products of Lebesgue
spaces. Both strong type and weak type estimates with multiple weights are obtained.

The purpose of this paper is to consider weighted inequalities with multiple weights
for iterated commutators of multilinear Calderén-Zygmund operators of type @. Some
boundedness properties on weighted variable exponent Lebesgue spaces are also ob-
tained. In addition, we will give some applications to the iterated commutators of bilin-
ear pseudo-differential operators and paraproducts with mild regularity introduced by
Maldonado and Naibo in [20].

We now recall the definition of multilinear Calderén-Zygmund operators of type
.

DEFINITION 1.1. Let @(¢) : [0,00) — [0,°0) be a nondecreasing function. A lo-
cally integrable function K(x,y;,---,ym), defined away from the diagonal x = y; =
<o =Yy in (R")"*! s called an m-linear Calderén-Zygmund kernel of type @ if, for
some constants 0 < T < 1, there exists a constant A > 0 such that

A
e —yi|+ -+ = ym|)™

‘K()ﬁylf"»ym” g (

for all (xy)’I,"';)’m) € (Rn)’n+1 with x;éy, for some je {1,2,---,7’!’!}, and

‘K(Xa}’h"'y)’m)—K(xly)’h""}’m)‘

o A (x)( |x — x| )
(e =yif -4 e =yml)™ = \ e =1+ 4 — ym]

whenever |x —x'| < Tmax;<j<n|x—yj|, and

‘K(x7y17"'7yj7"'7ym)_K(x7y17"'7y/jv"'7ym)‘

A v =l
< 0] .
(be=yil -4 e=yml)™  \ = yi| 4+ [x =yl

whenever |y; — | < Tmaxi<icm [x —yil.
We say T : .7 (R") x --- x Z(R") — /(R") is an m-linear operator with an
m-linear Calderén-Zygmund kernel of type @, K(x,y1,-*,ym), if

T fn)) = [ Kyt 3mdAGD) )y -y

(R" )m



COMMUTATORS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS 1073

whenever x ¢ (Y;_; supp f; and each f; € CZ(R"), j=1,---,m.

If T can be extended to a bounded multilinear operator from L9 (R") x --- X
L (R™) to L7=(R") for some 1 < gp,-++,gm <o and 1/g=1/q;+---+1/gm, then
T is called an m-linear Calderén-Zygmund operator of type @, abbreviated to m-linear
w-CZO.

When o(r) =1t¢ for some € > 0, the m-linear 0-CZO is exactly the multilinear
Calder6n-Zygmund operator studied in [13] and [16]. The linear w-CZO was studied
by Yabuta [26].

DEFINITION 1.2. Let @(z) : [0,00) — [0,00) be a nondecreasing function. For
a >0, we say that o satisfies the Dini(a) condition and wirte ® € Dini(a), if

U 4(r
|®| pini(a) ::/O %dt < oo,

We would like to note that Maldonado and Naibo [20] studied the bilinear w-
CZOs when o is a nondecreasing, concave function and belongs to Dini(1/2). Re-
cently, Lu and Zhang [19] improve and extend their results by removing the hypothesis
that @ is concave and reducing the condition @ € Dini(1/2) to a weaker condition
o € Dini(1).

THEOREM 1.1. ([19]) Let w € Dini(1) and T be an m-linear operator with an
m-linear Calderon-Zygmund kernel of type @. Suppose that for some 1 < q1,--+,qm <
eo and some 0 < g <oowith 1/q=1/q1+---41/qm, T maps LY (R") x --- x LI (R")
into L9 (R"). Then T can be extended to a bounded operator from L'(R") x --- x
LY(R") to LY/™>(R").

Denote by Ap the multiple weight classes introduced by Lerner et al. [16] (see
Definition 2.2 below). The following result holds.

THEOREM 1.2. ([19]) Let T be an m-linear w-CZO and ® € Dini(1). Let P=
(p1,-+,pm) with 1/p=1/p1+---+1/py and w € Ap.
(DIfl1<pj<eo forall j=1,---,m, then

7Pl < Tl
j=
Q) If 1< pj<e forall j=1,---,m, and at least one of the pj =1, then
HT(f_')HLP”(vW,) < C'l_Il ”fjHLPj(wJ-)'
j=

Our first result is the following multiple weighted strong-type estimates for the
iterated commutator of m-linear w-CZO with BMO functions.
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THEOREM 1.3. Let T be an m-linear ®-CZO and b € BUO™. Suppose that
weAp with 1/p=1/p1+---+1/pyand 1 <pj <o, j=1,---,m. If ® satisfies

1 m
[ (1 +1ogl) di < oo (13)
0o t t

then there exists a constant C > 0 such that
||THZ(]_C')||LP(VW) < C(H ”bjBMO) H ”fjHLp./(wj)'
j=1 j=1

REMARK 1.1. Since the commutator has more singularity, the more regular con-
ditions imposed on the kernel is reasonable. In addition, although (1.3) is stronger than
the Dini(1) condition but it is much weaker than the standard kernel w(r) = ¢*.

It is easy to check that if @ satisfies (1.3), then @ € Dini(1) and
Zk’“-a)(Z‘k)z/ ol) <l+log—) dt < oo. (1.4)
k=1 o !

For the multiple weighted weak-type estimate, we have the following result.

THEOREM 1.4. Let T be an m-linear ®-CZO and b € BMO™. If W € A(; .. )
and  satisfies (1.3), then there is a constant C > 0 depending on |bj||gmo, j =
1,---,m, such that for any A >0,

va({re R [T (F(0)] > A7} < CH (Lo (452 )mar) "

i1

here and in the sequel, ®(t) =1(1 +log" 1) and ®") = do ... 0.

m

REMARK 1.2. Pérez et al. [22] proved the same results as Theorems 1.3 and 1.4
when @(t) = t* for some & > 0. We also note that similar results for Ty; were proved
in [19]. For commutators of the linear Calderén-Zygmund operator of type , see [18]
and [27].

Next, we study the boundedness of iterated commutators on weighted variable
exponent Lebesgue spaces. We now recall some definition and notation.

A measurable function p(-) : R” — (0,) is called a variable exponent. For any
variable exponent p(-), let

p~ :=essinfp(x) and pT : = esssupp(x).
xeR? xeR?

Denote by & the set of all variable exponents p(-) with 0 < p~ < p™ < oo and by
2 the collection of all variable exponents p(-) : R” — [1,00) with 1 < p~ < pT < oo,
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Given p(-) € &, the variable exponent Lebesgue space is defined by
)"
LPO(RY) = {f measurable : / <T> dx < oo for some constant A > O}.

The set L") (R") is a quasi-Banach space (Banach space if p(-) € &) with the quasi-
norm (norm if p(-) € &) given by

P)
ey =it {205 [ (H) axc i},

For p(-) € 2, we define the conjugate exponent p/(-) by 1/p(-)+1/p'(-) =1
with 1/c0=0.

DEFINITION 1.3. ([4]) A locally integrable function v with 0 < v < eo almost
everywhere is called a weight. Given a variable exponent p(-) € &2, we say that v €
Ap(y if

Vae) = sup B~ vasll o) ey HVAXBHLPI<4>(R”) < oo,
where the supremum is taken over all balls B C R".

The weighted variable exponent Lebesgue space L} ) (R™) is defined to be the set
of all measurable functions f such that fv € LP()(R"), and we define ||f HL"(‘) ®) =
HfVHLP(‘)(R") .

We say a variable exponent p(-) satisfies the globally log-Holder continuous con-
dition, if there exist positive constants Cy,C. and p.. such that

Co

p X p y g ) '(’y S EE I X y g 1 2 (1'5)
and
plX D S ( ‘ ‘)7 -XGIR . 1.6

For iterated commutator of m-linear ®w-CZO, we have the following result.

THEOREM 1.5. Let T be an m-linear ®w-CZO with ® satisfying (1.3) and be
BMO™. Suppose that p(-) € Py and pi(-), -+, pm(-) € P sothat 1/p(-)=1/pi(-)+
et l/pWI() pr()7pl()7 »pm() satisfy (L5) and(l6)! Vj 6Apj(~)! .] =1,---,m,

and v =TI}_,v;, then Ti; can be extended to a bounded operator from Lfll(')(]R") X

e X L,’,’;’(') (R") to LY 0 (R™), that is, there exists a positive constant C such that
N m
1755 O 20 ey < Cg Hf"HL{?ji(')(w)'

This paper is arranged as follows. In Section 2, we recall some basic definitions
and known results. Section 3 is devoted to proving Theorems 1.3 and 1.4. We give the
proof of Theorem 1.5 in Section 4. In the last section, we apply our results to bilinear
pseudo-differential operators and paraproducts with mild regularity.
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2. Definitions and Preliminaries

As usual, for a cube Q and a locally integrable function f, we denote by fp =
(flo= ﬁ Jo f(y)dy. The Hardy-Littlewood maximal function of f is defined by

2.1. Orlicz norms

For ® =1(1+log"t), the ®-average of a function f on a cube Q is defined by

0.0 :inf{k>0:é|/Q<D<f;x”)dxgl}.

The maximal function associated to ®(t) =¢(1 +log™ ¢) is defined by

”fHL(logL),Q =

My (10g1)(f)(x) = ZUP £l LaogL),00
>X

where the supremum is taken over all the cubes containing x.
It is not difficult to check the following pointwise equivalence (see (21) in [21])

My 10g1) () (%) ~ M*f(x), where M> = Mo M.

Let b € BMO(R"), by the generalized Holder’s inequality in Orlicz spaces (see
[24, page 58]) and John-Nirenberg’s inequality, we have (see also [16, (2.14)])

157 1 5) = poll £l < Clblmol ot o @

Let 7 > 1 and Q be a cube in R". Denote by 7Q the cube that is concentric with Q
and whose side length is 7 times the side length of Q. Then, there exists a dimensional
constant C,, such that for any b € BMO(R"), we have (see [11, page 166])

lbg — bro| < Cylog(t + 1) pmo- (2.2)
2.2. Sharp maximal function and A, weights

The sharp maximal function of Fefferman and Stein [9] is defined by

i ~ sup _
V) @) = supint v [ 170) —clav = sun o5 [ 170) ol

03x ¢

For 0 < 6 < =, we define the maximal functions Mg and Mg by

Ms(f) = M(1£1%)]Y° and  M5(p) = [ME(111%))°.
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Let w be a nonnegative locally integrable functionand 1 < p <. Wesay w€ A,
if there is a constant C > 0 such that for any cube Q,

(i ) o) <

We say w € A if there is a constant C > 0 such that Mw(x) < Cw(x) almost
everywhere. And we define A.. = J p>1A »- See [10] or [25] for more information.

The following relationships between Mg and Mg to be used is a version of the
classical ones due to Fefferman and Stein [9], see also [16, page 1228].

LEMMA 2.1. (1) Let 0 < p,6 < o and w € A... Then there exists a constant
C > 0 (depending on the A constant of w) such that

L s () winax < [ M50 @] i,
for every function f such that the left-hand side is finite.
(2Q)Let 0 <6 <o and w € Aws. If @ : (0,00) — (0,00) is doubling, then there exists

a constant C > 0 (depending on the A.. constant of w and the doubling condition of
¢ ) such that

supp(A)w({y €R": M5(f)(y) > A}) < Csupp(AIw({y € R":M5(H() > 1}),
> >
for every function f such that the left-hand side is finite.

2.3. Multilinear maximal functions and multiple weights

The following multilinear maximal functions were introduced by Lerner et al. [16].

DEFINITION 2.1. ([16]) For all m-tuples f = (fi,---,fn) of locally integrable
functions and x € R", the multilinear maximal functions .# and ., are defined by

supH ‘Q|/|f1 yi)ldy;,

03x j=1
and
. m 1 . 1/r
//’(f)(x):g;gg (E/Qlfj(yj)ldy,) . forr>1.

The maximal functions related to function ®(¢) =¢(1 +log"¢) are defined by

-,

logL () x) = SuPHszLlogL ).0 H

/i (vj)ldy;
J=1(#) ‘Q|/ e '

and

M1 (10g1) (f)(x) = SUPH I1£ill Lgogr),0

anj

where the supremum is taken over all the cubes Q containing x.
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Obviously, if r > 1 then the following pointwise estimates hold

M (F)(X) < Ctt] 10g1) () (%) < CMi10g1) (/) (0) S C" (%), (2.3)

The following multiple A conditions were introduced by Lerner et al. [16].

DEFINITION 2.2. ([16]) Let P=(py,---,pw) and 1/p=1/p;+---+1/p,, with

1< pi1,--+,pm <eo. Given w = (wy,---,wy,,) with each w; being nonnegative measur-
able, set
P/
Vi = l_lle .
j:

We say that w satisfies the A 5 condition and write weA poif

/p m 1 -t I/P;‘
sup<Q|/ (x)dx) 1131(@/Qw,(x) de) < oo,

/ /
where the supremum is taken over all cubes Q C R”, and the term (ﬁ Jowi (x)l’l’f dx) /7

is understood as (infow;) ' when p; = 1.

The following characterization of the multiple weight classes Az was established
in [16].

LEMMA 2.2. ([16]) Let W= (w1, -, wm), P=(p1,,pm), L<p1,-++,pm < oo
and 1/p=1/p1+---+1/pm. Then w € Ap if and only if

1= J
W,» 6Ampa J_l m,
Vis € App,

.. 1-p}
where the condition w; ‘eA, v in the case p; =1 is understood as w; bm e Ap.

The following boundedness of ., is contained in the proof of [ 16, Theorem 3.18].

LEMMA 2.3. Let P= (p1,-spm), L<p1,,pm<ecand 1/p=1/p1+---+
1/pm. If W € Ap, then there exists a constant r > 1 such that .#, is bounded from
LP1U(wy) X -+ X LPm(wy,) to LP(vy).

The maximal function .Z1o,7) satisfies the following weak-type estimates.

LEMMA 2.4. ([22]) Let w € A(1,..1)- Then there exists a constant C > 0 such
that

v;v({x eR": //L(logL) (f)( > tm}) S CH (/ " (Vjtﬂ)wﬂﬂd)o l/m.
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3. Proof of Theorems 1.3 and 1.4

Before proving the results, we first remark that the specific value of 7 € (0,1) in
Definition 1.1 is immaterial. From now on, we may assume the constant 7 appearing
in Definition 1.1 equals to 1/2 for simplicity. The argument with trivial modifications
is also applicable to any specific value of 7 € (0,1).

We now introduce some notation for convenience as in [22]. For positive inte-
gers m and j with 1 < j < m, we denote by C;-" the family of all finite subsets
oc={o(l),---,0(j)} of {1,---,m} of j different elements, where we always take

o(k) <o(j) if k< j. Forany o € C7', we write ¢’ = {1,---,m} \ 0 and Cf' = 0.

Given an m-tuple b = (by,- --7bm) € BMO™ and o = {o(1),---,0(j)} € CT'
with ¢’ = {0'(1),---,6'(m— j)}, we denote by by = (bs(1), " bg(j)) and by =
(bor(1)s* s bt (m—j)) -

For 6 € C"" and bg = (bg(1),-**,bg(;)) € BMO?, similar to (1.2), we can define
the following iterated commutator

-,

T, () = o1y [bo@)ys--[Po(i-1): [Py Tlo()oti-1)-o@) o) () ().

This is, formally

5,109 = [ (TT o) 00y 000) K 00 oo

Obviously, Ty = Ty if 0 = {L,---,m} and Ty =T} if 6 = {j}.
To prove Theorems 1.3 and 1.4, we first give the following pointwise estimates.
PROPOSITION 3.1. Let T be an m-linear w-CZO with @ satisfying (1.3) and

bEBMO™. Let 0 <8 <eand 0< 8 < L/m. Then, there exists a positive constant C,
depending on 6 and €, such that

o1 (7170 < € TT Il ){ sy (71054 () )
j=
3.1

—|—Cmi1 D (Hb BMO)Me( % ,(f))( )

j= 1G€Cm i=

for all bounded measurable functions fi,---, fm with compact support.

Proof. Some ideas of the proof are taken from [22]. For the sake of clarity and
simplicity, we prove only the case m = 2. Fix by,b, € BMUO(R"), for any constants A,
and A, as in the proof of Theorem 3.1 in [22], we have

Ty (f1.£2) = = (b1 = M) (b2 = M)T (fi, f2) + (b2 = )T, ;. (fi, o)
+ (b1(x) — M)szz_zz(fl L)+ T((br =) f1,(ba—2A2) o).
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Now we fix x € R". For any cube Q centered at x, set Q* = 8,/nQ and let
Aj = (bj)o+ be the average of b; on Q*, j=1,2. Since 0 < 6 < 1/2, then, for any
real number c,

(ﬁ/g"THB(fl’f”(Z)'a‘Cé"”) < (1g f ot dz>1/5

SCL+bL+L+1L),

3.2)
where
h=(ig o0 -me ()—lz)T(f17fz)(Z)|5dZ>1/67
(o ot
(%/;bl — AT () >|‘3dz>1/6,

1/8
Iy= <Q|/ |T((by—21)f1, (b2 — M) f2) (2) — ¢ dZ) :

Following the same arguments as the ones to estimate /,// and /I in [22], we

obtain
11 < C||by|smol|b2llByoMe (T (fi. f2)) (x),

L < Cl|ba | suoMe (Ty, (f1, £2)) (x)

and
I < C||b1|| BmoMe (Thzz(f17f2))(x)~
Now, we are in the position to consider the last term I;. For each j= 1,2, we
decompose f; as f; :fj(-)+f‘-’°, where fj(-) = fiXo- and f7° :fj—fj(-). Let c= 23:1?/’7
where

e =T((b1—M)f, (b2 — 1) f5) (x),
2 =T((bi—M)fi, (02— 22) ) (x),
c3=T((b1 = M), (b2 — ) f77) (x).

Then,
! 1/6
I4<C<§|/QT((b1—kl)f?,(bz—xz)fg)(zﬂst)
1/6
+C(ﬁ/Q|T((bl_M)f?’(bZ—’Lz)f?)(z)—c1|5dz)

1/6
+C<|IE|/Q|T((b1 — AT (br = A2) ) (2) —02|6dz)
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| 1/8
+c(@ / |T<<b1—M)ffi(bz—xz)f;)(z)—ca%)
=Iy+ Lo+ 13+ 1a g

We first estimate ;1. Applying Kolmogorov’s inequality (see [10, page 485]
or [16, (2.16)]) with p=0 < 1/2 and ¢ = 1/2, Theorem 1.1 and (2.1), we have

Lia =IO T (b1 — )AL, (b2 — 22) ) 150
< ClOI 2T (b1 = M)A (b2 = 22) )| 2 )
< CIQI2| (b1 = M) 3oy | (B2 — 22)£9) 3 g
1 1
<Crg [ @ =00 1F @z [ 102@) — e 1A @)z

< Clb1llsmol|b2llmoll fill Logr).0 1 2l Litog ). 0¢
< Clb1llsmol| b2l Bmo- A 10g 1) (f15.f2) ().

Next, we consider the term I4 5. For any z € Q, we have

IT((b1 — M) fY (b — 22) f57)(2) — ci|
= |T((b1 = A)fY, (b2 = 22)£5°)(2) = T (b1 — A1) fY, (b2 — 22) £5°) (%))

< ~/(]R”)2 ‘K(Z’yl’yz) _K(xvy17y2)||(b1(y1) - Al)f?(yl)||(b2(y2) - A2)f;(y2)|dy1dy2
< [ 100 -msgon( [, ke
— K(x,y1,52)[(b2(y2) —lz)f;()’2)|d}’2)d)’1

Note the following fact that, for any z € Q, y; € Q* and y, € 2 := 2K3,/nQ\
2k+2\/ﬁQ,

9 |z — x|
|K(z,y1,y2) —K(x,y1,y2)| < (u( )
(Jx = y1| =+ [x = ya|)?" X —y1| =+ [x = ya| 33
o(25) (3-3)

<SCom=ane
BN

we get
(b1~ ) b= D) )@ e
< [ 10100 =m0l 3, [, gl ba02) -2z Gl

<C/ [(by(y1) — M) (1) |<i ‘sz*‘z/ (bz(yz)—?tz)f?(yz)ldyz)dyl
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- 1
<CZ 02 ) g [0 0100 =il ¢
k=1
1
X G S (0202) — 222 (02) 2.

By (2.1) and (2.2), we have

1
2507 Jor (B (v) = A))f; (vi)ldy;

= g g |50 = (B0 )1y,

1
< 1T g 1B503) = ()0 )10l o
T Jug Mi0 I

< CHbjHBMOHff“L(logL)Q"’Q* +CkHbjHBMOHff“L(logL)Q"’Q*
< Ck|[bjllBmoll fill Litog 1), 240 -

Then by (1.4),
C
ha <o [T = A (b2 = ) )() — e1ldz
10l Jo

< C||b1|Bmol| b2 Bro 2 kzw(sz)Hfl HL(logL),sz* ||f2||L(1ogL),2kQ*
k=1

< ClbilsmollballBmo 1 n0g 1) (f1512) ().

Similarly to 14, we can estimate

Ly 3 < C||b1l[pmol|b2|| o1 0g 1) (15 £2) ().

Finally, we consider the term Iy 4. For any (y1,y2) € (2873\/nQ)?\ (2¢72\/nQ)?
and z € Q, similar to (3.3) we have

(275
K — K(x,y1,2)] < Cropra—=s.
[K(2,y1,52) = K(x,y1,32)) PN

This together with (3.4) gives
IT((br=M)fT, (b2 = 22)£57)(2) — ¢
2
< /(RW\Q*)2 K (2,y1,32) = K(x,y1,32)| (H |(j(v)) = lj)ff(ﬁ)l)d’yldyz

Jj=1

< / KZ,yl,y2 _K(x7y17y2)‘><
kgtl (2k+3\/ﬁQ)2\(2k+2\/5Q)2‘ ( )
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2
(1100 =201 s
2—_k) 2
s¢ Z / 243 /oy |25 /nQ2 <,Hl (Bj(y)) = /lj)fj(yj)l)dyldyz
< by HBMO||b2||BM0kz,1k2w(27k> 11l 10 2).24 0% 12| Lt0g 1) 24 0%

< Cl|b1|[Bmol|b2llBmo- 1 10g 1) (f15.12) (%),

which concludes that

1/6
= (Q|/ (= A (b= R0 - ol
Cogr LT =) (52 = I f5)(0) — e

< Cl|b1||smollballBmo- A1 0gr) (f15.12) (X).

Thus, we have

L < C|\b1l|smol|b2llmo A og ) (f15.12) (%)

This, together with (3.2) and the estimates of I;,l> and I3, gives

M (T () (x) < Clby ||BM0Hb2HBM0{///L(1ogL) (f1,2)(x) +Me (T (f1,f2)) (x)}
+Cl|ba| | BroMe (T, (1. £2)) (%) + Cllb1 | suoMe (T, (f1..f2)) ().

The proof of Proposition 3.1 is now complete.

REMARK 3.1. We can also obtain analogous estimates to (3.1) for iterated com-
mutators involving j < m functionsin BMO. More precisely, for 6 = {o(1),---,0(j)},
we have

-,

M} (T (F)) (%) < C(H ||kaM0) {///Laogm (F) ) +Me(T(f)) (X>}
- (3.5)

j-1 K )
+C X (H 1) ||BM0>M£ (Trsz,, () (%)-

k=lnecy \i=l

From the pointwise estimates obtained above, we can get the following strong and
weak type estimates for the iterated commutator 7j;

. PROPOSITION 3.2. Let T be an m-linear @-CZO with @ satisfying (1.3) and
b € BMO™. Suppose that 0 < p < oo and w € Aw.. Then, there exist positive constant
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C,, (depending on the A. constant of w, but independent of b ) and C, 3 (depending

on w and B) such that

[ 1P Pwids < G, (Hb o) [, Asteen 0] wds 36)

and
Rey R ) .
<CusSUP T i (1/ w({y €R": My10g1)(F) ) > 1™}), '
for all bounded measurable functions fi,---, fm with compact support.

To prove Proposition 3.2, we need the following results obtained in [19].

LEMMA 3.1. ([19]) Let T be an m-linear w-CZO with @ € Dini(1), 0 < p <o
and w € A... Then there exists a constant C > 0 such that

IT () y < Cllt ()1
for all bounded measurable functions fi,---, fm with compact support.

We remark that the authors of [19] proved Lemma 3.1 for 1/m < p < e. Indeed,
we can extend the range of p from 1/m < p < oo to 0 < p < o by using the same
argument as the ones of the proof of Corollary 3.8 in [16].

LEMMA 3.2. ([19]) Let T be an m-linear ®-CZO and b € BMO™. Suppose
that 1 < j <m is an integer and T; is the j-th entry commutator of T with b defined

by (1.1). If 0 < p <oeo, weE As and o satisfies

1
/ M(l—i—logl)dt<oo,
0o t

then, there exists a constant C > 0, depending on the A.. constant of w, such that

LT (P w1 < Clbllo [ gy (P ] ()

for all bounded measurable functions fi,---, fm with compact support.

Proof of Proposition 3.2. From Proposition 3.1, Lemma 3.1 and Lemma 3.2, by
applying the same arguments as the ones in the proof of Theorem 3.19 in [16] and the
proof of Theorem 3.2 in [22], we can get (3.6) and (3.7). We omit the details.

Proof of Theorem 1.3. It suffices to prove Theorem 1.3 for fi,---, f;, being bounded
with compact support. For w € A, Lemma 2.2 implies Vi € A. It follows from (3.6)
that

HTHB(J?)HU’(VW,) < C(H bj||BM0> H*/%L(logL)(f)HUi(vw)'
=1
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By (2.3) and Lemma 2.3, for some r > 1,

1255 ()| vy < C(]_[l ||bjBM0) (P vy
J=
<c(TT1estaveo ) TT15 s,
=1

j=1
This concludes the proof of Theorem 1.3.

Proof of Theorem 1.4. By homogeneity, we can assume A =1 and [|b;||pmo = 1
for j=1,---,m, and hence it is enough to prove

m 1/m
vi({reR": [T (F)0] > 1}) <] ( L. <I><'"><|f,-<x>|>w,-<x>dx) .
j=1
Note that v € Aw. when w € Ay .. 1), it follows from (3.7) and Lemma 2.4 that

vi({xeR": [Tig(f)(x)] > 1})
sup;\’w({y eR": ’Tnz(f>(Y)’ >1"})

>0 O(m) (l/t
<C§gg 1(1/1) w({yER //L(logL)(f)(y) >fm})
1 o (@Y L
< Csup <1/t>,131</nq’ >< : )W’(’“)”’x>
« o (m) v
<Cswp iz L (L @7 (hmioat 1)

cH ( (15 >|>wj-<x>dx)1/m.

Rr

So complete the proof of Theorem 1.4.

4. Proof of Theorem 1.5
We first recall some facts on variable exponent Lebesgue spaces.
LEMMA 4.1. ([5]) Given p(-) € Py, then for all s >0, we have

|||f|x||LP(‘)(Rn Hf”Lap Rn

The following generalized Holder’s inequality holds (see [3] or [7]).
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LEMMA 4.2. Let q(-), q1(-), *,qm(-) € Py so that 1/q(:) = 1/q1(-)+-- +
l/qm() Thenforany fj Equ(')(Rn)) ]: 17"'7m)

1f1- Fnll a0 @y < CIA pgr ) ey =+ Il pam) ey »

where the constant C depends only on q1(+), -+, qm(-).

LEMMA 4.3. ([4]) Let p(-) € & and satisfy (1.5) and (1.6), then for any v €

Ap(y,
VA1 gy < CUF o) gy

The following extrapolation theorem is due to Cruz-Uribe and Wang [6, Theorem
2.25].

LEMMA 4.4. ([6]) Given a family % of ordered pairs of measurable functions.
Suppose that for some 0 < pg < oo and every w € A, the following inequality holds
forall (f,g) € Z#,

[ Frwxdr <o [ (g wds.

Let p(-) € Py, if there exists s < p~ such that V' € Ap(y/s and M is bounded on

Lf}fﬂ,')/ S),(R"), then there is a positive constant C such that
1 o) gy < Cllgll 0 gy
Sor every pair (f,g) € .Z such that the left-hand side is finite.

To prove our result, we will need the following density property, see [0, Lemma
3.1].

LEMMA 4.5. ([6]) Given p(-) € & and a weight v € Lp(')(]R"), then L7 (R"),

loc

the set of all bounded functions with compact support, is dense in LY ) (R™).

The following monotone convergence theorem is due to [5, Lemma 2.5].

LEMMA 4.6. ([5]) Suppose p(-) € Py. Given a sequence {fi} of LPU)(R")
functions that increases pointwise almost everywhere to a function f, we have

]}EI;”JCkHLP(-)(Rn) = ”fHLr’(-)(Rn)-
We also need the following result for weights with variable exponents.

LEMMA 4.7. Let p(-) € Py and p1(-), - ,pm(-) € P with 1/p(-)=1/p1(-) +
_|_1/pm() For Vj EAP_/'(')’ J: 1’...’m, let V:H;nzl V, Then Vl/l‘n eAmp()
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Proof. Since p(-) € Py, p1(+), -, pm(-) € P and 1/p(-)=1/p1(:-)+---+1/pm(-)

then mp(-) € & and
1 n 1
(mp()) :21 mp/;()

By the generalized Holder’s inequality (Lemma 4.2) and Lemma 4.1, we have

l/m

B 1 s o I

<C|BI- 1]‘[||v1/’"xg

28| w1y

- H v

m p

)
1 1/m l/m
<ClB }j|\VJXB|\LpJ ) HHV 5070 g
m 1/m
=TT (181 s o 37 200 o
<o,
where the last step follows from v; € Apj(.) , j=1,---;m. This concludes the proof.

Now, we have all the ingredients to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma 4.5 it suffices to prove Theorem 1.5 for all
bounded functions fi,---, f;, with compact support.
We define a sequence of operators {7 }ren , Where Ti (f) = min{ |7, ()], &} XB(0.6)

and Ti(f) = 0 when x ¢ B(0,k), and consider the following family

:{(Tk(f) M (10gL) (f)) F= (i fm) € (LT (R™)", ke N}.

It follows from Proposition 3.2 that, for any 0 < pg < e and every w € A,

ke

holds for all bounded functions fi,---, f,, with compact support.
Since 0 < T (f)(x) < [Tz (f) (x)[, then for any 0 < pg < e and every w € A,

=,

TP wx)dx <C [ [ogn) ()] wix)ax

-,

L B0) ™ w0dx <€ [ [ y0q0) (0] wix)dn

holds for every ordered pair (7j( 1), M (10g1) f )) in Z.

By Lemma 4.7 we have v!/" € A, which implies v~/ € A, . Since p(-)
satisfies (1.5) and (1.6) then mp(-) and (mp(-))" also satisfy (1.5) and (1.6). Note that
mp(-) € 2, then, it follows from Lemma 4.3 that M is bounded on Li’ff’('))/ (R™).

m

So, to use Lemma 4.4 for all ordered pairs in .7 , we need to check that || Ti(f)] <

9 ®n)
oo for every f = (fi, -, fm) € (L7(R"))™. It is obviously always the case. Indeed,
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since v!/™ e App() then yl/m Lﬁg(')(R"). This together with Lemma 4.1 gives
vE Lf;(;)(R”) , which implies [[vxs(0.x) ) sy < o for each integer k. Thus

HTk(f)HLgm(Rn) = HTk(f)VHLp(-)(Rn) S klvasomll o gey < e
Now, we can apply Lemma 4.4 for s = 1/m to each pair in .% and get

1Py < -ttty Pl g @

Recall the pointwise equivalence My o1)(g)(x) ~ M?(g)(x) for any locally inte-
grable function g (see (21) in [21]), we have

//L(logL HML (ogr) (f7)(x CHM2 (fi)(x
Then, it follows from (4.1) and the generalized Holder’s inequality (Lemma 4.2) that

I 0 CH LDl P

Lf)() (Rm) Rn)

| TTm2(5)
j=1

Since p;(-) € & and satisfies (1.5) and (1.6), and v; € Apy for j=1,---.m
then, by applying Lemma 4.3 twice, we have

1Tl o0 gy < Cj]:[1 Hff||L€J,»<->(R,,)- 4.2)

=,

Note that {T;(f)(x)v(x)} increases pointwise almost everywhere to Ty () (x)v(x)
and Ti(f)v € LPO)(R"), then, Lemma 4.6 together with (4.2) gives

Tnz(f)HLC(-)(Rn) = | Ty (F)Vll oo ey = Jim 1Tk (Pl oo ey < Cg ||fj“Lff(-)(Rn)~

So complete the proof of Theorem 1.5.

5. Applications

In 2009, Maldonado and Naibo [20] studied some bilinear pseudo-differential op-
erators and paraproducts with mild regularity. In this section, we give some applications
of our results to such kind of operators.
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5.1. Bilinear pseudo-differential operators with mild regularity

Let me R, 0<6,p <1 and o,f,y € Z'.. A bilinear pseudo-differential oper-
ator Ty with a bilinear symbol o(x,&,n), a priori defined from . (R") x . (R") to
' (R™), is given by

Tolfi o)) = [ [ Mot &mA@)hmdgdn.

We say that a symbol o (x,&, 1) belongs to the bilinear Hormander class BSy 5 if

1029200 (x,&,1)| < Cop (14 [E|+ )21 P IS, x & e .

for all multi-indices ¢, and y and some constant Cy, .
For Q,6 :[0,00) — [0,) and 0 < p < 1, we say thata symbol o € BSJ  , if
0205 0(x,&,1)| < Cp(1+ €]+ [n)ym Pt

and

|3“9ﬁ( (x+h&m) —o(xEm))
< Co pO(R)QUE] + [n])(1+ €|+ |n|ym—PUFED

forall x,&,n € R". Obviously, BS)' C BS) 4 .
The following result was proved by Maldonado and Naibo in [20, Theorem 4.3].

LEMMA 5.1. ([20]) Let a € (0,1), 8 be concave with 6 € Dini(a/2) and Q :
[0,00) — [0,00) be nondecreasing such that

sup 0'74(1)Q(1/1) < oo. (5.1)

0<r<1

If 6 € BSY , o with ||+ |B| < 4n+4, then Ty is a bilinear Calderdn-Zygmund oper-
ator of type @ with ®(t) = 0%(t) and T =1/3.

Let b = (by,b,) € BMO?, the iterated commutator of bilinear pseudo-differential
operator T with b = (by,b;) is defined by

TG,Hf)(f17f2)(x) = [b17 [b2vTO']2v]l(fl7f2)(x)

=b1(x)b2(x)T5(f1,.12)(x) = b2 (x) T (b1 f1, £2) (%)
—b1(X) T (f1,b2£2)(x) + T (b1 f1,b2£2) (x).

Lemma 5.1 together with Theorems 1.3 — 1.5 gives the follows reesults.

THEOREM 5.1. Let a € (0,1), 0 be concave with 6 € Dini(a/2) and satisfy

1 po 2
/ O—(I)<1+logl> dt < oo,
0 t t
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Let Q: [0,00) — [0,00) be nondecreasing such that (5.1) holds. Suppose that ¢ €
BSY 0.0 With |a|+|B] <4n+4. If b€ BMO? and ¥, € Ap with 1 < py,ps < oo and
1/p=1/p1+1/p,, then there exists a constant C > 0 such that

H o,Ib f17f2 HLP C”bHBMOszlHLPI(WI)HszLPZ(Wz)'

THEOREM 5.2. Let a,0, Q and o be the same as in Theorem 5.1. IfB € BMO?
and w € Ay 1, then there is a constant C > 0, depending on ||b||gy02, such that for
any A >0,

ol et > <y, #(42)s)”

THEOREM 5.3. Let a,0, Q and G be the same as in Theorem 5.1 and be BMO?.

Suppose that p(-) € Py and p1(-),p2(-) € & sothat 1/p(-) =1/p1(:)+1/p2(-). If
p(+), p1(+) and py(-) satisfy (1.5) and (1.6), then, for v; €A,y =12, andv=v1v,,
there exists a constant C > 0 such that

T (Frs 22| 0 gy < ClAl 10 g 1721l 260 oy
5.2. Paraproducts with mild regularity
For ve Z and x = (ky,---,kn) € Z", let P, be the dyadic cube

PvKZZ{(X1,~~~,xn)6R"2k,‘<25€,‘<k,‘-}-1, i:1,~~~,n}.

The lower left-corner of P := P,y is xp = x, := 27"* and the Lebesgue measure of P
is |[P|=27"". We set
9 ={Px:vel, kel

as the collection of all dyadic cubes.
DEFINITION 5.1. ([20]) Let 0 :[0,00) — [0,e0) be a nondecreasing and concave

functlon An 60 -molecule associated to a dyadic cube P = P, is a function ¢p = ¢, :
" — C such that, for some Ay > 0 and N > n, it satisfies the decay condition

vn/2
)] < ¢ o2 xER,

14 2Y|x — xp| )V’
and the mild regularity condition

1 1
_|_
(1+2%x—xp)¥N =~ (1 42|y —xp|)N

|6p(x) — 9p(v)] < A02"/20(2"|x — y])

for all x,y e R".
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DEFINITION 5.2. ([20]) Given three families of 6-molecules {%}Qeg, Jj=
1,2,3, the paraproduct I1(f,g) associated to these families is defined by

(f.8) = > 107 2(f.05){s,05)95. f.g€ - (R").

0cy

In [20], some sufficient conditions on 6 were given so that the paraproducts de-
fined above can be realized as bilinear w-CZOs. The following result was proved
in [20, Theorem 5.3] when 6 € Dini(1/2). Indeed, the condition 6 € Dini(1/2) can
be reduced to 0 € Dini(1), see Lemmas 8.2 and 8.3 in [19] for details.

LEMMA 5.2. Let 6 be concave and 0 € Dini(1), and let {%}Qe% j=12,3,
be three families of 0-molecules with decay N > 10n and such that at least two of
them, say j = 1,2, enjoy the following cancelation property

/ 9,(x)dx=0, Q€ 2, j=12,
Rn

then 11 is a bilinear Calderdn-Zygmund operator of type ® with ©(t) = A%ANG(CNZ)
and T =1/2, where Ay and Cy are constants depending on N.

Let b= (by,by) € BMO?, the iterated commutator of IT with b is defined by

(i, £2)(x) = [b1, [b2, T2, |1 (f1,./2) (%)
= b1 (x)b2()II(f1, /2) (x) = b2 (X)1(D1 1, f2) (%)
= b1()II(f1,02/2) (x) +T1(b1 f1,b2.f2) (x).
Note that if 6 € Dini(1) and satisfies

1 2
/ @<1+1og1> it < oo (5.2)
0 t t

then o(t) = AJAN0(Cnt) also belongs to Dini(1) and satisfies (5.2). So, the following
estimates for iterated commutator HHB are direct consequences of Theorems 1.3, 1.4
and 1.5 and Lemma 5.2.

THEOREM 5.4. Let 6 and d)é be the same as in Lemma 5.2. Assume that 0

satisfy (5.2). If b € BMO? and W € A with 1 < py,py <o and 1/p=1/pi+1/pa,
then there exists a constant C > 0 such that

T (1 £2) || oy < Cllo1ILBMO 152 8810 fill 201 ) L £2 202 0 -

THEOREM 5.5. Let 6 and d)é be the same as in Theorem 5.4. Ifz; € BMO? and

W € A(1,1), then there is a constant C > 0 depending on 18| gygoz» such that for all
A >0,

" 2 1£i()] i
ve ({xeR .|Hm;(f1,f2)(x)|>7L2})<CJHI</WCD(2)< J)L )w,(x)dx> .
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THEOREM 5.6. Let 0 and (Pé be the same as in Theorem 5.4 and b € BMO?.

Suppose that p(-) € P and pi(-),p2(-) € & so that 1/p(-) =1/pi(-) +1/p2(). If
p(+), p1(+) and pa(-) satisfy (1.5) and (1.6), then, for v; €A, ), =12, and v=vv,,
there exists a positive constant C such that

T (s 22 0 ey < CllAl 210 gy 121l 2209 gy
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