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REFINEMENTS OF CAUCHY-SCHWARZ NORM INEQUALITY
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(Communicated by Y. Seo)

Abstract. In this paper, we utilize the convexity of the function f(v)= H }A"X B~ "} H H }Al VX B"| H
and the Hermite-Hadamard inequality to obtain a family of new reﬁnement@ of Cauchy-Schwarz
norm inequality for operators, which extends the related results.

1. Introduction

A capital letter H stands for a complex Hilbert space and B(H) denotes the alge-

bra of all bounded linear operators on H. Let || .| denote a unitarily invariant norm
defined on a norm ideal associated with it. Having considered the convexity of the
function f(v) =|||[AVXB'~V|"||- |||A"~YXB"|"|| for A,B,X € B(H) such that A, B are

positive, every real number r > 0 and every unitarily invariant norm, Hiai and Zhan
[7] proved that , then f(Vv) is convex on the interval [0, 1] and attained its minimum
at v =1, its maximum at v =0 and v = 1. Moreover, f(v) = f(1—v). With the
help of the convexity of the function f(V), they obtained the following refinement of
Cauchy-Schwarz norm inequality for operators

H

Recently, Burqgan [5] obtained several refinements of Cauchy-Schwarz norm in-
equality with the help of the well-known Hermite-Hadamard inequality as follows.
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H|Al VXBV
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THEOREM A. Let A,B,X € B(H) suchthat A,B are positive. Then for 0 < u <1
r > 0, and for every unitarily invariant norm, we have
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Mathematics subject classification (2010): 47A63.

Keywords and phrases: Cauchy-Schwarz norm inequality, Hermite-Hadamard inequality, Heinz in-
equality, convex functions.

* Corresponding author.

© deav., Zagreb 1095

Paper IMI-13-77


http://dx.doi.org/10.7153/jmi-2019-13-77

1096 J. HAN AND J. SHI

The following Heinz inequality due to Bhatia and Davis [3] holds

2H‘A%XB%

| <[llAYXB 44X || <[[JAX + XB]|

As a refinement of the above Heinz inequality, Abbas and Mourad [1] got the
following result.

THEOREM B. Let A,B,X € B(H) such that A,B are positive and let n be a posi-
tive integer. Then for 0 < 1 < 1, and for every unitarily invariant norm, we have
1

2ot < g
[1—2u]

1—
/ " 1AvXB Y Al x| dv
u

< % [2n—1)[[JakxB!# 4+ al-#xB || +2 | |atx?

< |||AFXB'"H + AT HXB ||

I

In this paper, we utilize the convexity of the function f(v) and the Hermite-
Hadamard inequality to obtain a family of new refinements of Cauchy-Schwarz norm
inequality and Heiz inequality. Accordingly Theorem A and Theorem B are special
cases of this new family.

2. Main Results

In this section, We start by the well-known Hermite-Hadamard integral inequality
[4] which includes a basic property of convex functions and plays a central role in
our investigation to obtain a further series of refinements of the Cauchy-Schwarz norm
inequalities.

If f is a real-valued function which is convex on the interval [a,b], then

J(252) 5t Lo L2310

For the first and the second inequality in the above Hermite-Hadamard integral
inequality, Burqan and Feng constructed the following refinement respectively.

LEMMA 2.1. ([5]) Let f be a real valued function which is convex on the interval
[a,b]. Then

(5 <) () e e L3
(2.1)

LEMMA 2.2. ([6]) Let f be a real valued function which is convex on the interval
[a,b]. Then

f<a§b) <o [rwa <} [f<a>+2f(“;”> +f(b)} SpllssiL}
(2.2)

We present a refinement of the above Hermite-Hadamard inequality (2.1) and (2.2)
as follows.
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LEMMA 2.3. Let f be a real valued function which is convex on the interval [a,b]
and let n be a positive integer. Then

f<a+b> <1{f[(2"+1)c;:1(2"_1)b] +f[(2n_1)c;:l(2n+l)b]}

2 )S2
< bia/abf(t)dt
1 a+b
< sy @21 (452) +nr )]
< M, 2.3)

Proof. Since f is convex on [a,b], we have

(o5 < L)

2 2
Thus
1 a+b 1
1) [nf(a)+2f< 2 >+nf(b)] < m[nf(a)—kf(a)—kf(b)—knf(b)]
_ [la)+f(b)
R

This completes the proof of the fourth inequality. Using convexity of f, we have

f<a42—b> :f[l. 2"+ Da+t (@'~ 1)b (2"—1)a+(2"+1)b]

1
2 n+1 2 ntl
f[(z"— 1)a—|—(2"—|—1)b]}

+ on+1

<1{f[(2"+1)a+(2"—1)b]

) on+l

This completes the proof of the first inequality.
To prove the second and the third inequality, it is only need to prove the following
inequalities by Lemma 2.1 and Lemma 2.2.

f[(Z”—i—l)czz:J—rl(Z"—l)b]+f[(2"—1)c21}:1(2"+1)b] <f<3a:—b)+f<a—;3b>

(2.4)

and

1
n+1

a+b

ath [nf(a)—f—Zf( 3 >+nf(b)} (25)

froe(42) o]

Next, we prove inequality (2.4) by induction. By Lemma 2.1, we have

fla+s0)> 1 () g (2)), 26
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So (2.4) holds trivially for the case n = 1. Now suppose the assertion (2.4) holds for
the case n = k. By the induction hypothesis, we have

f<3a:—b)+f<a—;3b)
2%+ 1a+ (25— 1)b 2k —Da+ (2¥+1)b
Zf[( )Zkﬂ( ) }Jrf[( )Zkﬂ( )

3. Q4 Datr (2 =1)p | @ —Da+2k+1)b
2k+T 2k+T

4

2 f

2%+ Da+(2¥-1)b 13. (2*~Da+(25+1)b
k+1 k+1
+f | — yE— (by (2.6))

(2 4 1)a+ (24! — l)b] L

_; [(zk+1 —Da+ (2" +1)b
- 2(k+1)+1

2(k+1)+1 ’

and so (2.4) holds for the case n = k+ 1. Hence (2.4) holds by induction. Similarly,
the inequality (2.5) holds by induction.

Given all that, the proof of Lemma 2.3 is complete.

Applying Lemma 2.3 to the functlon flv) = H’A"XB1 "’ || H’A1 VXB"’ || on

the interval [u,1—u] when 0 < < %, on the interval [1 —p, 1] when 3 <pu <1,
we obtain our first refinement of Cauchy-Schwarz norm inequality in [5].

THEOREM 2.1. Let A,B,X € B(H) such that A,B are positive and let n be a
positive integer. Then for 0 < 1 < 1, r > 0, and for every unitarily invariant norm,

1 117112 2u+2"—1 2" +1-2u 21— 2y 2 +2"—1 |"
H A2XB2 H < |||A 2T XB 2T A ol 2n+1
1 \% 1- v I-v \%
< m H’A XB AVXB
r2
<o oflaexs (]
n+1
|A* X
< [IAX|- 11X Bl 2.7)

Proof. We first consider the case 0 < u < % . Applying Lemma 2.3 to the function
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v) =||[AYXB"V|"|| - |||A'~YXB"|"|| on the interval [u,1— u], we obtain

f<1) <1{f[<2"+1>u+<2"—1><1—u>] +f[(2"—1)u+(2”+1)(1—u)]}

P D) on+l on+l
2p+2"—1 241 —2u
= [f< nt+l )+f< nt+l )]
< M0
S 120, f(t)dt
<5 [ + 27 (3) +nf( - )
S2tr ) M 2 K
1 1
— g s (3)]
< f(u).
Thus,
1 2 2u+2" -1 2" 1-2u 2" 1-2u ou2n—1 |”
H AfXBj < H‘A on+1 XB 2n+l A on+1 XB on+1
<7 12”/ H’A"XBI - fllat-vxsr)

r

[ |lanxB-

all

Similarly, when § < u < 1, applying Lemma 2.3 to the function f(v) on the
interval [1 — u, u], we get

<
n+1

kX (2.8)

1 112 2u42"—1 2q1—ou |” 2 1-2u 2u2n—1 |”
H AfXBj H‘A on+1 XB on+1 A on+1 XB on+1
i
< ;/ H|AVXBI*VV Al*VXBV r
2u—l
ri2
<ripl #[1]
n+1
| (2.9)
Since
Lo 1m? 1 vy pl— V] vy pv
||atxB| | = tim H|A x| [Jatrxs | |av],
u—3% [2u—1]|

the inequalities in (2.7) follow by combining the inequalities (2.8) and (2.9). So the
required result is proved.
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In view of the fact that the function f(v) = ||[AYXB'"~V["||- |||A'~YXB"|"|| is de-
creasing on the interval [0, 1] and increasing on the 1nterval [5.1] , applying Lemma 2.3
to the function f(v) on the interval [0, 1] when 0 < u < 1, on the interval [, 1] when
% < u < 1, we obtain the following refinement of Cauchy-Schwarz norm inequality.

THEOREM 2.2. Let A,B,X € B(H) such that A,B are positive and let n be a

positive integer. Then
(1) For 0< u < 1 < 5, 1> 0, and for every unitarily invariant norm,

|lanxBtH|
< H 1-5xBt|

- / lavxs |- [|lat x|
< L Al-5xB5|
S 2(n+1)

+nH|

1 r
< —[ }

2
< AXT[|- X BI"]. (2.10)

(2) For % < u L1, r>0, and for every unitarily invariant norm,

H)A”“ (et x|
< — / H|AVXB1 d H|Al vxB*| Hdv
1 1+u 1—u u I4u |7
< s {nllAxV | x| +2[|a xs = | a5 xm
STy | VAT BT+
1 r r r
<5 [lax-lixer) + | ]
< |[lAX["|[ - [[|1XBI]| - (2.11)

REMARK 2.1. When n = 1, it is easy to see that Theorem 2, Theorem 3 and
Theorem 4 in [5] are special cases of Theorem 2.1, and Theorem 2.2 respectively.
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On the other hand, it has been proved, in [2], that the function
v)=|||A"XB""V + A"V XB"||

is also convex on [0, 1] with symmetry about v = % , and attains its minimum at v = % s
its maximumat v=0and v=1.

Notice that when n =2k — 1, Lemma 2.3 just is Lemma 1 in [1] as follows.

o(450) <5 [ st < e v+ 26 (5) + k- gt

_ (o) +2(b)

Hence, applying Lemma 2.3 to the function g(v) = ||[AYXB'"V + A~ "XB"’ || on
the interval [u,1— ] when 0 < < 1, on the 1nterval [1—p,u] when $ <p <1,
we obtain the following refinement of Heinz inequality in [1].

THEOREM 2.3. Let A,B,X € B(H) such that A,B are positive and let n be a
positive integer. Then for 0 < 1 < 1, and for every unitarily invariant norm,

11 w21 12 12 2u2"-1
Z’HAzXBz ‘ A on+1 XB on+1 _|_A on+1 XB on+1

1 H 1- -

ST ||AVXB'™Y +A'""VXB"|||dv

- u

- [nllJanxB! At expH | 42| [atxt ]

< |||A#XB'"H + AT HXB ||

Applying Lemma 2.3 to the function g(v) = H’A"XB1 Y4+ A'"VXBY|| on the

interval [u, 1] when 0 < < 1, on the interval [2,;4} when § <t < 1, we obtain the
following refinement of Heinz inequality in [1].

THEOREM 2.4. Let A,B,X € B(H) such that A,B are positive and let n be a
positive integer. Then for 0 < 1 < 1, and for every unitarily invariant norm,

H |AYXB'™Y +A'"VXBY|||dv

A 4 XB 4 +A 4 XB 1

‘ H’ 14+2u 3-2u 3-2u 14+2u

1
<—
-
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n[AkX B+ A HX B || +2n |43 x5

1
<—
2(n+1)

3— 2y 3-2 14+2u

12 )HA XB T AT X

< % [[[[akx B+ at=nxpH||| +2 |4t x B}

I

< ||[AFxB! R AT EXBE||.

Similarly, applying Lemma 2.3 to the function g(v) = H ’A"XB1 VAT vXB"| ||
on the interval [0,u] when 0 < u < 2, on the 1nterval (u,1] when 1 s <u<1, we
obtain the following refinement of Heinz inequality in [1].

THEOREM 2.5. Let A,B,X € B(H) such that A,B are positive and let n be a
positive integer. Then
(1) For 0< u < % and for every unitarily invariant norm,

<o [N lavxB Y atxB | av
1 Jo

|[A*X B!+ A HxBH |
< H)A%XBI—% +A-bxBh

n|[|AX +XB]| +2’HA%XB“% +A-ixBE

1
S5/
2(n+1)

+nH|

< % [[[[AX +XBJ|| +|||A*XB'* + AT #xBH|||]
< ||[AFXB!H 4 AT EXBE||.

(2) For % < u < 1, and for every unitarily invariant norm,

<—/ ||AYXB' + AV XB"||| v

||A*x B! H +A1’“XB“}H

1+u

H‘A XB 2 A xB

1+u
<

1
S 2(n+1)

nmAx+XB|||+2H)A XB T + AT X
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+n|||[A*XB"H +AEXBH ||

< % [II[AX +XBI|| + ||[|A*XB'~* + A'#xBH||]
< [[lAX +XB].

REMARK 2.2. When n=1, n=3 and n =5, the refinements of Heinz inequali-
ties obtained in [6, 10, 9] are special cases of the above Theorem 2.3, Theorem 2.4 and
Theorem 2.5 respectively.
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