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BRAUER–TYPE UPPER BOUNDS FOR Z–SPECTRAL RADIUS

OF WEAKLY SYMMETRIC NONNEGATIVE TENSORS

GANG WANG ∗ , YANAN WANG AND YUAN ZHANG

(Communicated by M. Krnić)

Abstract. In this paper, we establish four Brauer-type upper bounds and a lower bound for Z -
spectral radius of weakly symmetric nonnegative tensors without irreducible assumption. These
bounds are shown to be sharper than the existing bounds via running examples. As an ap-
plication, an upper bound on the largest Z -eigenvalues of the adjacency tensors for uniform
hypergraphs is provided.

1. Introduction

Let C(R) be the set of complex (real) numbers, Cn(Rn) be the set of n -dimensi-
onal complex (real) vectors, and [n] = {1,2, . . . ,n} . Consider an m-order n -dimensi-
onal tensor A consisting of nm entries in R :

ai1i2···im ∈ R, i j ∈ [n], j = 1,2, . . . ,m.

A is called nonnegative (positive) if ai1i2...im � 0(ai1i2...im > 0) .
Tensors are widely used in signal and image processing, continuumphysics, higher-

order statistics, blind source separation and multi-way data analysis [21]. Generally,
tensor is a higher-order extension of matrix, and hence many concepts and the corre-
sponding conclusions for matrices such as determinant, eigenvalue and singular value
theory are extended to higher order tensors by exploring their multilinear algebra prop-
erties [3, 4, 10, 16, 11, 19, 26, 28, 30].

Based on matrix eigenvalue, two types of eigenvalue, called H -eigenvalue and
Z -eigenvalue are developed for tensors [14, 19], and they are widely used in such
as medical resonance imaging [1, 20], data analysis [9], higher-order Markov chains
[12, 17], positive definiteness of even-order multivariate forms in automatical control
[7, 11, 18]. However, the research on Z -eigenvalue problem is more complex than that
for H -eigenvalue problem due to its nonhomogeneity [3]. For example, we obtained
the largest H -eigenvalue of weakly irreducible nonnegative tensors by the iterative al-
gorithm proposed in [6, 17], but the largest Z -eigenvalue can not be easily obtained
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by the iterative scheme in such as [3, 9, 20], even for supersymmetric irreducible non-
negative tensors. Hence, researchers turn to investigating the tensor Z -eigenvalue in-
clusion set and making an estimation of the largest Z -eigenvalue. For this, based on
weakly symmetric condition, Chang et al. [3] established the equivalent relation be-
tween the largest Z -eigenvalue and Z -spectral radius of nonnegative tensors. By char-
acterizing the ratio of the smallest and largest values of a Perron vector, He et al. [8]
derived the Ledermann-like upper bound for the largest Z -eigenvalue of the weakly
symmetric and positive tensors. Furthermore, Li et al. [13] not only put forward the
improved Ostrowski-like upper bound, but also gave the lower bounds for the largest
Z -eigenvalue. Since then, the Z -spectral radius problems were deeply investigated
[15, 22, 24, 25, 27]. Recently, Bu et al. [2] proposed Brauer-type eigenvalue inclusion
sets and obtained bounds on the H -spectral radius for general tensors by the number of
positive entries of a nonnegative eigenvector. To the best of our knowledge, Brauer-type
bounds of Z -spectral radius are still underdeveloped because of its nonhomogeneity. In
this paper, inspired by the articles [2, 3, 8, 13, 15, 22, 29], we establish four Brauer-type
upper bounds and a lower bound for Z -spectral radius of weakly symmetric nonnega-
tive tensors without irreducible assumption, which are easy to compute and have simple
expressions.

This paper is organized as follows. In Section 2, we introduce important notation
and recall preliminary results. In Section 3, we establish Brauer-type lower and upper
bounds for the Z -spectral radius of weakly symmetric nonnegative tensors without ir-
reducible condition. By numerical examples, we show they are tighter than existing
bounds in some cases. As an application, we give an upper bound on the largest Z -
eigenvalues of the adjacency tensors for uniform hypergraphs and show that the bounds
are better than existing bounds by a running example in Section 4.

2. Notation and preliminaries

In this section, we introduce some definitions and give important properties on the
tensor eigenvalues needed in the subsequent analysis.

DEFINITION 2.1. Let A be an m-order n -dimensional tensor.

(i) We say that (λ ,x) ∈ C × (C n\{0}) is an eigenvalue-eigenvector of A if

A xm−1 = λx[m−1],

where (A xm−1)i = ∑n
i2,...,im=1 aii2...imxi2 . . .xim and x[m−1] =

[xm−1
1 ,xm−1

2 , . . . ,xm−1
n ]T . (λ ,x) is called an H -eigenpair if both of them are real.

(ii) We say that (λ ,x) ∈ C × (C n\{0}) is an E -eigenpair of A if

A xm−1 = λx and xT x = 1.

(λ ,x) is called a Z -eigenpair if both of them are real.
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(iii) We denote the set of Z -eigenvalues for A by σ(A ) . Assume σ(A ) �= /0 , then
the Z -spectral radius of A is defined as

ρ(A ) = max{|λ | : λ ∈ σ(A )}.

DEFINITION 2.2. [3] Let A be an m-order n -dimensional tensor. A is weakly
symmetric if the associated homogeneouspolynomial A xm satisfies ∇A xm = mA xm−1.

The following lemmas play an important role in Z -spectral analysis of the nonnegative
tensors [3].

LEMMA 2.1. Let A be an m-order and n-dimensional weakly symmetric non-
negative tensor. Then

λ = λ ∗ = ρ(A ),

where λ = {maxA xm : xT x = 1,x ∈ Rn} , λ ∗ denotes the largest Z -eigenvalue. More-

over, if
(

λ , x
)

is a Z -eigenpair of A , then
(

λ , |x |
)

is also a Z -eigenpair of A .

LEMMA 2.2. Let A = (ai1...im) be an m-order and n-dimensional weakly sym-
metric nonnegative tensor. Then

ρ(A ) � max

⎧⎨⎩max
i∈[n]

ai...i,

nmin
i∈[n]

Ri(A )

n
m
2

⎫⎬⎭ ,

where Ri(A ) =
n
∑

i2,...,im=1
aii2...im .

3. Brauer-type upper bounds for the Z -spectral radius

In this section, we shall establish four Brauer-type upper bounds and a lower bound
for the Z -spectral radius of weakly symmetric nonnegative tensors without irreducible
assumption, which improves the corresponding result in [3, 8, 15, 13, 22, 29] in some
cases.

THEOREM 3.1. Let A = (ai1i2...im) be a weakly symmetric nonnegative tensor
with order m � 2 and dimension n � 2 and Ri(A ) �= 0. Then

max

{
max
i∈[n]

ai...i,
∑n

i=1 Ri(A )
n

m
2

}
� ρ(A ) � max

ai1...im �=0

m

∏
j=1

R
1
m
i j

(A ). (3.1)

Proof. By Lemma 2.1, we assume that ρ(A ) is the Z -spectral radius of A with
corresponding nonnegative eigenvector x = (x1,x2, . . . ,xn)T , i.e.

ρ(A )x = A xm−1,
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that is

ρ(A )xi =
n

∑
i2,...,im=1

aii2...imxi2 . . .xim . (3.2)

Multiplying by xi on the both side of the above equality, one has

ρ(A )x2
i = ∑

aii2...im �= 0

aii2...imxixi2 . . .xim .

Letting xβ = max{xi1xi2 . . .xim : ai1i2...im �= 0, i1, . . . , im ∈ [n]} , and noting that 0 � xi �
1, we have

ρ(A )x2
i � Ri(A )xβ ,∀ i ∈ [n]. (3.3)

The following argument is divided into two parts.
Case 1. xβ = 0. Noting that x �= 0, we can suppose that xt �= 0,t ∈ [n]. From

Rt(A ) �= 0, there exists att2...tm �= 0 and xtxt2 . . .xtm = xβ = 0. By (3.3), we have
ρ(A )x2

t � 0, that is ρ(A ) = 0. Thus

ρ(A )m �
m

∏
j=1

ai1...im �=0

Rij (A ). (3.4)

Case 2. xβ �= 0. Suppose that xβ = x j1x j2 . . .x jm . It follows from (3.3) that

ρ(A )x2
j1 � Rj1(A )xβ ,

...

ρ(A )x2
jm � Rjm(A )xβ .

Moreover,
m

∏
k=1

ρ(A )mx2
jk �

m

∏
k = 1

Rjk(A )xm
β .

Hence,

ρ(A )m �
m

∏
j=1

ai1...im �=0

Rij (A )xm−2
β �

m

∏
j=1

ai1...im �=0

Rij(A ) � max
ai1...im �=0

m

∏
j=1

Rij (A ). (3.5)

Combining (3.4) with (3.5) yields

ρ(A ) � max
ai1...im �=0

m

∏
j=1

R
1
m
i j

(A ).

Now, we make an estimation of the lower bound of ρ(A ). Suppose e = ( 1√
n
, . . . , 1√

n
)

is the n order vector. It follows from Lemma 2.1 that

ρ(A ) � A em =
n

∑
i1,i2,...,im=1

ai1i2...im
1√
n

. . .
1√
n

=
∑n

i=1 Ri(A )
n

m
2

. (3.6)

So the results hold. �
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Taking the principal diagonal element ai...i out of Ri(A ), we establish another
Brauer-type upper bound for the Z -spectral radius.

THEOREM 3.2. Let A = (ai1i2...im) be a weakly symmetric nonnegative tensor
with order m � 2 and dimension n � 2 and ri(A ) �= 0. Then,

m

∏
j=1

(ρ(A )−ai ji j ...i j ) � max
ai1...im �=0

(i2 ,...,im)�=(i1,...,i1)

m

∏
j=1

ri j (A ), (3.7)

where ri j (A ) = Rij (A )−ai j...i j .

Proof. Suppose ρ(A ) is the Z -spectral radius of A with corresponding nonneg-
ative eigenvector x. It follows from (3.2) and Lemma 2.1, that

ρ(A )xi =
n

∑
i2,...,im=1

aii2...imxi2 . . .xim = ∑
aii2...im �=0

(i2 ,...,im)�=(i,...,i)

aii2...,imxi2 . . .xim +ai...ix
m−1
i .

Multiplying by xi on the both sides of the above equality, we obtain

ρ(A )x2
i = ∑

aii2...im �=0

(i2,...,im)�=(i,...,i)

aii2...imxixi2 . . .xim +ai...ix
m
i .

From 0 � xm
i � x2

i � 1, one has

(ρ(A )−ai...i)x2
i = ∑

aii2...im �=0

(i2,...,im)�=(i,...,i)

aii2...imxixi2 . . .xim +ai...i(xm
i − x2

i )

� ∑
aii2...im �=0

(i2,...,im)�=(i,...,i)

aii2...imxixi2 . . .xim .

Letting xβ = max{xi1xi2 . . .xim : ai1i2...im �= 0,(i2, . . . , im) �= (i1, . . . , i1), i1, . . . , im ∈ [n]} ,
then we get

(ρ(A )−ai...i)x2
i � ri(A )xβ . (3.8)

Similar to the proof of Theorem 3.1, according to (3.8) and ρ(A ) � maxi∈[n] ai...i , one
has

m

∏
j=1

(ρ(A )−ai ji j ...i j ) � max
ai1i2...im �=0

(i2,...,im)�=(i1,...,i1)

m

∏
j=1

ri j (A ). �

It is noted that the results of Theorems 3.1 and 3.2 are sharper than those of Propo-
sition 3.3 in [3] and Corollary 4.5 in [22].

Choosing xt as a component of x with the largest modulus and xs as a component
of x with the second largest modulus, we are at the position to establish the following
theorem.
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THEOREM 3.3. Let A = (ai1i2...im) be a weakly symmetric nonnegative tensor
with order m � 2 and dimension n � 2 . Then,

ρ(A ) � max
i, j∈[n],i�= j

1
2

{
ai...i +a j... j + Δ

1
2
i, j(A )

}
,

where Δi, j(A ) = (ai...i −a j... j)2 +4ri(A )r j(A ).

Proof. Suppose that ρ(A ) is the Z -spectral radius of A with corresponding non-
negative eigenvector x . Let xt � xs �max{xk : k∈ [n],k �= t,k �= s} . Obviously, |xt |> 0.
Noting that 0 � xm−1

t � xt � 1, 0 � xm−1
s � xs � 1, from (3.2), we have

ρ(A )xt −at...t x
m−1
t = ∑

i2,...,im∈[n]
(t,i2 ,...,im)�=(t,...,t)

ati2...imxi2 . . .xim

� ∑
i2,...,im∈[n]

(t,i2,...,im)�=(t,...,t)

ati2...imxm−2
t xs = rt(A )xm−2

t xs

and

(ρ(A )−at...t)xt � ρ(A )xt −at...t x
m−1
t � rt (A )xm−2

t xs. (3.9)

On the other hand, it holds that

(ρ(A )−as...s)xs � ∑
i2,...,im∈[n]

(s,i2 ,...,im)�=(s,...,s)

asi2...imxm−1
t = rs(A )xm−1

t . (3.10)

From Lemma 2.2, (3.9) with (3.10), using the fact that ρ(A ) � maxi∈[n] ai...i , we have

(ρ(A )−at...t)(ρ(A )−as...s) � rt(A )rs(A )x2m−4
t � rt(A )rs(A ),

equivalently

ρ(A )2 − (at...t +as...s)ρ(A )+at...tas...s − rt(A )rs(A ) � 0.

Solving for ρ(A ), we obtain

ρ(A ) � 1
2

{
at...t +as...s +

√
(at...t −as...s)2 +4rt(A )rs(A )

}
.

Thus

ρ(A ) � max
i, j∈[n],i�= j

1
2

{
ai...i +a j... j + Δ

1
2
i, j(A )

}
. �

From Theorem 3.3, the eigenvalue inclusion theorem of [23] for nonnegative ma-
trices can be extended to weakly symmetric nonnegative tensors. Further, it can be
verified that

max
i, j∈[n],i�= j

1
2

{
ai...i +a j... j + Δ

1
2
i, j(A )

}
� max

i∈[n]
Ri(A ).
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THEOREM 3.4. Let A = (ai1i2...im) be a weakly symmetric nonnegative tensor
with order m � 2 and dimension n � 2 . Then

ρ(A ) � max
i, j∈[n],i�= j

1
2

{
ai...i +a j... j + r̃i(A )+ Λ

1
2
i, j(A )

}
,

where Mi(A ) = ∑
j �=i, j∈[n]

ai j... j , r̃i(A ) = ri(A )−Mi(A ) and Λi, j(A ) = (ai...i−a j... j +

r̃i(A ))2 +4Mi(A )r j(A ).

Proof. Suppose that ρ(A ) is the Z -spectral radius of A with corresponding
nonnegative eigenvector x. Let xt � xs � {maxxk : k ∈ N,k �= t,k �= s}. Note that
0 � xm−1

t � xt � 1, 0 � xm−1
s � xs � 1. Similar to the proof of Theorem 3.3, we have

(ρ(A )−at...t)xt = ∑
(t,i2,...,im)�=(t,...,t)
(i2,...,im)�=( j,..., j)

ati2...imxi2 . . .xim + ∑
j �=t, j∈[n]

at j... jx
m−1
j +at...t(xm−1

t − xt)

� r̃t(A )xm−1
t +Mt(A )xm−1

s � r̃t(A )xt +Mt(A )xs.

Moreover,

(ρ(A )−at...t − r̃t(A ))xt � Mt(A )xs. (3.11)

On the other hand, we get

(ρ(A )−as...s)xs = ∑
(i2,...,im) �=(s,...,s)

asi2...imxi2 . . .xim +as...s(xm−1
s − xs) � rs(A )xt .

(3.12)

Multiplying (3.11) with (3.12) yields

(ρ(A )−at...t − r̃t(A ))(ρ(A )−as...s) � Mt(A )rs(A ).

Solving for ρ(A ) we obtain

ρ(A ) � 1
2

{
at...t +as...s + r̃t(A )+ Λ

1
2
t,s(A )

}
,

which implies

ρ(A ) � max
i, j∈[n],i�= j

1
2

{
ai...i +a j... j + r̃i(A )+ Λ

1
2
i, j(A )

}
. �

Now, we shall give numerical comparisons among our results and existing bounds.

EXAMPLE 3.1. Consider 3 order 3 dimensional tensor A = (ai jk) defined by
a111 = 1

2 ,a222 = 1,a333 = 3 and all other entries are 1
3 . A direct computing gives

that (ρ(A ),x) = (3.1970,(0.1927,0.1990,0.9609)). For this tensor, the bounds via
different estimations given in the literature are shown in Table 1. It follows from Table
1 that our results are tighter than some existing results.
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Table 1: Comparison estimations of the Z -spectral radius with different methods

Reference bounds
Proposition 3.3 of [3] ρ(A ) � 9.8150
Theorem 2.7 of [8] ρ(A ) � 5.6079
Theorem 3.3 of [13] 1.8070 � ρ(A ) � 5.5494
Theorem 2.4 of [15] 1.0863 � ρ(A ) � 5.2694
Corollary 4.5 of [22] ρ(A ) � 5.6667
Theorem 4.7 of [24] ρ(A ) � 5.2624

Theorem 3.1 2.4056 � ρ(A ) � 5.6667
Theorem 3.1 and Theorem 3.2 2.4056 � ρ(A ) � 5.1402
Theorem 3.1 and Theorem 3.3 2.4056 � ρ(A ) � 4.8480
Theorem 3.1 and Theorem 3.4 2.4056 � ρ(A ) � 5.4037

EXAMPLE 3.2. Consider 3 order 60 dimensional tensor A = (ai jk) defined by
all entries are randomly generated in [0.1,1] . By randomly generating the above 50
tensors, we draw upper bounds of the spectral radius with different methods in Figure
1. We can verify that our results are sharper than some existing results from Figure 1.

Figure 1: Comparison estimations of the Z -spectral radius with random tensors
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EXAMPLE 3.3. Consider 3 order n dimensional tensor A = (ai jk) defined by all
entries are randomly generated in [0.1,1]. The upper bound estimations of ρ(A ) are
given with different variable dimensions in Table 2. From Table 2, the superiority of
our conclusion is also shown.
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Table 2: Comparison estimations of the Z -spectral radius with dimension change ten-
sors

n Theorem 2.7 o f [8] Theorem 4.7 o f [24] Theorem 3.3
30 ρ(A ) � 1.3995e+03 ρ(A ) � 1.3910e+03 ρ(A ) � 1.3827e+03
60 ρ(A ) � 3.8417e+03 ρ(A ) � 3.8029e+03 ρ(A ) � 3.7841e+03
90 ρ(A ) � 7.1148e+03 ρ(A ) � 7.1147e+03 ρ(A ) � 7.1012e+03
120 ρ(A ) � 1.1566e+04 ρ(A ) � 1.1533e+04 ρ(A ) � 1.1523e+04
150 ρ(A ) � 1.6919e+04 ρ(A ) � 1.6891e+04 ρ(A ) � 1.6884e+04
180 ρ(A ) � 2.3286e+04 ρ(A ) � 2.3245e+04 ρ(A ) � 2.3236e+04

4. The Z -spectral radius of uniform hypergraphs

It is well known that eigenvalues and eigenvectors of directly weighted hyper-
graphs are widely used in practice problem, such as complex network, image represen-
tation and so on. Some results on the Z -eigenvalues or E -eigenvalues of tensors of an
even uniform hypergraph can be found in [5, 31]. Next, we use our bounds to estimate
Z -spectral radius of direct hypergraphs.

Let G = (V,E) be a hypergraphwith edge set E = {E1,E2, . . . ,Em} and vertex set
V = [n]. If every edge of G has cardinality k , then we call G a k -uniform hypergraph.
In the following, we consider k -uniform hypergraphs on n vertices with 3 � k � n. The
degree di of vertex i is defined as di = |{Ep ∈E | i∈Ep}|. For a k -uniform hypergraph
G = (V,E) , its adjacency tensor A (G ) corresponds to the following form:

A (G )xk = ∑
Ep∈E

A (Ep)xk,∀x ∈ Rn,

where A (Ep)xk = kxp1 . . .xpk and Ep = {p1, . . . , pk} ⊆ V. A (G ) is a k -order n -
dimensional nonnegative symmetric tensor whose (i1, . . . , ik)-entry is

A (G )i1,...,ik =
{ 1

(k−1)! , {i1, i2, . . . , ik} ∈ E,

0, otherwise.

Xie et al. [31] considered the adjacency tensor and its Z-eigenvalues for a uni-
form hypergraph, and obtained some bounds on the Z -spectral radius of the adjacency
tensors for uniform hypergraphs.

LEMMA 4.1. Let A (G ) be the adjacency tensor of a n-vertex k -uniform hyper-
graph G = (V,E). Then

ρ(G ) �
(

n−1
k−1

)
n

2−k
2 (4.1)

and
ρ(G ) � �, (4.2)

where �= max1�i�n di is the maximum degree of G and ρ(G ) denotes the Z -spectral
radius of A (G ).
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Considering that adjacency tensor of a uniform hypergraph is nonnegative and
weakly symmetric, we further propose the following bound.

THEOREM 4.1. Let A (G ) = (ai1i2...ik) be the adjacency tensor of a n-vertex k -
uniform hypergraph G . Then we have

ρ(G ) � max
{i1,i2,···ik}∈E

{
k

∏
j = 1

d
1
k
i j
(A (G ))

}
. (4.3)

Proof. Suppose that A (G ) is the adjacency tensor of a k -uniform hypergraph G .
Since the adjacency tensor is weakly symmetric, then ρ(G ) is the largest Z-eigenvalue
of A (G ). By Theorem 3.2, we obtain

k

∏
j=1

(ρ(G )−ai ji j ...i j ) � max
ai1···ik �= 0

(i1, i2, . . ., ik) �= (i1 , . . ., i1)

k

∏
j = 1

ri j (A (G )).

Notice that ai j i j ...i j = 0, for all i j ∈ [n]. Hence

ρ(G ) � max
ai1···ik �= 0

k

∏
j = 1

r
1
k
i j
(A (G )) = max

{i1,i2,···ik}∈E

{
k

∏
j = 1

d
1
k
i j
(A (G ))

}
. �

Surely, if n is considerably larger than k and | E |< (n
k

)
, then Lemma 4.1 is less

effective. We take an example to show the efficiency of new upper bounds.

EXAMPLE 4.1. Consider 3-uniformhypergraph G with vertex set V={1,2, . . . ,8}
and edge set E(G ) = {e1,e2,e3,e4}, where

e1 = {1,2,8},e2 = {3,4,7},e3 = {5,6,8},e4 = {6,7,8}.

From Lemma 3.1, we have d1 = . . . = d5 = 1,d6 = d7 = 2,d8 = 3. By (4.2), we estimate

ρ(G ) � 21
√

2
4

≈ 7.4246.

It follows from (4.3) that

ρ(G ) � 3.

Using Theorem 4.1, we obtain

ρ(G ) � 2.2894.

It is clear that the result of Theorem 4.1 is tighter than those of (4.1) and (4.2).
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5. Conclusions

In this paper, we proposed four Brauer-type upper bounds for the Z -spectral ra-
dius of weakly symmetric nonnegative tensors, which all depend only on the entries to
tensors itself. By running examples, we showed that the obtained results are sharper
than existing results. As an application, an upper bound on the Z -spectral radius of
the adjacency tensors for uniform hypergraphs was presented and a numerical example
revealed the validity of the proposed bounds.
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