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ON STATISTICALLY KÖTHE–TOEPLITZ DUALS

FATIH TEMIZSU AND MIKAIL ET

(Communicated by M. Mursaleen)

Abstract. In the present paper, we introduce the concept of Δm− statistical boundedness of real
(or complex) numbers sequences by using generalized difference operator Δm and examine rela-
tionships between Δm− statistical convergence, Δm− statistical Cauchiness and Δm− statistical
boundedness. In addition to that we compute the Köthe-Toeplitz and generalized Köthe-Toeplitz
duals of the set of all Δm− statistical bounded sequences. Moreover, we come up with the idea of
statistical α and β duals of the sets of sequence which makes us capable of creating statistical
equivalents of the notions of normality and perfectness of sequence spaces.

1. Introduction, Definitions and Preliminaries

Let ω be the set of all sequences of real (or complex) numbers and �∞, c and c0

be respectively the Banach spaces of bounded, convergent and null sequences x = (xk)
with the usual norm ‖x‖∞ = sup |xk| , where k ∈ N = {1,2, . . .} , the set of positive
integers. Also by bs,cs, �1, �π and �p ; we denote the spaces of all bounded series,
convergent series, absolutely convergent series, absolutely convergent series with re-
spect to a permutation of N and p−absolutely convergent series, respectively.

A sequence space E with a linear topology is called a K−space provided each
of the maps pi : E → C defined by pi (x) = xi is continuous for each i ∈ N, where
C denotes the complex field. A K−space E is called an FK−space provided E is a
complete linear metric space. An FK−space whose topology is normable is called a
BK−space .

The continuous dual of a normed space X is defined as the space all bounded
linear functionals on X and denoted by X ′.

By e = (ek) and e(n) = (e(n)
k ) (n = 0,1, ...) we denote the sequences such that

ek = 1 for all k = 0,1, ... and e(n)
k = 1 (k = n) and e(n)

k = 0 (k �= n) .
Let x and y be complex sequences and X ,Y ⊂ ω . We put xy = (xkyk)

∞
k=0 and

x−1 ∗Y = {y ∈ ω : xy ∈ Y} , then we write

M (X ,Y ) =
⋂

x∈X
x−1 ∗Y

= {a ∈ ω : ax ∈Y, ∀x ∈ X} .
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In particular, the sets

Xδ = M (X , �π)
Xα = M (X , �1) ;

Xβ = M (X ,cs) ;

X γ = M (X ,bs) ;

XN = M (X ,c0)

are called the δ−,α−,β−,γ− and N − (or null) duals of X , respectively. It is well-
known that φ ⊂ Xδ ⊂ Xα ⊂ Xβ ⊂ X γ and Xβ ⊂ XN . If X ⊂ Y, then Y † ⊂ X†

(† ∈ {δ ,α,β ,γ,N}) . Xα and Xβ are also called Köthe-Toeplitz and generalized Köthe-
Toeplitz dual space of X respectively. It is clear that X ⊂ (Xα)α = Xαα . If X = Xαα

then X is called a perfect sequence space, one may refer to ( [3], [13]).

Let X be a sequence space. Then X is called

i) Solid (or normal), if (αkxk)∈X for all sequences (αk) of scalars with |αk|� 1
for all k ∈ N, whenever (xk) ∈ X ,

ii) Symmetric , if (xk) ∈ X implies (xπ(k)) ∈ X , where π(k) is a permutation of
N,

iii) Sequence algebra if x.y ∈ X , whenever x,y ∈ X , where x.y = (xkyk) for all
k ∈ N.

If X is solid then Xα = Xβ = X γ .
Study of difference sequence spaces is a recent development in the summability

theory. Sometimes a situation may arise that we have a sequence at hand and we are
interested in sequences formed by its successive differences and in the structure of these
new sequences. The notion of difference sequence spaces was introduced by Kızmaz
[14] and generalized by Et and Çolak [6]. Later on Et and Nuray [7] improved it in order
to mainly generalize statistical convergence with respect to Δm difference operator as
follows

Δm (X) = {x = (xk) : (Δmxk) ∈ X}
where X is any sequence space, m∈N, Δ0x = (xk) , Δx= (xk − xk+1) , Δmx = (Δmxk)=(
Δm−1xk −Δm−1xk+1

)
and so Δmxk =

m
∑

v=0
(−1)v

(m
v

)
xk+v .

If x ∈ Δm (X) then there exists one and only one y = (yk) ∈ X such that yk = Δmxk

and

xk =
k−m

∑
v=1

(−1)m
(

k− v−1
m−1

)
yv =

k

∑
v=1

(−1)m
(

k+m− v−1
m−1

)
yv−m,

y1−m = y2−m = . . . = y0 = 0

for sufficiently large k , for instance k > 2m . Recently, a large amount of work has been
carried out by many mathematicians regarding various generalizations of difference
sequence spaces. For a detailed account of difference sequence spaces one may refer to
([1],[8],[9],[16]).
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The idea of statistical convergence which is, in fact, a generalization of the usual
notion of convergence was introduced by Fast [10] and Steinhaus [15] independently
in the same year 1951 and since then several generalizations and applications of this
concept have been investigated by various authors namely Connor ([4], [5]), Fridy [11],
Temizsu et al. [16].

The concept of statistical boundedness of sequences has made its initial appear-
ance in the frequently cited paper of Fridy and Orhan [12]. Unlike statistical con-
vergence the notion of statistical boundedness has not found that much places in the
literature since then. That being said Bhardwaj and Gupta [2] made some generaliza-
tions of statistical boundedness by introducing counterparts of the notions of statistical
convergence of order α and λ -statistical convergence. Besides they showed that the
Köthe-Toeplitz and generalized Köthe-Toeplitz duals of statistical bounded sequences
are φ , the space of finitely non-zero scalar sequences.

Let K be any subset of N and κ(n) = |K ∩{1,2,3, ...n}| denote the cardinality of

the enclosed set. If lim
n→∞

κ(n)
n exists then it is said to be the (natural) density of K and

denoted by δ (K) . Sets having zero density will be called null in this work. By the
definiton it is obvious that finite sets and empty set are null. We also would like to state
that sets having 1 density are called dense . Clearly N is dense.

If x = (xk) is a sequence satisfying property P for all k in a dense set then it
is said that xk holds property P for ”almost all k” and this is abbreviated by ”a.a.
k.” [11]. A sequence x = (xk) is said to be statistically convergent to L provided that
{k : |xk −L| � ε} is a null set for each ε > 0, i.e., |xk −L| < ε a.a. k. It is written by
st− limxk = L . If L = 0 then x is a statistically null sequence. The set of all statistically
null sequences and the set of all statistically convergent sequences will be denoted by
Sc0 and Sc respectively. It was shown that Sc0 is solid in [2].

The real number sequence x is statistically bounded if there exists a number B � 0
such that δ ({k : |xk| > B}) = 0 [12]. Sb will denote the set of all statistically bounded
sequences.

The main object of this work is to create another type of generalization of statistical
boundedness by using Δm difference operator and examine some inclusion properties
regarding the new concept. More importantly we focus on computing Köthe-Toeplitz
and generalised Köthe-Toeplitz duals of Δm statistically bounded sequences and after
seeing both are φ we generalize the notions of Köthe-Toeplitz and generalised Köthe-
Toeplitz duals with statistical sense. This makes us capable of obtaining statistical
equivalents of the notions of normality and perfectness of sequence spaces.

2. Δm−Statistical Boundedness of Sequencess

In the present section we shall give the definition of Δm−statistical boundedness
and examine some inclusion properties regarding the concept.

DEFINITION 2.1. A sequence of real numbers x = (xk) is called Δm−statistically
bounded if there exists a nonnegative real number L such that

δ {k : |Δmxk| > L} = 0 i.e., |Δmxk| � L a.a.k.



1150 F. TEMIZSU AND M. ET

Δm(Sb) will denote the set of all Δm−statistically bounded sequences.
The following example illustrates that there are some sequences which are not

Δm−statistically bounded.

EXAMPLE 2.2. Let’s take m = 1 and define x as follows

xk =

⎧⎨
⎩

0 k = 1
−n(2n+1) k = 2n+1
−n(2n−1) k = 2n

Since {k : |Δxk| � M} is a finite set, which makes it null, {k : |Δxk| > M} is dense for
any M � 0. Hence x is not Δ−statistically bounded.

PROPOSITION 2.3. If a sequence x is Δm−statistically convergent to a number
L then it is Δm−statistically bounded, but the converse is not true.

Proof. Let x be a Δm−statistically convergent sequence to L . Then |Δmxk −L|< ε
for a.a. k. for each ε > 0. By reverse triangle inequality we have |Δmxk| − |L| �
|Δmxk −L| < ε which yields |Δmxk| � |L|+ ε for a.a. k. Since ε is arbitrary x is
Δm−statistically bounded.

For the converse, take m = 1 and define a sequence x = (xk) as follows

x = (xk) = (0,−1,−2,−2,−4,−4,−5,−5,−6,−9,−10,−10,

−11,−11,−12,−12,−16,−16, ...).

Then we calculate Δx as follows:

Δxk =

⎧⎨
⎩

√
k k is square

0 k is odd non-square
1 k is even non-square

.

Now let ε > 0. Since δ ({k : Δxk = 1}) = 1
2 ,

{k : Δxk = 1} ⊂ {k : Δxk > 1− ε}

implies that δ ({k : Δxk > 1− ε}) �= 0. Besides,

{k : Δxk > 1+ ε} ⊂ {
k2 : k ∈ N

}
which is null, so δ {k : Δxk > 1+ ε} = 0. Hence st- limsupΔx = 1 by Theorem 1 in
[12]. Moreover δ ({k : Δxk = 0}) = 1

2 and {k : Δxk = 0} ⊂ {k : Δxk < ε} means that
δ {k : Δxk < ε} �= 0. Also {k : Δxk < −ε} = /0 is null. This yields st- liminfΔx = 0 by
Theorem 1 ′ in [12]. Thus x is not Δ−statistically convergent due to st- limsupΔx �=
st- liminfΔx . However it is clear that δ {k : |Δxk| > 1} = 0 and so x is Δ−statistically
bounded.
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PROPOSITION 2.4. Every Δm−bounded sequence is Δm−statistically bounded,
but the converse is not true.

Proof. Let x ∈ Δm(�∞) . Then there exists some L � 0 such that |Δmxk| � L
for every k ∈ N . This yields |Δmxk| � L for a.a. k. since {k : |Δmxk| > L} = /0 and
δ ( /0) = 0. Hence x is Δm−statistically bounded. For the converse take m = 2 and

x = (xk) = (0,0,0,1,2,5,8,11,14,20,26,32,38,44,50,56,62,72,82,92,102,112, ...).

Observe that

Δ2xk =
{

n, k = 2n

0, else
n = 1,2,3, ...

and
{
k : Δ2xk �= 0

}
= {2n : n = 1,2,3, ...} which is null. Therefore x is a Δ2−statistically

null sequence which yields that x ∈ Δ2(Sb) . But it is obvious that Δ2x is not bounded
and so x /∈ Δ2(�∞) . Thus x ∈ Δ2(Sb)\Δ2(�∞) .

PROPOSITION 2.5. Every Δm−statistically Cauchy sequence is Δm−statistically
bounded, but the converse is not true.

Proof. Let x be a Δm−statistically Cauchy sequence. Then there exsists a number
N(= N(ε)) ∈ N such that δ {k : |Δmxk −ΔmxN | � ε} = 0 for all ε > 0. It is obtained
that δ {k : |Δmxk| � ΔmxN + ε} = 0. Thus x is Δm−statistically bounded. Consider-
ing Δm−statistically Cauchiness and Δm−statistically convergence are equivalent the
sequence in Proposition 2.3 can be reused to prove that the converse is not true.

Now we wish to give a useful characterization for a sequence x to be Δm−statistically
bounded. Before doing that it is necessary to present a Lemma.

LEMMA 2.6. If E ⊆N such that |E|= ∞ and |Ec|= ∞ then there exist increasing

sequences of natural numbers (mj) and (n j) such that E =
∞⋃

j=1
([mj,n j)∩N) where

mj < n j < mj+1 for all j .

Proof. Define (mj) and (n j) as follows

mj =
{

minE , j = 1
min

{
k > n j−1 : k ∈ E

}
, j � 2

n j = min
{
k > mj : k ∈ Ec} .

It is clear that (mj) and (n j) both are strictly increasing and mj < n j < mj+1 for all

j . We claim E =
∞⋃

j=1
([mj,n j)∩N) . If k ∈ E then there exists a j0 ∈ N such that k ∈

[
mj0 ,n j0

)∩N by construction of (mj) and (n j) . This implies k ∈
∞⋃

j=1
([mj,n j)∩N) .

Hence E ⊆
∞⋃

j=1
([mj,n j)∩N) . Now suppose the converse is not true. Then there is some

k ∈ [
mj0 ,n j0

)∩N for j0 ∈N whereas k /∈ E . This contradicts with the definition of n j0

since mj0 < k < n j0 and k /∈ E . Therefore
∞⋃

j=1
([mj,n j)∩N) ⊆ E and this completes

the proof.
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THEOREM 2.7. x is Δm−statistically bounded if and only if there is a Δm−bounded
sequence y such that Δmxk = Δmyk a.a. k. .

Proof. Let x be Δm−statistically bounded. If x is Δm−bounded proof is clear.
Take x ∈ Δm(Sb)\Δm(�∞) . We shall use induction method wrt m .

Let m = 1. Then there exists L � 0 such that E = {k : |Δxk| > L} is null, |E|= ∞
and |Ec| = ∞ . We obtain sequences of natural numbers (mj) and (n j) such that E =

∞⋃
j=1

([mj,n j)∩N) by Lemma 2.6. Now set y = (yk) as follows

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 k = 1

x1 −
k−1
∑
j=1

Δx j k = 2,3, ...,m1

ym1 k = m1 +1,m1 +2, ...,n1

ym1 −
k−1
∑

j=n1

Δx j k = n1 +1,n1 +2, ...,m2

ym2 k = m2 +1,m2 +2, ...,n2

ym2 −
k−1
∑

j=n2

Δx j k = n2 +1,n2 +2, ...,m3

ym3 k = m3 +1,m3 +2, ...,n3

. .

. .

Observe that Δyk =
{

0 k ∈ E
Δxk k ∈ Ec and Δxk = Δyk a.a. k. due to Ec is dense. Be-

sides y = (yk) is Δ−bounded since |Δyk| = |Δxk| � L for all k ∈ Ec . Now assume
the assertion holds for m− 1, i.e. if x is Δm−1−statistically bounded then there is a
Δm−1−bounded sequence y such that Δm−1xk = Δm−1yk a.a. k. . We shall show it is
true for m as well. Let x be Δm−statistically bounded. Then it is derived that z = Δx
is Δm−1−statistically bounded as Δmx = Δm−1(Δx) . Then there exists y ∈ Δm−1(�∞)
such that Δm−1zk = Δm−1yk a.a. k. by assumption for m−1. Also, there is a sequence
s such that Δs = y which implies Δm−1(Δs) ∈ �∞ and so s ∈ Δm(�∞) . We can write

Δmsk = Δm−1(Δsk) = Δm−1yk = Δm−1zk = Δm−1(Δxk) = Δmxk a.a. k.

This completes the proof of necessity part.
Conversely, assume ∃y ∈ Δm(�∞) such that Δmxk = Δmyk a.a. k. . Then there is

L � 0 such that |Δmyk| � L for all k and δ {k : Δmxk �= Δmyk} = 0. Since

{k : |Δmxk| > L} ⊂ {k : Δmxk �= Δmyk}
we get |Δmxk| � L a.a. k. . Hence x is Δm−statistically bounded.

3. α − ,β − ,γ − ,δ− and N− Duals of Δm(Sb)

In this section we show that α − ,β − ,γ − ,δ− and N− duals of Δm(Sb) are
φ , the space of finitely non-zero scalar suquences. We will benefit some well-known
fundamental properties regarding the concept of duals.

We shall initially give the duals of the space of all statistically null sequences.
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THEOREM 3.1. Sc†
0 = φ for † ∈ {α,β ,γ,δ ,N} .

Proof. It is clear that φ ⊆ Sc†
0 for † ∈ {α,β ,γ,δ ,N} . Now we claim Scβ

0 ⊆ φ or

equivalently φ c ⊆ (Scβ
0 )c . If a = (ak) ∈ φ c , then there exists K ⊆ N such that |K| = ∞

and k ∈ K implies ak �= 0. We may pick a subset J ⊆ K with δ (J) = 0 and |J| = ∞ .
Now let x = (xk) be defined as follows

xk =
{ 1

ak
k ∈ J

0 else

It is easy to see that {k : |xk| > ε} ⊆ J for all ε > 0 which implies {k : |xk| > ε} is null

and so st − limx = 0, i.e. x ∈ Sc0 . On the other hand
∞
∑

k=1
akxk = ∑

k∈J
ak

1
ak

= ∑
k∈J

1 = ∞

which yields a /∈ Scβ
0 , i.e. a ∈ (Scβ

0 )c . Thus Scβ
0 ⊆ φ . Since Sc0 is a solid space

Scα
0 = Scβ

0 = Scγ
0 = φ . Besides Scδ

0 = φ by Scδ
0 ⊆ Scβ

0 . Now observe akxk = 1 when
k ∈ J and akxk = 0 otherwise. So it is clear that lim

k→∞
akxk �= 0 which implies a /∈ ScN

0

i.e. a ∈ (ScN
0 )c as well. Therefore ScN

0 ⊆ φ which yields ScN
0 = φ .

COROLLARY 3.2. Sc† = S†
b = φ for † ∈ {α,β ,γ,δ ,N} .

In order to fulfill what we have promised about Δm(Sb) in introduction we will
discuss a basic property regarding densities of subsets of natural numbers and base some
handy theorems on it. We believe it has an important role in the following theorems.

PROPOSITION 3.3. Let K ⊆N and L = {k−1 : k ∈ K} . If K is null then so is L.

Proof. Assume 1 /∈K . We denote |L∩{1,2,3, ...,n}| by �(n) and |K ∩{1,2,3, ...,n}|
by κ(n) . It can be seen that �(n) � κ(n)+1 for all n and so

δ (L) = lim
�(n)
n

� lim
κ(n)+1

n
= lim

κ(n)
n

+ lim
1
n

= δ (K)+ lim
1
n

= 0

Hence δ (L) = 0.

THEOREM 3.4. If x is statistically bounded then it is Δ−statistically bounded.

Proof. Let x = (xk) ∈ Sb . Then there is a μ � 0 such that K = {k : |xk| > μ} is
null. It is clear L = {k : |xk+1| > μ} = {k−1 : k ∈ K} . Then L is null by Proposition
3.3. Thus (xk+1) is statistically bounded as well. Since Sb is a subspace of ω , Δx =
(Δxk) = (xk−xk+1) = (xk)−(xk+1) is statistically bounded which yields that x = (xk)∈
Δ(Sb) .

The following results are easily derivable from Theorem 3.4.

COROLLARY 3.5. a) Δm−1(Sb) ⊆ Δm(Sb) for m � 1 .
b) Sb ⊆ Δm(Sb) for m � 1 .
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THEOREM 3.6. (Δm(Sb))† = φ for † ∈ {α,β ,γ,δ ,N} and m � 0 .

Proof. The inclusion Sb ⊆ Δm(Sb) implies (Δm(Sb))† ⊆ S†
b . Considering S†

b = φ
by Corollary 3.2 we conclude (Δm(Sb))† = φ .

As is seen, the usual duals of Sc0 , Sc , Sb and Δm(Sb) are all φ which we do not
find so interesting. Therefore we wish to introduce a new type of duals of sequence
spaces with respect to statistical sense. We begin introducing statistical summability of
series.

REMARK 3.7. We would like to note that the first definition of a statistical con-
vergent series seems to have been given by B. C. Tripathy ([17], [18]). It is based on
searching statistical limit of the sequence of partial sums of the related series. However
we attempt to provide a more convenient approach in a quite different way which has a
direct link to the notion of density of sets.

DEFINITION 3.8. Let x = (xk) ∈ ω and L ∈ R ,
∞
∑

k=1
xk is said to be statistically

summable to L, if there exists some E ⊆ N such that δ (E) = 1 and ∑
k∈E

xk = L .

DEFINITION 3.9. Let X be any subspace of ω . The statistical-α dual of X and
the statistical-β dual of X are defined respectively as follows:

Xst−α =

{
x ∈ ω :

∞

∑
k=1

|xkyk| is statistically summable ∀y ∈ X

}

Xst−β =

{
x ∈ ω :

∞

∑
k=1

xkyk is statistically summable ∀y ∈ X

}
.

Let X , Y ⊆ ω and †∈ {α,β} . It can be shown that Xst−α ⊆ Xst−β , Y st−† ⊂ Xst−† for
X ⊆ Y and X ⊂ (Xst−†)st−† .

PROPOSTION 3.10. Let {Xi}i∈I be any collection of sequence spaces where I is

an index set. Then

(⋃
i∈I

Xi

)st−†

=
⋂
i∈I

Xst−†
i for † ∈ {α,β} .

Proof. Take † = α . If a = (ak) ∈
(⋃

i∈I
Xi

)st−α
then there is an E ⊆ N such that

δ (E) = 1 and ∑
k∈E

|akxk|< ∞ for all x = (xk)∈ ⋃
i∈I

Xi . If y = (yk)∈Xi ⊂ ⋃
i∈I

Xi then there

exists some F ⊆ N such that δ (F) = 1 and ∑
k∈F

|akyk| < ∞ which implies a ∈ Xst−α
i

for all i ∈ I . So a ∈ ⋂
i∈I

Xst−α
i and

(⋃
i∈I

Xi

)st−α
⊆ ⋂

i∈I
Xst−α

i .

Now, if a ∈ ⋂
i∈I

Xst−α
i then a ∈ Xst−α

i for all i ∈ I . Let y ∈ ⋃
i∈I

Xi . Then there is an

i ∈ I such that y = (yk) ∈ Xi . It follows that there is a set G ⊆ N such that δ (G) = 1

and ∑
k∈G

|akyk| < ∞ since a ∈ Xst−α
i . This yields a ∈

(⋃
i∈I

Xi

)st−α
as y is arbitrary.
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Hence
⋂
i∈I

Xst−α
i ⊆

(⋃
i∈I

Xi

)st−α
. This completes the proof. The case † = β can be

seen analogously.

THEROEM 3.11. If X ∈ {c0,c, �∞,Sc0,Sc,Sb} and † ∈ {α,β} then Xst−† = �b,
where

�b =

{
x ∈ ω : ∑

k∈E

|xk| < ∞ for some E ⊆ N with δ (E) = 1

}
.

Proof. Let X = Sb and † = α . If x ∈ �b and y ∈ Sb then there exist E,F ⊆ N

such that δ (E) = δ (F) = 1, ∑
k∈E

|xk| < ∞ and y.χF ∈ �∞ where χF is the characteristic

sequence of F . Note δ (E ∩F) = 1 and there is an M � 0 such that |yk| � M for all

k ∈ F . It follows ∑
k∈E∩F

|xkyk|� M ∑
k∈E∩F

|xk|< ∞ which yields
∞
∑

k=1
|xkyk| is statistically

summable and so x ∈ Sst−α
b . Hence

�b ⊆ Sst−α
b (1)

Now we wish to take X = c0 and † = β . We claim cst−β
0 ⊆ �b . Let x /∈ �b . Then

we write ∑
k∈E

|xk|= ∞ for all E ⊆N with δ (E) = 1. So there exists a strictly increasing

sequence of positive integers (k( j))∞
j=0 such that k(0) = 1 and ∑

k∈Nj

|xk| � j + 1 for

j = 0,1,2, ... where Nj = E∩ [k( j),k( j +1)−1] . Now define the sequence z = (zk) as
follows

zk =

{
0 k /∈ Nj ∨ xk = 0
|xk|

( j+1)xk
k ∈ Nj ∧ xk �= 0

.

Then z is clearly a null sequence. However,

∑
k∈E

xkzk =
∞

∑
j=0

∑
k∈Nj

1
j +1

|xk| =
∞

∑
j=0

1
j +1 ∑

k∈Nj

|xk| �
∞

∑
j=0

1
j +1

( j +1) =
∞

∑
j=0

1 = ∞

for each E ⊆ N with δ (E) = 1 which yields
∞
∑

k=1
xkzk is not statistically summable and

so x /∈ cst−β
0 . Hence

cst−β
0 ⊆ �b (2)

Considering (1),(2) and well-known inclusions between the members of {c0,c, �∞,Sc0,Sc,Sb}
completes the proof.

Now we would like to introduce some new concepts regarding sequence spaces
with respect to st-α and st-β duality.

DEFINITION 3.12. Let u = (uk) ∈ ω and X be a sequence space. If |uk| � |xk|
for all k ∈ E such that δ (E) = 1 for some x = (xk) ∈ X implies u ∈ X , then X is said
to be statistically normal (or statistically solid) space. i.e. X is statistically normal if

{u = (uk) ∈ ω | ∃(xk) ∈ X , ∃E ⊆ N δ (E) = 1 ∀k ∈ E : |uk| � |xk|} ⊂ X .
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DEFINITION 3.13. Let X be a sequence space. X is called a statistically-† space,
for short st-† space, if X = (Xst−†)st−† where † ∈ {α,β} . In particular a st-α space
is called statistically perfect space or statistically Köthe space.

THEROEM 3.14. �b is a statistically perfect space.

Proof. �b ⊆ (�st−α
b )st−α holds by Definition 3.8. Therefore we only need to show

(�st−α
b )st−α ⊆ �b . First we shall prove Sb ⊂ �st−α

b . If a = (ak) ∈ Sb, then there exist
a set F ⊆ N and a real number L � 0 such that δ (F) = 1 and |ak| � L for all k ∈ F .
Let any x = (xk) ∈ �b be given. Then we get a set E ⊆ N such that δ (E) = 1 and
∑

k∈E
|xk|< ∞ . It follows that ∑

k∈E∩F
|akxk|� L ∑

k∈E∩F
|xk|< ∞ where δ (E∩F) = 1 which

yields a ∈ �st−α
b and so Sb ⊂ �st−α

b . This follows that (�st−α
b )st−α ⊆ Sst−α

b = �b and
hence �b = (�st−α

b )st−α .

THEOREM 3.15. Every statistically perfect space is statistically normal.

Proof. Let X be a statistically perfect space, i.e. X = (Xst−α)st−α and u ∈ ω
such that |uk| � |xk| for all k ∈ E ⊆ N with δ (E) = 1 for some x ∈ X . If y ∈ Xst−α

then there exists some F ⊆ N such that δ (F) = 1 and ∑
k∈F

|ykxk| < ∞ . It follows that

|uk|� |xk| for all k ∈ E∩F implies ∑
k∈E∩F

|ukyk|< ∞ where δ (E∩F) = 1. This yields

u ∈ (Xst−α )st−α = X since y is arbitrary. Hence X is statistically normal.
Theorem 3.15 yields the following corollary.

COROLLARY 3.16. �b is statistically normal.
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[9] ET, M., MURSALEEN, M. AND IŞIK, M., On a class of fuzzy sets defined by Orlicz functions, Filomat
27(5) (2013), 789–796.

[10] FAST, H., Sur la convergence statistique, Colloquium Math. 2 (1951), 241–244.
[11] FRIDY, J. A., On statistical convergence, Analysis 5 (1985), 301–313.
[12] FRIDY, J. A. AND ORHAN, C., Statistical limit superior and limit inferior, Proc. Amer. Math. Soc.

125(12) (1997), 3625–3631.
[13] KAMPTHAN, P. AND GUPTA, M., Sequence spaces and series, Lecture Notes in Pure and Applied

Mathematics, 65. Marcel Dekker, Inc., New York (1981).
[14] KIZMAZ, H., On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169–176.
[15] STEINHAUS, H., Sur la convergence ordinaire et la convergence asymptotique, Colloquium Mathe-

maticum 2 (1951), 73–74.
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