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SHARP BOUNDS FOR SÁNDOR–YANG MEANS IN TERMS

OF ONE–PARAMETER FAMILY OF BIVARIATE MEANS

YUE-YING YANG ∗ , WEI-MAO QIAN AND HUI-ZUO XU

(Communicated by E. Neuman)

Abstract. In the article, we present the best possible parameters α1 , α2 , α3 , α4 , β1 , β2 , β3
and β4 on the interval (0,1) such that the double inequalities

Gα1 (x,y) < RGQ(x,y) < Gβ1
(x,y), Qα2 (x,y) < RQG(x,y) < Qβ2

(x,y),

Hα3 (x,y) < RGQ(x,y) < Hβ3
(x,y), Cα4 (x,y) < RQG(x,y) < Cβ4

(x,y)

hold for all x,y > 0 with x �= y , where RGQ(x,y) and RQG(x,y) are the Sándor-Yang means,
Hp(x,y) , Gp(x,y) , Qp(x,y) and Cp(x,y) are the one-parameter means.

1. Introduction

Let r ∈ R and x,y > 0 with x �= y . Then the r th power mean Ar(x,y) [1, 2, 3, 4]
and Schwab-Borchardt mean SB(x,y) [5, 6] of x and y are given by

Ar(x,y) =
(

xr + yr

2

)1/r

(r �= 0), A0(x,y) =
√

xy

and

SB(x,y) =

⎧⎨
⎩

√
y2−x2

arccos(x/y) , x < y,√
x2−y2

cosh−1 (x/y)
, x > y,

respectively, where cosh−1(t) = log(t +
√

t2−1) is the inverse hyperbolic cosine func-
tion.

It is well known that the power mean Ar(x,y) is continuous and strictly increasing
with respect to r ∈ R for fixed x,y > 0 with x �= y , and the Schwab-Borchardt mean
SB(x,y) is non-symmetric and homogeneous of degree one with respect to its variables
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x and y . Many bivariate means are the special cases of the power mean and Schwab-
Borchardt mean, for example,

H(x,y) =
2xy
x+ y

= A−1(x,y), G(x,y) =
√

xy = A0(x,y), (1)

A(x,y) =
x+ y

2
= A1(x,y), Q(x,y) =

√
x2 + y2

2
= A2(x,y), (2)

T (x,y) =
x− y

2arctan
(

x−y
x+y

) = SB[A(x,y),Q(x,y)],

NS(x,y) =
x− y

2sinh−1
(

x−y
x+y

) = SB[Q(x,y),A(x,y)],

U(x,y) =
x− y

√
2arctan

(
x−y√
2xy

) = SB[G(x,y),Q(x,y)], (3)

and

V (x,y) =
x− y

√
2sinh−1

(
x−y√
2xy

) = SB[Q(x,y),G(x,y)] (4)

are respectively the harmonic [7], goemetric [8], arithmetic [9], quadratic [10], sec-
ond Seiffert [11], Neuman-Sánodor [12], first and sencond Yang means [13], where
sinh−1(t) = log(t +

√
t2 +1) is the inverse hyperbolic sine function.

Recently, the bivariate means have attracted the attention of many researchers due
to they are closely related to the special functions [14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30], they have wide applications in pure and applied mathematics,
physics, mechanics, statistics, economics and other natural sciences [31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64]. In particular, many remarkable properties and inequalities
involving the bivariate mean can be found in the literature [65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80].

Let X(x,y) and Y (x,y) be the symmetric bivariate means of x and y . Then the
Sándor-Yang mean RXY (x,y) [81] is defined by

RXY (x,y) = Y (x,y)e
X(x,y)

SB[X(x,y),Y (x,y)]−1

and Yang [81] provided the explicit formulas for RAQ(x,y) , RQA(x,y) , RGQ(x,y) and
RQG(x,y) as follows

RAQ(x,y) = Q(x,y)e
A(x,y)
T (x,y)−1

, RQA(x,y) = A(x,y)
Q(x,y)
NS(x,y)−1

,

RGQ(x,y) = Q(x,y)e
G(x,y)
U(x,y)−1

, RQG(x,y) = G(x,y)
Q(x,y)
V(x,y)−1

. (5)
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Let x > y > 0, v = (x− y)/(x+ y) ∈ (0,1) , p ∈ [0,1] and N(x,y) be a symmetric
bivariate mean. Then the one-parameter bivariate mean Np(x,y) [82] is given by

Np(x,y) = N

[
(1+ p)x+(1− p)y

2
,
(1+ p)y+(1− p)x

2

]
. (6)

From (1), (2) and (6) we clearly see that

Hp(x,y) = A(x,y)
[
1− (pv)2] , Gp(x,y) = A(x,y)

√
1− (pv)2, (7)

Qp(x,y) = A(x,y)
√

1+(pv)2, Cp(x,y) = A(x,y)
[
1+(pv)2] , (8)

where C(x,y) = (x2 + y2)/(x+ y) is the contra-harmonic mean.
In [83, 84], the authors proved that the double inequalities

Aλ1
< RQA(x,y) < Aμ1(x,y), Aλ2

< RAQ(x,y) < Aμ2(x,y),

Aλ3
< RQG(x,y) < Aμ3(x,y), Aλ4

< RGQ(x,y) < Aμ4(x,y),

hold for all x,y > 0 with x �= y if and only if λ1 � log2/[1+ log2−√
2log(1+

√
2)] =

1.5517 · · ·, μ1 � 5/3, λ2 � 4log2/(4 + 2log2− π) = 1.2351 · · · , μ2 � 4/3, λ3 �
2log2(2− log2) = 1.0607 · · ·, μ3 � 4/3, λ4 � 2log2/(2 + log2) = 0.5147 · · · and
μ4 � 2/3.

Xu and Qian [85] found the best possible parameters α1 , α2 , β1 and β2 on the
interval [0,1] , and α3 , α4 , β3 and β4 on the interval [1/2,1] such that the double
inequalities

Qα1(x,y)A1−α1(x,y) < RQA(x,y) < Qβ1(x,y)A1−β1(x,y),

Qα2(x,y)A1−α2(x,y) < RAQ(x,y) < Qβ2(x,y)A1−β2(x,y),

Q[α3x+(1−α3)y,α3y+(1−α3)x] < RQA(x,y)

< Q[β3x+(1−β3)y,β3y+(1−β3)x],

Q[α4x+(1−α4)y,α4y+(1−α4)x] < RAQ(x,y)

< Q[β4x+(1−β4)y,β4y+(1−β4)x]

hold for all x,y > 0 with x �= y .
The main purpose of the article is to present the best possible parameters α1 , α2 ,

α3 , α4 , β1 , β2 , β3 and β4 on the interval (0,1) such that the double inequalities

Gα1(x,y) < RGQ(x,y) < Gβ1
(x,y), Qα2(x,y) < RQG(x,y) < Qβ2

(x,y),

Hα3(x,y) < RGQ(x,y) < Hβ3
(x,y), Cα4(x,y) < RQG(x,y) < Cβ4

(x,y)

hold for all x,y > 0 with x �= y .



1184 Y.-Y. YANG, W.-M. QIAN AND H.-Z. XU

2. Lemmas

In order to prove our main results, we need four lemmas which we present in this
section.

LEMMA 1. Let p ∈ (0,1) and

f (t) =
2t

(1− p2)t2 +2
− arctan(t). (9)

Then the following statements are true:
(1) If p =

√
3/3 , then f (t) < 0 for all t > 0 .

(2) If p =
√

1−2/e2 = 0.8540 · · ·, then there exists λ > 0 such that f (t) > 0 for
all t ∈ (0,λ ) and f (t) < 0 for t ∈ (λ ,∞) .

Proof. It follows from (9) that

f (0) = 0, f (∞) = −π
2

, (10)

f ′(t) = − t2

(t2 +1)[(1− p2)t2 +2]2
f1(t), (11)

where
f1(t) = (p4−4p2 +3)t2 +2(1−3p2). (12)

(1) If p =
√

3/3, then (12) leads to

f1(t) =
16
9

t2 > 0 (13)

for t ∈ (0,∞) .
Therefore, f (t) < 0 for all t ∈ (0,∞) follows easily from (10), (11) and (13).
(2) If p =

√
1−2/e2 , then (12) and the numerical computations show that

p4−4p2 +3 = 0.6146 · · ·> 0, (14)

f1(0) = 2(1−3p2) = −2.3759 · · ·< 0, f1(∞) = ∞. (15)

From (11), (12), (14) and (15) we clearly see that there exists λ0 > 0 such that f (t)
is strictly increasing on (0,λ0) and strictly decreasing on (λ0,1) . Therefore, Lemma
1(2) follows from (10) and the piecewise monotonicity of the function f (t) on the
interval (0,1) . �

LEMMA 2. Let p ∈ (0,1) and

g(t) =
2t
√

t2 +1
(1+ p2)t2 +2

− sinh−1(t). (16)

Then the following statements are true:
(1) If p =

√
3/3 , then g(t) < 0 for all t > 0 .

(2) If p =
√

8/e2−1= 0.2875 , then exists μ > 0 such that g(t)> 0 for t ∈ (0,μ)
and g(t) < 0 for t ∈ (μ ,∞) .
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Proof. It follows from (16) that

g(0) = 0, g(∞) = −∞, (17)

g′(t) = − t2√
t2 +1[(1+ p2)t2 +2]2

g1(t), (18)

where
g1(t) = (1+ p2)2t2 +2(3p2−1). (19)

(1) If p =
√

3/3, then equation (19) leads to

g1(t) =
16
9

t2 > 0 (20)

for all t > 0.
Therefore, g(t) < 0 for all t > 0 follows from (17), (18) and (20).
(2) If p =

√
8/e2−1, then then (19) and the numerical computations give

g1(0) = 2(3p2−1) = −1.5039 · · ·< 0, g1(∞) = ∞. (21)

From (18), (19) and (21) we clearly see that there exists μ0 > 0 such that g(t)
is strictly increasing on (0,μ0) and strictly decreasing on (μ0,∞) . Therefore, Lemma
2(2) follows easily from (17) and the piecewise monotonicity of the function g(t) on
the interval (0,1) . �

LEMMA 3. Let p ∈ (0,1) and

h(t) =
2t[(1+ p2)t2 +2]

(t2 +2)[(1− p2)t2 +2]
− arctan(t). (22)

Then the following statements are true:
(1) If p =

√
6/6 , then h(t) < 0 for all t > 0 .

(2) If p =
√

1−√
2/e = 0.6926 · · · , then there exists σ > 0 such that h(t) > 0

for t ∈ (0,σ) and h(t) < 0 for t ∈ (σ ,∞) .

Proof. It follows from (22) that

h(0) = 0, h(∞) = −π
2

, (23)

h′(t) =
t2

(t2 +1)(t2 +2)2[(1− p2)t2 +2]2
h1(t), (24)

where
h1(t) = (p4 +2p2−3)t6−2(3p4−14p2 +7)t4 (25)

−4(2p4−18p2 +5)t2 +8(6p2−1).
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(1) If p =
√

6/6, then equation (25) becomes

h1(t) = − 1
36

(
95t4 +342t2 +296

)
t2. (26)

Therefore, h(t) < 0 for all t > 0 follows easily from (23), (24) and (26).

(2) If p =
√

1−√
2/e , then we denote h2(t)= h′1(t)/(2t) and h3(t)= h′2(t)/(4t) .

Equation (26) and numerical computations show that

p4 +2p2−3 = −1.8103 · · ·< 0, (27)

3p4−14p2 +7 = 0.9740 · · ·> 0, (28)

2p4−18p2 +5 = −3.1750 · · ·< 0, (29)

6p2−1 = 1.8784 · · ·> 0, (30)

h2(t) = 2(p4 +2p2−3)t4−4(3p4−14p2 +7)t2−4(2p4−18p2 +5), (31)

h3(t) = 3(p4 +2p2−3)t2−2(3p4−14p2 +7). (32)

It follows from (25) and (27)-(32) that

h1(0) = 8(6p2−1) > 0, h1(∞) = −∞, (33)

h2(0) = −4(2p4−18p2 +5) > 0, h2(∞) = −∞, (34)

h3(t) < 0 (35)

for all t > 0.
From (34) and (35) we know that there exists σ0 > 0 such that h1(t) is strictly

increasing on (0,σ0) and strictly decreasing on (σ0,∞) . Then (24) and (33) lead to the
conclusion that there exists σ1 > 0 such that h(t) is strictly increasing on (0,σ1) and
strictly decreasing on (σ1,∞) . Therefore, Lemma 3(2) follows easily from (23) and the
piecewise monotonicity of the function h(t) on the interval (0,1) . �

LEMMA 4. Let p ∈ (0,1) and

k(t) =
2t
√

t2 +1[(1− p2)t2 +2]
(t2 +2)[(1+ p2)t2 +2]

− sinh−1(t). (36)

Then the following statements are true:
(1) If p =

√
6/6 , then k(t) < 0 for all t > 0 .

(2) If p =
√

2
√

2/e−1 = 0.2012 · · ·, then there exists τ > 0 such that k(t) > 0
for t ∈ (0,τ) and k(t) < 0 for t ∈ (τ,∞) .
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Proof. It follows from (36) that

k(0) = 0, k(∞) = −∞, (37)

k′(t) = − t2√
1+ t2(t2 +2)2[(1+ p2)t2 +2]2

k1(t), (38)

where

k1(t) = (1+ p2)2t6 +2(5p4 +14p2 +1)t4 +4(2p4 +18p2−1)t2 +8(6p2−1). (39)

(1) If p =
√

6/6, then equation (39) becomes

k1(t) =
1
36

(49t4 +250t2 +296)t2. (40)

Therefore, k(t) < 0 for all t > 0 follows from (37), (38) and (40).

(2) If p =
√

2
√

2/e−1, then we denote k2(t)= k′1(t)/(2t) and k3(t)= k′2(t)/(4t) .
Equation (39) and numerical computations lead to

2p4 +18p2−1 = −0.2673 · · ·< 0, (41)

6p2−1 = −0.7568 · · ·< 0, (42)

k2(t) = 3(1+ p2)2t4 +4(5p4 +14p2 +1)t2 +4(2p4 +18p2−1), (43)

k3(t) = 3(1+ p2)2t2 +2(5p4 +14p2 +1). (44)

It follows from (39) and (41)-(44) that

k1(0) = 8(6p2−1) < 0, k1(∞) = ∞, (45)

k2(0) = 4(2p4 +18p2−1) < 0, k2(∞) = ∞, (46)

k3(t) > 0 (47)

for all t > 0.
From (46) and (47) we know that there exists τ0 > 0 such that k1(t) is strictly

decreasing on (0,τ0) and strictly increasing on (τ0,∞) . Then (38) and (45) lead to the
conclusion that exists τ1 > 0 such that k(t) is strictly increasing on (0,τ1) and strictly
decreasing on (τ1,∞) . Therefore, Lemma 4(2) follows from (37) and the piecewise
monotonicity of the function k(t) on the interval (0,1) . �

3. Main Results

THEOREM 1. Let α1,β1 ∈ (0,1) . Then the double inequality

Gα1(x,y) < RGQ(x,y) < Gβ1
(x,y)

holds for all x,y > 0 with x �= y if and only α1 �
√

1−2/e2 = 0.8540 · · · and β1 �√
3/3 = 0.5773 · · ·.
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Proof. Since RGQ(x,y) and Gp(x,y) are symmetric and homogeneous of degree
one, without loss of generality, we assume that x > y > 0. Let p ∈ (0,1) and t =
(x− y)/

√
2xy ∈ (0,∞) . Then from (1)-(3), (5) and (7) we get

log[RGQ(x,y)]− log[Gp(x,y)] (48)

=
1
2

log(1+ t2)+
arctan(t)

t
− 1

2
log

[
1
2
(1− p2)t2 +1

]
−1.

Let

F(t) =
1
2

log(1+ t2)+
arctan(t)

t
− 1

2
log

[
1
2
(1− p2)t2 +1

]
−1. (49)

Then simple computations lead to

F(0) = 0, (50)

F(∞) =
1
2

log

(
2

1− p2

)
−1, (51)

F ′(t) =
1
t2

f (t), (52)

where f (t) is defined by (9).
We divide the proof into four cases.
Case 1 p =

√
3/3. Then from Lemma 1(1), (48)-(50) and (52) we get

RGQ(x,y) < G√
3/3(x,y).

Case 2 p =
√

1−2/e2 . Then from Lemma 1(2) and (52) we know that there
exists λ > 0 such that F(t) is strictly increasing on (0,λ ) and strictly decreasing on
(λ ,∞) . Note that (51) becomes

F(∞) = 0. (53)

Therefore,
G√

1−2/e2(x,y) < RGQ(x,y)

follows easily from (48)-(50) and (53) together with the piecewise monotonicity of the
function F(t) on the interval (0,∞) .

Case 3
√

3/3 < p < 1. Let t → 0+ . Then making use of (49) and power series
expansion we get

F(t) =
1
4

(
p2− 1

3

)
t2 +o

(
t2

)
. (54)

Equations (48), (49) and (54) imply that there exists small enough 0 < δ1 < 1 such
that

RGQ(x,y) > Gp(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (0,δ1) .
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Case 4 0 < p <
√

1−2/e2 . Then equation (51) leads to

F(∞) < 0. (55)

From (48), (49) and (55) we clearly see that there exists large enough M1 > 0

Gp(x,y) > RGQ(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (M1,∞) . �

THEOREM 2. Let α2,β2 ∈ (0,1) . Then the double inequality

Qα2(x,y) < RQG(x,y) < Qβ2
(x,y)

holds for all x,y > 0 with x �= y if and only α2 �
√

8/e2−1 = 0.2875 · · · and β2 �√
3/3 = 0.5773 · · ·.

Proof. Since RQG(x,y) and Qp(x,y) are symmetric and homogeneous of degree
one, without loss of generality, we assume that x > y > 0. Let p ∈ (0,1) and t =
(x− y)/

√
2xy ∈ (0,∞) . Then it follows from (1), (2), (4), (5) and (8) that

log[RQG(x,y)]− log[Qp(x,y)] (56)

=

√
1+ t2 sinh−1(t)

t
− 1

2
log

[
1
2
(1+ p2)t2 +1

]
−1.

Let

G(t) =

√
1+ t2 sinh−1(t)

t
− 1

2
log

[
1
2
(1+ p2)t2 +1

]
−1. (57)

Then
G(0) = 0, (58)

G(∞) =
3
2

log2− 1
2

log(1+ p2)−1, (59)

G′(t) =
1

t2
√

1+ t2
g(t), (60)

where g(t) is defined by (16).
We divide the proof into four cases.
Case 1 p =

√
3/3. Then from Lemma 2(1), (56)-(58) and (60) we know that

RQG(x,y) < Q√
3/3(x,y).

Case 2 p =
√

8/e2−1. Then it follows from Lemma 2(2) and (60) that there
exists μ > 0 such that G(t) is strictly increasing on (0,μ) and strictly decreasing on
(μ ,∞) . Note that (59) becomes

G(∞) = 0. (61)
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Therefore,
RQG(x,y) > Q√

8/e2−1
(x,y)

follows from (56)-(58) and (61) together with the piecewise monotonicity of the func-
tion G(t) on the interval (0,1) .

Case 3 0 < p <
√

3/3. Let t → 0+ . Then making use of (57) and the power series
expansion we have

G(t) =
1
4

(
1
3
− p2

)
t2 +o

(
t2

)
. (62)

Equations (56), (57) and (62) lead to the conclusion that there exists small enough
0 < δ2 < 1 such that

RQG(x,y) > Qp(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (0,δ2) .
Case 4

√
8/e2−1 < p < 1. Then equation (59) leads to

G(∞) < 0. (63)

Equations (56), (57) and (63) imply that there exists large enough M2 > 0

Qp(x,y) > RGQ(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (M2,∞) . �

THEOREM 3. Let α3,β3 ∈ (0,1) . Then the double inequality

Hα2(x,y) < RGQ(x,y) < Hβ3
(x,y)

holds for all x,y > 0 with x �= y if and only α3 �
√

1−√
2/e = 0.6926 · · · and β3 �√

6/6 = 0.4082 · · ·.

Proof. Since RGQ(x,y) and Hp(x,y) are symmetric and homogeneous of degree
one, without loss of generality, we assume that x > y > 0. Let p ∈ (0,1) and t =
(x− y)/

√
2xy ∈ (0,∞) . Then it follows from (1)-(3), (5) and (7) that

log[RGQ(x,y)]− log[Hp(x,y)] (64)

=
1
2

log

(
t4 +3t2 +2

2

)
+

arctan(t)
t

− log

[
1
2
(1− p2)t2 +1

]
−1.

Let

H(t) =
1
2

log

(
t4 +3t2 +2

2

)
+

arctan(t)
t

− log

[
1
2
(1− p2)t2 +1

]
−1. (65)

Then
H(0) = 0, (66)
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H(∞) =
1
2

log2− log(1− p2)−1, (67)

H ′(t) =
h(t)
t2

, (68)

where h(t) is defined by (22).
We divide the proof into four cases.
Case 1 p =

√
6/6. Then from Lemma 3(1), (64)-(66) and (68) we know that

RGQ(x,y) < H√
6/6(x,y).

Case 2 p =
√

1−√
2/e . Then it follows from Lemma 3(2) and (68) that there

exists σ > 0 such that H(t) is strictly increasing on (0,σ) and strictly decreasing on
(σ ,∞) . Note that (67) becomes

H(∞) = 0. (69)

Therefore,
RGQ(x,y) > Q√

1−√
2/e

(x,y)

follows from (64)-(66) and (69) together with the piecewise monotonicity of the func-
tion H(t) on the interval (0,1) .

Case 3
√

6/6 < p < 1. Let t → 0+ . Then making use of (65) and the power series
expansion we get

H(t) =
1
2

(
p2− 1

6

)
t2 +o

(
t2

)
. (70)

Equations (64), (65) and (70) lead to the conclusion that there exists small enough
0 < δ3 < 1 such that

RGQ(x,y) > Hp(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (0,δ3) .

Case 4 0 < p <
√

1−√
2/e . Then equation (67) leads to

H(∞) < 0. (71)

Equations (64), (65) and (71) imply that there exists large enough M3 > 0

RGQ(x,y) < Hp(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (M3,∞) . �

THEOREM 4. Let α4,β4 ∈ (0,1) . Then the double inequality

Cα2(x,y) < RQG(x,y) < Cβ4
(x,y)

holds for all x,y > 0 with x �= y if and only α4 �
√

2
√

2/e−1 = 0.2012 · · · and β4 �√
6/6 = 0.4082 · · ·.
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Proof. Since RQG(x,y) and Cp(x,y) are symmetric and homogeneous of degree
one, without loss of generality, we assume that x > y > 0. Let p ∈ (0,1) and t =
(x− y)/

√
2xy ∈ (0,∞) . Then it follows from (1), (2), (4), (5) and (8) that

log[RQG(x,y)]− log[Cp(x,y)] (72)

=
1
2

log

(
1
2
t2 +1

)
+

√
1+ t2 sinh−1(t)

t
− log

[
1
2
(1+ p2)t2 +1

]
−1.

Let

K(t) =
1
2

log

(
1
2
t2 +1

)
+

√
1+ t2 sinh−1(t)

t
− log

[
1
2
(1+ p2)t2 +1

]
−1. (73)

Then
K(0) = 0, (74)

K(∞) =
3
2

log2− log(1+ p2)−1, (75)

K′(t) =
1

t2
√

1+ t2
k(t), (76)

where k(t) is defined by (36).
We divide the proof into four cases.
Case 1 p =

√
6/6. Then from Lemma 4(1), (72)-(74) and (76) we know that

RQG(x,y) < C√
6/6(x,y).

Case 2 p =
√

2
√

2/e−1. Then it follows from Lemma 4(2) and (76) that there
exists τ > 0 such that K(t) is strictly increasing on (0,τ) and strictly decreasing on
(τ,∞) . Note that equation (75) leads to

K(∞) = 0. (77)

Therefore,
RQG(x,y) > C√

2
√

2/e−1
(x,y)

follows from (72)-(74) and (77) together with the piecewise monotonicity of the func-
tion K(t) on the interval (0,1) .

Case 3 0 < p <
√

6/6. Let t → 0+ . Then making use of (73) and the power series
expansion we get

K(t) =
1
2

(
1
6
− p2

)
t2 +o

(
t2

)
. (78)

Equations (72), (73) and (78) lead to the conclusion that there exists small enough
0 < δ4 < 1 such that

RQG(x,y) > Cp(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (0,δ4) .
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Case 4
√

2
√

2/e−1 < p < 1. Then equation (75) leads to

K(∞) < 0. (79)

Equations (72), (73) and (79) imply that there exists large enough M4 > 0

RQG(x,y) < Cp(x,y)

for all x > y > 0 with (x− y)/
√

2xy ∈ (M4,∞) . �
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