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ON A HILBERT-TYPE INTEGRAL INEQUALITY WITH
NON-HOMOGENEOUS KERNEL OF MIXED HYPERBOLIC FUNCTIONS

MINGHUI YOU AND YUE GUAN

(Communicated by M. Krni¢)

Abstract. In this paper, by constructing a new non-homogeneous kernel of mixed hyperbolic
functions, we establish a new Hilbert-type integral inequality with the best constant factor. We
also consider the equivalent form of the obtained inequality. Moreover, by using the rational
fraction expansion of cotangent function and cosecant function, some special Hilbert’s type in-
equalities with the constant factors related to the higher derivatives of cotangent function and
cosecant function are presented.

1. Introduction

Suppose E is a measurable set, f(x) and p(x)(> 0) are two measurable functions
definedon E, p > 1,

1

2(E) =4 731l = ([ 17 wam) <o b

and

1
P
L) i={ 75l = (s wam )" <=
Let f,g >0, f,g € LP(0,o0), then we have the well known Hilbert inequality .

/Ow/ow %giy)dx‘ly <z fllplelg, (1.1)

where the constant factor 7 in (1.1) is the best possible.

In the past 20 years, by introducing various new kernel functions, multiple param-
eters, special functions such as 3 - function and T"- function, and using the skills of real
or complex analysis, researchers have established a large number of new Hilbert-type
inequalities(see[1,3,5-10,12-14]).
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In this paper, we will establish the following Hilbert-type inequalities with non-
homogeneous kernel of mixed hyperbolic functions

/ON /ON sinh(xy) csch(3xy) f(x)g(y)dxdy < \/l_i;Hpr,qu g.v- (1.2)
/: /Om sech(xy) sech(2xy) f(x)g(v)dxdy < (ﬁ%)”u Fllpullgllays (1.3)
[ esehtoy anh 220) sy < 271wl (1.4

where i (x) =x~!, v(y) =y~

More generally, by introducing multiple parameters, we construct the following
non-homogeneous kernel

1

eﬁzx.y + neﬁ3Xy
eﬁl)‘y —+ de— Bixy’

where 1,0 =+1, B1 >0, B3 < B <PBi1 (B # B3z forn=—1), B >0 for nd = —1,
B >0 forné = 1. By using the some skills of analysis, we will establish a new Hilbert-
type inequality with the kernel K (x,y). We will show that the new obtained inequality is
the unified generalization of (1.2)-(1.4) and some other inequalities. Most importantly,
by the rational fraction expansion of cotangent function and cosecant function, some
special inequality with the constant factor related to the higher derivatives of cotangent
function and cosecant function are obtained at the end of the paper.

K(x,y):= (L.5)

2. Some Lemmas

DEFINITION 2. 11| Let 7> 0,
I'(z):= / ¥ le ™ dx
0

is the T -function. Specially, if z € N, we have T'(z) = (z—1)!.
LEMMA 2.2. Let a,b>0,a+b=1, ¢(x) =cotx, n € NU{0}, then

) (2n)! 1 1
") (am) = o Z ka1 (kt byt ) (2.1)
ity @nE DI E 1 1
¢ (ar) ) ga (k+ a)2+2 T k+b)22 ) (22)

Proof. We have the rational fraction expansion of @(x) = cotx as follow ['!]:

L3 1
X x+k7t x—kn '

k=1
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Find the 2nth derivative of ¢(x), then

B 1 1 1
(p(z )(x) = (21’1)' (W +IZ ((x+k7t)2n+l + (x—k77:)2"+1>> . (23)

1

Let x =am in (2.3), in view of a+ b =1, we have

T )L 1 3 1
¢ (a”) 2+l kga(k‘f'a)an ]Zl(k_a)ZnH

() Z 1 1
n-2n+1 k+a)2n+l (k+b)2n+1 :

(2.1)is proved. Similarly, find the (24 1)th derivative of ¢(x), we can prove
(2.2).

LEMMA 2.3. Let a,b>0,a+b=1, y(x) =cscx, n € NU{0}, then

N @) g 1 1

v am) = ot 30 (e ) 24
. ) 1 1

W(z H)(an) - r2n+2 kgb(_l)k ((k+a)2n+2 o (k—|—b)2”+2) : (2'5)

Proof. We have the following rational fraction expansion of y(x) = csc X1

oo i Lo,
_x = x+kn x—km)’

Find the 2nth derivative of y(x), then

1 - 1 1
W(Z")(x) = (21’1)' (W + 2(—1)k ((x+k7t)2"+1 + (x—kﬂ)2n+1)> . (26)

k=1

Let x =arm in (2.6), then

n n)! (& (=1 S (=DM
‘I/( )(a”): 2Tl (Z (k+a 2n+1 Z k a) 2n+1

n)! 1 1
— —1)k )
mr2n+1 kgb( ) ((k+a)2n+1 + (k+b)2n+1)

Therefore, (2.4) is proved. Similarly, (2.5) can be proved.
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LEMMA 2.4. Let n,6 =+1, 1 >0, B3<Ba<Bi (B #Bs forn=—1), B >0
fornd=—1, B>0 fornd =1. K(x,y) is defined by (1.5), and
S (-9) < (=9)

Cn,é(ﬁhﬁz,ﬁ%ﬁ) ::kgé (2B1k+ B _ﬁz)ﬁﬂ +nk§6 (2B1k+ By _ﬁ3)ﬁ+1’

(2.7)

then

0= [ Kby =x PITB+0C (BB BuB) (28)
= [ KeoPax=y PITB 10y 5 (B BrBrB) (29)

Proof. Setting xy =, we have
o(x) :x_ﬁ_l/owl((l,t)tﬁdt. (2.10)

Since ¢ € (0,4), B; >0, 6 = +1, we find m = 3% o(—8)ke 2Pk,
Therefore

/ K(1,0)Par = Z( 6)k/me‘(2ﬁlk+ﬁl"32)‘tﬁdt

k=0 0
+n2 / ~CBHP =P B gr = I +- 1. (2.11)
Setting u = (2B1k + [51 — B2)t, we have
oo _S\k
=T(B+ 1)% (Zﬁlkiﬁf)— P (2.12)
Similarly, setting u = (2B1k + fB; — B3)t, then
=T(B+1) i (&) (2.13)

& (2Bik+ B — 3B+l
Combining(2.11), (2.12) and (2.13), and using (2.7), we obtain

/ TK(L0)Bdr =T (B +1)Cy 5(B1. Ba. B B). (2.14)

Applying (2.14) to (2.10), we obtain (2.8). Similarly, it can be proved that (2.9)
also holds.

REMARK?2.5. If one of the following conditions is satisfied: (1) 1 =1, 6 =
-1,B>0, 2)n=-1,0=1,8>0,3)n=1,6=1,>0, 4n=-1,8=
—1, B >0, it can be easy to show that the series on the right side of (2.7) is convergent.
Forn=-1,6=-1, =0, since B3 < B < B

i 1 _ i 1 _ i B> —Bs
S02Bik+Bi— B S 2Bik+Bi— B S 2Bik+ B — B2)(2Bik+ B — B3)
converges to a positive number obviously. Therefore the series on the right-hand side

of (2.7) is convergent under the conditions of Lemma 2.4.
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LEMMA 2.6. Let 1,0 ==+1, B1 >0, B3 <P <Bi (B2 # Bs forn=—-1), B >
0 for né6 =—1, B >0 fornd =1. K(x,y) and Cy s(B1,B2,B3,B) are defined by
(1.5) and (2.7) respectively, € is a sufficiently small positive number, fe(x), ge(x) are

defined as follows :
pB+e
i {¥F xe,
0, x € (1,e0),
0, x € (0,1],
ge(x) := aB-e
x 4, x€(l,e0),
then

8]:=8/N/wK(x,y)fg(x)gg(y)dxdy:F(ﬁ+1)Cn,5(ﬁ17ﬁ27ﬁ3»ﬁ)+0(1)~ (2.15)
o Jo

Proof. Setting xy = ¢, by Fubini’s theorem, we have

°° Bte
Sst/yq ( nyxpl’ dx)dy—s/ y_‘Sl(/Klttl’ dt)dy
1
o0 1 B+e et Y pte
:8/ y &t (/ K(lJ)t%dt)dy—I—S/ y ¢! (/ K(Lt)t%dt)dy
1 1
—/Kltt P dt+8/ K(1,0)t e (/ y e ldy>dt

—/Klttl’dH—/Kltt‘idt (2.16)

Let € — 07 in (2.16), and using (2.14), then (2.15) is proved.

3. Main Results

THEOREM 3.1. Let p>1, 141 =1, 0,8 =£1, B1 >0, B3 <o < B1 (B2 #
Bs for n =—1). Let B >0 for n6 =—1and B >0 for n6 = 1. Let u(x) =
x~PBHY v(y) =y~ B and define f(x), g(x) >0, such that f(x) € L}(0,e),
g(x) € LY(0,00). Further more, define K(x,y) and Cy 5(B1,B2,B3,B) via (1.5) and
(2.7) respectively, then

| [ Kensest)asdy < B+ 1Cy (81, BosBr B pallglys  (3:1)
where the constant factor T'(B + 1)Cyy s(B1, B2, B3, B) is the best possible.

Proof. We start the proof of Theorem 3.1 from the following inequality (see [4])
which provides a unified treatment of Hilbert’s type inequalities, that is

K(x,y)f(x)g(y)dp (x)dua(y)

QxQ
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1

</ P EFF xdp x ) (/‘l’q 1)y ))q, (3.2)

where p > 1,1% + Ll] =1, uy, Up are positive o-finite measures, K : Q x Q — R,
f,8,0,y : Q— R are measurable, non-negative functions and

_ [ K(xy) _ [ K(vy)
P = [ Smirdin®), G0)= [ "R ().

(3.2) takes the form of equality, if and only if f7(x) = K;@~(?*9)(x), and g?(y) =
K 1//_(1’+‘1) (v) for arbitrary constants K; and K.
B B
Let Q= (0,00), @(x)=x 4, y(y)=y 7,andlet K(x,y) be defined by Lemma
2.4. Then F(x) = o(x), G(y) = @(y), where @(x) and @(y) are defined by Lemma
2.4. Combining (3.2), (2.8) and (2.9), we have

//ny 2(y)dxdy
<</wa_%w( ) (/ y 7(17 )dy)é

ST(B+1)Cns (B, B2: B3, B) I Nl pllgllgv- (3.3)

If (3.3) takes the form of equality, we obtain x~(PP*1) 7 (x) = KL and y=(@B+1)ga(y)
= %, which contradict the facts f(x) € Lj;(0,e0), and g(x) € L (0, o). Therefore, (3.3)
keeps the form of strict inequality, and (3.1) is proved.

Next, It should be proved that the constant factor I'(B + 1)Cy, 5(B1,B2,B3,B) in
(3.1) is the best possible. To do that, we suppose that there exists a positive constant k
(0 <k <T(B+1)Cps(B1,B2,B3.B)). such that (3.1) is still valid if we replace T'( +
I)Cnﬁ (ﬁl ’ ﬂZa ﬂ37ﬁ) by k . Thatis

| [ Kensest)asdy <kl sl ulglao (34)

Replacing f and g in (3.4) by f: and g, defined in Lemma 2.6 respectively, we
have

o poo 1 oo

e [ [ K fewgeldxdy < ek [ xlax)p([ e lant =k
0 0 0 1

By Lemma 2.6, we obtain

L(B+1)C.s(B1, B2, B3, B) +0(1) <k

Let € — 07, It follows that T(8 + 1)Cy, 5(B1, B2, B3, B) < k, which contradicts the
hypothesis that k < T'(B +1)Cy, 5(B1, B2, B3, B). Hence, the constant factor in (3.1) is
the best possible. Theorem 3.1 is proved. O
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THEOREM 3.2. Let p>1, +1=1,1n,8==%1, Bi >0, B3 <P <P (B2 # P

forn=—1), >0 for nd=—1, >0 fornd =1. p(x) =x PP v(y) =
y @D f(x) >0, f(x) € LL(0,00), K(x,y) and T(B+ 1)Cy 5(B1,Ba. B3, B) are de-
fined by Lemma 2.4, then

/ypl“pl(/ K(x,y)f dx) dy

< (T(B+1)Cy.5(B1, B2 B3, B))” (11l pe)” (3.5)

where the constant factor (T(B +1)Cy, 5(Bi .B2,B3.B))" is the best possible, and (3.5)
is equivalent to (3.1).

Proof. Setting g(y) := y?PP=1( [ K (x,y) f(x)dx)" ", by (3.1), we find

0< (el = ([ B oar)
(/ yl’f”l’l(/ K(x,y)f dx) dy> (/ / K(x,y)f )dxdy)p

< (DB +1)Cn 5(B1. B2, B3, B))” ([1£llp)” (llgllg.v)”- (3.6)

<(lelyw)? = [Pt ( | °°K<x,y>f<x>dx)”dy

< (CB+1)Cns(Bi:B2:B))" (Ifllp)” (3.7)

Since f(x) € Lj;(0,00), by (3.7), it follows that g(x) € LY (0,%0). By using (3.1)
again, both (3.6) and (3.7) keep the form of strict inequalities, then (3.5) is proved.
On the other hand, suppose that (3.5) holds, by Hdlder’s inequality, we have

/ / K(x, ) f(x)g(y)dxdy
=/Ow (ym‘lf/:K(w)f(X)dX) <y<ﬁ+‘l’)g(y)) dy
< (e ([ xsar) dy)’l’ngnq,v. 68)

Applying (3.5) to (3.8), we obtain (3.1). Hence, (3.1) and (3.5) are equivalent.

If the constant factor (I'(B + 1)Cp 5(B1,B2,B3.8))" in (3.5) is not the best possi-
ble, from the equivalence of (3.1) and (3.5), we may get a contradiction that the constant
factor in (3.1) is not the best possible. Therefore the constant factor in (3.5) is the best
possible. Theorem 3.2 is proved. O

Therefore
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4. Corollaries
Setting N = —1,0 = —1, B3 =—P1, B =2n(ne NU{0}) in Theorem 3.1, and
using (2.1) and (2.7), we can obtain the following corollary:

COROLLARY 4.1. Let p> 1, 3+ 1 =1, B >0, B < p1, n€ NU{0}, o(x) =

cotx, p(x) =x" ) y(y) =y~ Pl f(x), g(x) 20, f(x) € Li(0,0), glx) €
L1(0,00), then

/O°° /Ow sinh(Baxy) csch(Bixy) f(x)g(y)dxdy

2n+1
(= (2n) [ BL+ B2
<(55) o= (B Il )
Axy _ p—Axy

Let B1 =27, By=2A in(4.1), A >0, inview of S~ = 1 sech(Axy), then

/w /w sech(Axy) f(x)g(y)dxdy
0 Jo

1 7T\ 2n+1 n 3
<gm (1) 0% () I lnliely “2)

Particularly, setting & =1, n=0 in (4.2), then u(x) =x"', v(y)=y~!, and

R T
| [ sechto s )gidsdy < S0l ulslo (43)
Let By =34, Bo=A in(4.1), AL >0, then

/0 ) /O " sinh(Axy) csch(32y) £ (x)g () dxdy

7T\ 2n+1 o
(= () (27
= (6)L> ¢ ( 3 ) 11l pullgllgv- (4.4)

Particularly, setting A =1, n=0 in (4.4), we obtain (1.2).
Let By =34, Bo =2A in(4.1), L >0, we obtain

/Ow /Ow sinh(2A.xy) csch(3Axy) f (x)g(v)dxdy

7T\ 2n+1 51
_ (L (2n) (22
<= (&) 0 () Ul 3)

1

In particular, setting A =1, n =0 in (4.5), then u(x) =x"", v(y) =y

o e 3
/O /O smh(2xy)csch(3xy)f(X)g(y)dxdy<%Hfllmllgllq,v.
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Ax —Ax
Let B =4A, By = A in(4.1), in view of ﬁ = 1sech(Axy)sech(22xy),
then

/0 ) /0 " sech(Axy) sech(2Axy) £ (x)g (y)dxdy

1 T 2n+1 o 57'[
<z (7). 0% () flnliely (46)

1 —1

In particular, setting A =1, n=0 in (4.6), then U(x) =x"
cot2F =1— /2, we obtain (1.3).

Similarly, setting n =1,6 = —1,83=—P,, B =2n+1(n € NU{0}) in Theorem
3.1, and using (2.2) and (2.7), the following corollary holds:

,V(y) =y, since

COROLLARY 4.2. Let p > 1, %+§ =1, >0, <P, ne NU{0}, 0(x) =
cotx, p(x) =x"@Prprl) y(y) = y=Qantatl) - f(x) g(x) >0, f(x) € L5 (0,),
g(x) € LY (0,00), then

/Ow /Ow cosh(Baxy) csch(Bixy) f(x)g(v)dxdy

T 2n+2 ﬁ"’ﬁ
_ en+1) (Pt B
() o= (B Ba) urtue

Let By =4, B =0in (4.7), L > 0, we have

gv- (4.7)

T

o0 roo 2n+2
| [ esch@aswetiasay <= (52)" 0@ (3) Ufllpullglar:  (48)

oAy + e~ Axy
e2Axy _ p—2Axy

Let By =2A, B =A in(4.7), A > 0. Because of
obtain a inequality similar to (4.8):

/0“’ /ON csch(Axy) f (x)g (v)dxdy

1 T\ 2n+2 ol 3
<gam (1) 0 CE) Wlpulely. 49)

REMARK 4.3. It should be noted that (4.8) is equivalent to (4.9). In fact, by using
(2.2) and the following obvious equality

= Jesch(Axy), we

i 1 N 1 —i 1
S\ (4k+1)2m42  (4k43)252 | &2k 1)+

it can be easy to show @1 (%‘) = 22t p(2n+1) (%). Hence, (4.8) and (4.9) are
equivalent.

Let B1 =3A, B =4 or B =34, B, =24 in (4.7), A > 0, then the following
two inequalities hold:

/O ) /O " cosh(Axy) csch(3Axy) £ (x)g(v)dxdy
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7T\ 2n+2 o
_ (= (2n+1) [ =%
<= ()" o (F) sl

/O ) /O 7 cosh(22xy) csch(3Axy) £ (x)g () dxdy

7T\ 2n+2 S
— (= (2n+1) [ 2%
(&) 0 (3F) 11l

av- (4.10)

av- (4.11)

/0 ) /O " esch(Axy) sech(2xy) £(x)g(v)dxdy

L (N2 o) (57
<=qum (1) 0 (5 Wlluls

Setting N =1,6 =1, B35=—P,, B =2n(n € NU{0}) in Theorem 3.1, and using
(2.4) and (2.7), we obtain another corollary'
COROLLARY 4.4. Letp>1 =1, >0, B2<B1,neNU{O} y(x) =

csex, p(x) =x" @l y(y) = 2qn+1 , f(x), g(x) =0, f(x) € Lp(0,00), g(x) €
L1(0,00), then

av- (4.12)

/Ow /Om cosh(Baxy) sech(Bixy) f(x)g(v)dxdy

() (BB el @1

Let By = A, A >0, B, =0 in (4.13), we obtain the following inequality
o0 oo 7T\ 2n+1 T
@en) (&

/0 /0 sech(2)f (Dg(r)dxdy < (52)" v (3)

REMARK 4.5. (4.14) is the equivalent form of (4.2). In fact, by using (2.1), (2.4)
and the following equality

av- (4.14)

i 1 1 B i (—1)k
S\ (4k+ 1)1 (k4 3)2n+L | & (2 1)1
we obtain @21 (%) = 2y (2nt1) (3). Therefore, (4.14) is equivalent to (4.2).

Let B =2, Py =2 in(4.13), 1 > 0. Since 552 = Lesch(Axy) tanh (2xy),
we obtain

/0 ) /0 " csch(Lxy) tanh (22xy) £(x)g(v)dxdy

1 7T 2n+1 o 3
< 2anrT (I) ) (T) 1f1lp.ellg

- (4.15)
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In particular, setting A = 1, n= 0 in (4.15), then u(x) =x~',v(y) =y~!, and we
obtain (1.4).

Let Bi=p, Bp=2—pin (4.13), 1 < p <2, we obtain

/O°° /Ooc cosh((2 — p)xy)sech(pxy) f(x)g(y)dxdy

2n+1
T (n) (T
< <2p) 14 » ||fH177I~l||g||q7v- (4.16)

1 1

, and

In particular, setting 7 =0 in (4.16), then pu(x) =x"', v(y) =y

/Ow /Ow cosh((2 — p)xy)sech(pxy) f(x)g(y)dxdy < ﬁfﬂmllgllq,v.

Similarly, setting 1 =—1, § =1, f3=—P1, B =2n+1(n€ NU{0})in Theorem
3.1, we obtain

COROLLARY 4.6. Let p>1, S +2=1, B >0, B <P, ne NU{0}, y(x) =
csex, p(x) =x~ Grtl) y(y) =y~ e at ) f(x), g(x) >0, f(x) € Ly(0,00), g(x) €
L1(0,0), then

/Ow /Ow sinh(Byxy) sech(Brxy) f(x)g(v)dxdy

T 2n+2 ﬁ —i—ﬂ
- (2n+1) 1 2
<(55) v (B 1l

Similarly, giving B, B, and n different values in (4.17), we can also obtain some
special inequalities.

Settingn=1,06=1, Bo=p3=-P1, B =2n+1(ne NU{0})in Theorem 3.1,
we obtain

q,v- (4.17)

COROLLARY 4.6. Let p>1, 5 +2=1, >0, B < B, n € NU{0}, y(x) =
csex, p(x) =x )y (y) =y~ Cantatl) | f(x) g(x) >0, f(x) € LE(0,%0), g(x) €

L1(0,0), then

/om /Om(l — tanh(B1xy)) f(x)g(y)dxdy

2n+2
/ n +
< ( ) yerty (Bl—lﬁzﬂ> 111p.sl8llg.v- (4.17)

2B, 2B
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