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SHARPNESS AND GENERALIZATION OF JORDAN, BECKER–STARK

AND PAPENFUSS INEQUALITIES WITH AN APPLICATION

BO ZHANG AND CHAO-PING CHEN

(Communicated by T. Burić)

Abstract. In this paper, we present an identity related to Jordan’s inequality. More precisely, we
provide a formula for determining the coefficients bn ≡ bn(θ ) such that

sinx
x

=
∞

∑
n=0

bn
(
πθ − (2x)θ )n,

where θ � 2 is a given real number. We present a generalization of Jordan’s inequality. As
an application, we improve the well-known Yang Le inequality. We establish sharp bounds

for
(
tanx/x

)(n) for n = 0 and n = 1 . Further, an interesting open problem and a conjecture
regarding our present concern are posed.

1. Introduction

1.1. Jordan’s inequality

The Jordan’s inequality

2
π

� sinx
x

< 1, 0 < x � π
2

(1.1)

has important applications in many areas of pure and applied mathematics. This simple
inequality has motivated a large number of research papers concerning its new proofs,
various generalizations, sharpness and applications (see [10, 17, 18, 20, 21, 23, 25, 28,
30, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51] and the references
cited in them).

The following sharp lower and upper bounds for the function sinx
x were proved in

[17, 23, 30, 43, 47]:

2
π

+
1

π3

(
π2−4x2)� sinx

x
� 2

π
+

π −2
π3

(
π2−4x2) , 0 < x � π

2
. (1.2)
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Zhu [48] improved (1.2) and established the following sharp lower and upper bounds:

2
π

+
1

π3

(
π2−4x2)+ 12−π2

16π5

(
π2−4x2)2 � sinx

x

� 2
π

+
1

π3

(
π2−4x2)+ π −3

π5

(
π2−4x2)2 , 0 < x � π

2
. (1.3)

Niu et al. [27] established a general result, which includes (1.2) and (1.3) as special
cases.

Two analogues of the inequalities (1.2) and (1.3):

2
π

+
2

3π4

(
π3−8x3)� sinx

x
� 2

π
+

π −2
π4

(
π3−8x3) (1.4)

and

2
π

+
1

2π5

(
π4−16x4)� sinx

x
� 2

π
+

π −2
π5

(
π4−16x4) (1.5)

were established for 0 < x < π/2 (see [18, 20]).
Chen and Debnath [10, Theorem 2] gave an unified sharpness and generalization

of inequalities (1.2)-(1.5) and proved that, for 0 < x � π/2,

2
π

+
2π−θ−1

θ

(
πθ − (2x)θ

)
+

(−π2 +4+4θ )π−2θ−1

4θ 2

(
πθ − (2x)θ

)2

� sinx
x

� 2
π

+
2π−θ−1

θ

(
πθ − (2x)θ

)
+

((π −2)θ −2)π−2θ−1

θ

(
πθ − (2x)θ

)2

(1.6)

holds true for θ � 2, and equality occurs for x = π/2.
By taking θ = 2 in (1.6), we obtain (1.3). By taking θ = 3 in (1.6), we obtain

that, for 0 < x � π/2,

2
π

+
2

3π4

(
π3−8x3)+ 16−π2

36π7

(
π3−8x3)2 � sinx

x

� 2
π

+
2

3π4

(
π3−8x3)+ 3π −8

3π7

(
π3−8x3)2 , (1.7)

which is sharper than (1.4). By taking θ = 4 in (1.6), we obtain that, for 0 < x � π/2,

2
π

+
1

2π5

(
π4−16x4)+ 20−π2

64π9

(
π4−16x4)2

� sinx
x

� 2
π

+
1

2π5

(
π4−16x4)+ 2π −5

2π9

(
π4−16x4)2 , (1.8)

which is sharper than (1.5).
Chen and Debnath [10, Eq. (2.2)] presented the following approximation:

sinx
x

≈ 2
π

+
2

θπθ+1

(
πθ − (2x)θ

)
+

4θ +4−π2

4θ 2π2θ+1

(
πθ − (2x)θ

)2

+
8θ 2− (3π2−12)θ +4

12θ 3π3θ+1

(
πθ − (2x)θ

)3
, 0 < x � π

2
. (1.9)
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The first aim of the present paper is to develop the approximation formula (1.9)
to produce a full expansion (Theorem 3.1). More precisely, we provide a formula for
determining the coefficients bn ≡ bn(θ ) such that

sinx
x

=
∞

∑
n=0

bn
(
πθ − (2x)θ)n.

The second aim of the present paper is to present a generalization of Jordan’s inequality
(Theorem 3.2). As an application, we improve the well-known Yang Le inequality
(Theorem 5.1).

1.2. Becker-Stark and Papenfuss inequalities

It is known in the literature that, for 0 < x < π/2,

4/π
π −2x

<
tanx

x
<

π
π −2x

. (1.10)

The left-hand side inequality (1.10) was presented by Stečkin [31], while the right-hand
side inequality (1.10) was proved by Ge [19]. This inequality is now known as Stečkin’s
inequality, see, e.g., [24, p. 246].

Becker and Stark [7] showed that, for 0 < x < π/2,

8
π2−4x2 <

tanx
x

<
π2

π2−4x2 . (1.11)

The inequalities (1.11) are shaper than the inequalities (1.10). The Becker-Stark in-
equality (1.11) has attracted much interest of many mathematicians and has motivated
a large number of research papers [6, 9, 12, 16, 26, 33, 52, 53, 54].

Recently, Chen and Elezović [11] gave a unified treatment of the inequalities (1.10)
and (1.11) and proved the following result:

Let p > 0 be a real number. Consider the following inequalities for 0 < x < π/2:

π p

π p− (2x)p <
tanx

x
<

4pπ p−2

π p− (2x)p , (1.12)

or alternatively
1

1− t p <
tan(πt/2)

πt/2
<

(
2
π

)2 p
1− t p (1.13)

for 0 < t < 1. The left-hand side of (1.13) holds if and only if p � π2/4, while the
reversed inequality holds if and only if 0 < p � 2. The right-hand side of (1.13) holds
if and only if p � 3, while the reversed inequality holds if and only if 0 < p � π2/4.

The choice p = 1 in (1.12) yields Stečkin’s inequality (1.10). The choice p = 2
in (1.12) yields Becker-Stark inequality (1.11). The choice p = 3 in (1.12) yields, for
0 < x < π/2,

π3

π3− (2x)3 <
tanx

x
<

12π
π3− (2x)3 . (1.14)
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Papenfuss [29] proposed the following problem: Prove that

xsec2 x− tanx � 8π2x3(
π2−4x2

)2 , 0 � x <
π
2

. (1.15)

Bach [5] proved the inequality (1.15) and obtained a further result as follows:

xsec2 x− tanx � (2π4/3)x3(
π2−4x2

)2 , 0 � x <
π
2

. (1.16)

Ge [19, Theorem 1.3] presented a lower bound in (1.16) and proved that

64x3(
π2−4x2

)2 < xsec2 x− tanx � (2π4/3)x3(
π2−4x2

)2 , 0 � x <
π
2

, (1.17)

where the constants 64 and 2π4/3 are the best possible.
Recently, Chen and Paris [13] proved that, for 0 < x < π/2,

2π4

3 x3 +
(

8π4

15 − 16π2

3

)
x5

(
π2−4x2

)2 < xsec2 x− tanx <

2π4

3 x3 +
(

256
π2 − 8π2

3

)
x5

(
π2−4x2

)2 , (1.18)

where 8π4

15 − 16π2

3 and 256
π2 − 8π2

3 are the best constants in (1.18). This answered an
open problem proposed by Sun and Zhu [32].

Here, we provide a new sharp lower bound for xsec2 x− tanx given by Proposition
1.1.

PROPOSITION 1.1. Let ν > 0 is a real number. Then, for 0 < x < π/2 ,

2
3 πνx3

πν − (2x)ν < xsec2 x− tanx, (1.19)

with the best possible constant ν = 2 , in the sense that ν = 2 can not be replaced by a
smaller number.

Proof. We first prove (1.19) with ν = 2, namely,

2
3 π2x3

π2− (2x)2 < xsec2 x− tanx, 0 < x <
π
2

. (1.20)

Direct computation yields

2π4

3 x3 +
(

8π4

15 − 16π2

3

)
x5

(
π2−4x2

)2 −
2
3 π2x3

π2− (2x)2 =
8π2x5(π2−5)
15(π2−4x2)2 > 0.

This shows that the lower bound in (1.18) is larger than the one in (1.20). Hence, (1.20)
holds true.
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If we write (1.19) as

ln
(
1−

2
3 x3

xsec2 x−tanx

)
ln 2x

π
< ν,

we find that

lim
x→0+

ln
(
1−

2
3 x3

xsec2 x−tanx

)
ln 2x

π
= 2.

Hence, (1.19) holds, and the constant ν = 2 is the best possible.

REMARK 1.1. In order to ensure that the lower bound of (1.19) is positive, we
restrict ν > 0. We do not think about the case ν = 0, since

lim
ν→0+

2
3πνx3

πν − (2x)ν = ∞.

REMARK 1.2. There is no strict comparison between the two lower bounds 64x3

(π2−4x2)2

and
2
3 π2x3

π2−4x2 in (1.17) and (1.20).

The inequalities (1.17) and (1.20) can be written for 0 < x < π/2 as

64
π4 x(

1− ( 2x
π )2
)2 <

(
tanx

x

)′
<

2
3x(

1− ( 2x
π )2
)2 (1.21)

and
2
3x

1− ( 2x
π )2

<

(
tanx

x

)′
. (1.22)

Motivated by (1.11), (1.21) and (1.22), we establish sharp bounds for
(
tanx/x

)(n)
for

n = 0 and n = 1 (Theorems 4.1 and 4.2), which is the third aim of the present paper.
Further, an interesting open problem and a conjecture regarding our present concern are
posed (Section 5).

Some computations in this paper were performed using Maple software.

2. Preliminary results

In combinatorics, the Bell polynomials of the second kind (also called the partial
Bell polynomials) Bn,k(x1,x2, . . . ,xn−k+1) are defined by (see [14, p. 133] and [15])

Bn,k(x1,x2, . . . ,xn−k+1)

= ∑ n!
j1! j2! · · · jn−k+1!

(x1

1!

) j1 (x2

2!

) j2 · · ·
(

xn−k+1

(n− k+1)!

) jn−k+1

, (2.1)
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where the sum is taken over all sequences j1, j2, j3, . . . , jn−k+1 ∈ N0 such that

j1 + j2 + · · ·+ jn−k+1 = k and j1 +2 j2 + · · ·+(n− k+1) jn−k+1 = n.

Here N0 := N∪{0} , N denotes the set of positive integers.
The Faà di Bruno formula may be described in terms of the Bell polynomials of

the second kind Bn,k by (see [14, p. 139])

dn

dxn f (g(x)) =
n

∑
k=1

f (k)(g(x))Bn,k
(
g′(x),g′′(x), . . . ,g(n−k+1)(x)

)
. (2.2)

The following lemmas will be useful in our present investigation.

LEMMA 2.1. (see [8]) Let the function φ have derivatives of all orders on (−∞,∞)
and φ(0) = 0 . Define the function f by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

φ(x)
x

, x �= 0;

φ ′(0), x = 0,

then

f (n)(x) =

⎧⎪⎨
⎪⎩

1
xn+1 ∑n

k=0

(n
k

)
(−1)kk!xn−kφ (n−k)(x), x �= 0;

1
n+1φ (n+1)(0), x = 0.

Moreover,
d
dx

n

∑
k=0

(
n
k

)
(−1)kk!xn−kφ (n−k)(x) = xnφ (n+1)(x). (2.3)

REMARK 2.1. It follows from (2.3) that

n

∑
k=0

(
n
k

)
(−1)kk!xn−kφ (n−k)(x) =

∫ x

0
tnφ (n+1)(t)dt.

We then find the following integral representation:

(
φ(x)

x

)(n)

=
1

xn+1

∫ x

0
tnφ (n+1)(t)dt, x �= 0. (2.4)

Let

F(x) =
sinx
x

.

By Lemma 2.1 (the choice φ(x) = sinx ), we have,

F(x) =
∞

∑
n=0

an

n!

(
x− π

2

)n
, (2.5)
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where

an = F (n)
(π

2

)
=

n

∑
k=0

(
n
k

)
(−1)kk!

(
2
π

)k+1

cos

(
(n− k)π

2

)
, n ∈ N0. (2.6)

The choice φ(x) = sinx in (2.4) yields

F (n)(x) =
1

xn+1

∫ x

0
tn sin

(
(n+1)π

2
+ t

)
dt. (2.7)

The coefficients an can also be calculated by

an = F(n)
(π

2

)
=
(

2
π

)n+1 ∫ π/2

0
tn sin

(
(n+1)π

2
+ t

)
dt, n ∈ N0. (2.8)

The first few coefficients an are

a0 =
2
π

, a1 = − 4
π2 , a2 = −2(π2−8)

π3 , a3 =
12(π2−8)

π4 , a4 =
2(π4−48π2 +384)

π5 ,

a5 = −20(π4 +384−48π2)
π6 , a6 = −2(−46080−120π4+5760π2 + π6)

π7 . (2.9)

The choice φ(x) = tanx in (2.4) yields(
tanx

x

)(n)

=
1

xn+1

∫ x

0
tn
(
tant

)(n+1)
dt. (2.10)

LEMMA 2.2. (see [2, 3, 4]) Let −∞ < a < b < ∞ , and let f , g : [a,b] → R be
continuous on [a,b] , differentiable on (a,b) . Let g′ (x) �= 0 on (a,b) . If f ′ (x)/g′ (x)
is increasing (decreasing) on (a,b) , then so are

[ f (x)− f (a)]/ [g(x)−g(a)] and [ f (x)− f (b)]/ [g(x)−g(b)] .

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

3. Expansion and inequality for sinx/x

Theorem 3.1 develops the approximation formula (1.9) to produce a full expan-
sion.

THEOREM 3.1. Let θ � 2 be a given real number. The following expansion
holds:

sinx
x

=
∞

∑
n=0

bn
(
πθ − (2x)θ)n, (3.1)

with the coefficients bn (n ∈ N0 ) given by

bn = (−1)n an−∑n−1
k=1 bk(−1)k2θkk!Bn,k

(
θ( π

2 )θ−1
,...,θ(θ−1)···(θ−n+k)( π

2 )
θ−n+k−1

)
n!(2θ)nπ(θ−1)n , (3.2)

where an is given in (2.6), an empty sum is understood to be zero.
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Proof. In view of (1.9), we can let

F(x) =
sinx
x

=
2
π

+
∞

∑
j=1

b j(−1) j2θ j
(

xθ −
(π

2

)θ
) j

,

where b j ( j ∈ N) are real numbers to be determined. Let

f (u) = u j and u = g(x) = xθ −
(π

2

)θ
.

By (2.2), we have

dn

dxn

(
xθ −

(π
2

)θ
) j

=
dn

dxn f (g(x)) =
n

∑
k=1

f (k)(g(x))Bn,k
(
g′(x),g′′(x), . . . ,g(n−k+1)(x)

)

=
n

∑
k=1

j( j−1) · · · ( j− k+1)
(

xθ −
(π

2

)θ
) j−k

×Bn,k
(
θxθ−1,θ (θ −1)xθ−2, . . . ,θ (θ −1) · · · (θ −n+ k)xθ−n+k−1).

We then obtain, for n ∈ N ,

F(n)(x) =
∞

∑
j=1

b j(−1) j2θ j dn

dxn

(
xθ −

(π
2

)θ
) j

=
∞

∑
j=1

n

∑
k=1

b j(−1) j2θ j j( j−1) · · · ( j− k+1)
(

xθ −
(π

2

)θ
) j−k

×Bn,k
(
θxθ−1,θ (θ −1)xθ−2, . . . ,θ (θ −1) · · · (θ −n+ k)xθ−n+k−1)

=

{
n

∑
k=1

bk(−1)k2θkk!+
n

∑
k=1

bk+1(−1)k+12θ(k+1)(k+1)!
(

xθ −
(π

2

)θ
)

+ · · ·
}

×Bn,k
(
θxθ−1,θ (θ −1)xθ−2, . . . ,θ (θ −1) · · · (θ −n+ k)xθ−n+k−1).

Hence, we have

an = F (n)
(π

2

)
=

n

∑
k=1

bk(−1)k2θkk!Bn,k

(
θ
(π

2

)θ−1
, . . . ,θ (θ −1) · · · (θ −n+ k)

(π
2

)θ−n+k−1
)

=
n−1

∑
k=1

bk(−1)k2θkk!Bn,k

(
θ
(π

2

)θ−1
, . . . ,θ (θ −1) · · · (θ −n+ k)

(π
2

)θ−n+k−1
)

+bn(−1)n2θnn!Bn,n

(
θ
(π

2

)θ−1
)

=
n−1

∑
k=1

bk(−1)k2θkk!Bn,k

(
θ
(π

2

)θ−1
, . . . ,θ (θ −1) · · · (θ −n+ k)

(π
2

)θ−n+k−1
)

+bn(−1)n2θnn!θ n
(π

2

)(θ−1)n
.
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This yields (3.2). The proof is complete.
By using (3.2), we now give explicit numerical values of the first few bn . Noting

that

B2,1

(
θ
(π

2

)θ−1
,θ (θ −1)

(π
2

)θ−2
)

=
2!

0!1!

(
θ
(π

2

)θ−1

1!

)0(
θ (θ −1)

(π
2

)θ−2

2!

)1

= θ (θ −1)
(π

2

)θ−2
,

B3,1

(
θ
(π

2

)θ−1
,θ (θ −1)

(π
2

)θ−2
,θ (θ −1)(θ −2)

(π
2

)θ−3
)

=
3!

0!0!1!

(
θ
(π

2

)θ−1

1!

)0(
θ (θ −1)

(π
2

)θ−2

2!

)0(
θ (θ −1)(θ −2)

(π
2

)θ−3

3!

)1

= θ (θ −1)(θ −2)
(π

2

)θ−3
,

B3,2

(
θ
(π

2

)θ−1
,θ (θ −1)

(π
2

)θ−2
)

=
3!

1!1!

(
θ
(π

2

)θ−1

1!

)1(
θ (θ −1)

(π
2

)θ−2

2!

)1

= 3θ 2(θ −1)
(π

2

)2θ−3
,

we find

b0 = a0 =
2
π

,

b1 = − a1

2θπθ−1 = − − 4
π2

2θπθ−1 =
2

θπθ+1 ,

b2 =
a2 +b12θB2,1

(
θ
(π

2

)θ−1
,θ (θ −1)

(π
2

)θ−2
)

2(2θ )2π2(θ−1)

=
− 2(π2−8)

π3 +
(

2
θπθ+1

)
2θ
(

θ (θ −1)
(π

2

)θ−2
)

2(2θ )2π2(θ−1) =
4θ +4−π2

4θ 2π2θ+1 ,

b3 = − 1

3!(2θ )3π3(θ−1)

×
{

a3 +b12
θ B3,1

(
θ
(π

2

)θ−1
,θ (θ −1)

(π
2

)θ−2
,θ (θ −1)(θ −2)

(π
2

)θ−3
)

−b22
2θ+1B3,2

(
θ
(π

2

)θ−1
,θ (θ −1)

(π
2

)θ−2
)}
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= − 1

3!(2θ )3π3(θ−1)

{
12(π2−8)

π4 +
(

2
θπθ+1

)
2θ
(

θ (θ −1)(θ −2)
(π

2

)θ−3
)

−
(

4θ +4−π2

4θ 2π2θ+1

)
22θ+1

(
3θ 2(θ −1)

(π
2

)2θ−3
)}

=
8θ 2− (3π2−12)θ +4

12θ 3π3θ+1 .

We note that the values of bn (for n = 0,1,2,3) here are equal to the coefficients of(
πθ − (2x)θ)n (for n = 0,1,2,3) in (1.9), respectively.

The formula (2.5) motivated us to establish Theorem 3.2.

THEOREM 3.2. For 0 < x < π/2 and m ∈ N0 ,

4m

∑
n=0

an

n!

(
x− π

2

)n
<

sinx
x

<
4m+2

∑
n=0

an

n!

(
x− π

2

)n
, (3.3)

where the coefficients an (n ∈ N0 ) are given in (2.6).

Proof. Let F(x) = sinx/x . We find by (2.7) that, for 0 < x < π/2 and n ∈ N ,

(−1)nF (2n−1)(x) =
1

x2n

∫ x

0
t2n−1 sin tdt > 0

and

(−1)nF(2n)(x) =
1

x2n+1

∫ x

0
t2n costdt > 0.

That is,

F (4m+3)(x) > 0, F (4m)(x) > 0, F (4m+1)(x) < 0, F (4m+2)(x) < 0

for 0 < x < π/2 and m ∈ N0 .
By Taylor’s theorem, there exists a ξ such that 0 < x < ξ < π/2 and

F(x)−
4m

∑
n=0

an

n!

(
x− π

2

)n
=

F (4m+1) (ξ )
5!

(
x− π

2

)5
> 0. (3.4)

There exists a η such that 0 < x < η < π/2 and

F(x)−
4m+2

∑
n=0

an

n!

(
x− π

2

)n
=

F(4m+3) (η)
3!

(
x− π

2

)3
< 0. (3.5)

The proof is complete.
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4. Sharp Becker-Stark-type and Papenfuss-type inequalities

4.1. Sharp Becker-Stark-type inequality

By using Maple, we find that

tanx
x

(
π2−4x2)θ = π2θ +

(
π2

12
−θ
)

4π2p−2x2 + . . . .

This fact motivated us to establish Theorem 4.1. Theorem 4.1 presents sharp Becker-
Stark-type inequality.

THEOREM 4.1. For 0 < x < π/2 , we have

π2θ(
π2− (2x)2

)θ <
tanx

x
<

π2ϑ(
π2− (2x)2

)ϑ , (4.1)

or alternatively
1(

1− ( 2x
π )2
)θ <

tanx
x

<
1(

1− ( 2x
π )2
)ϑ , (4.2)

where the constants θ = π2/12 = 0.822467 . . . and ϑ = 1 are the best possible, in the
sense that θ = π2/12 can not be replaced by a larger number, and ϑ = 1 can not be
replaced by a smaller number.

Proof. The inequality (4.2) can be written for 0 < x < π/2 as

θ <
ln
(

x
tanx

)
ln
(
1− ( 2x

π )2
) < ϑ .

For 0 � x < π/2, let

F1(x) = ln
( x

tanx

)
, F1(0) = 0 and F2(x) = ln

(
1−
(

2x
π

)2)
,

and let

F(x) =
F1(x)
F2(x)

=
ln
(

x
tanx

)
ln
(
1− ( 2x

π )2
) , 0 < x <

π
2

.

Then,

F ′
1(x)

F ′
2(x)

=

(
x− sinxcosx

)
(π2−4x2)

8x2 sinxcosx
=: G(x).
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Differentiation yields

G′(x) =
I(x)

8x3 sin2 xcos2 x
,

where

I(x) = −(4x3 + π2x)sinxcosx+(8x4−2π2x2 +2π2)cos2 x−2π2 cos4 x+ π2x2 −4x4.

We are in a position to prove I(x) > 0 for 0 < x < π/2. We consider two cases.
Case 1: 0 < x � 1.25.
It is known that, for x > 0 and n ∈ N0 ,

2n+1

∑
k=0

(−1)k x2k+1

(2k+1)!
< sinx <

2n

∑
k=0

(−1)k x2k+1

(2k+1)!
(4.3)

and

2n+1

∑
k=0

(−1)k x2k

(2k)!
< cosx <

2n

∑
k=0

(−1)k x2k

(2k)!
. (4.4)

Using (4.3) and (4.4), we have, for 0 < x � 1.25,

I(x) = −
(

2x3 +
1
2

π2x

)
sin(2x)− x2(π2−4x2)cos(2x)− 1

4
π2 cos(4x)+

1
4

π2

> −
(

2x3 +
1
2

π2x

)(
2x− 4

3
x3 +

4
15

x5− 8
315

x7 +
4

2835
x9
)

− x2(π2−4x2)
(

1−2x2 +
2
3
x4 − 4

45
x6 +

2
315

x8
)

− 1
4

π2
(

1−8x2 +
32
3

x4− 256
45

x6 +
512
315

x8− 4096
14175

x10 +
16384
467775

x12
)

+
1
4

π2

= x6

{(
28π2

45
− 16

3

)
−
(

32π2

105
− 32

15

)
x2 +

(
44π2

675
− 32

105

)
x4

−
(

4096π2

467775
− 64

2835

)
x6

}
> 0.

Case 2: 1.25 < x < π/2.
We now prove I(x) > 0 for 1.25 < x < π/2. Replacing x by π

2 − t leads to
equivalent inequality:

J(t) > 0, 0 < t <
π
2
−1.25,
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where

J(t) = −
{

4
( t

2
− t
)3

+ π2
( t

2
− t
)}

cost sin t

+
{

8
( t

2
− t
)4

−2π2
( t

2
− t
)2

+2π2
}

sin2 t−2π2 sin4 t

+ π2
( t

2
− t
)2

−4
( t

2
− t
)4

= −
(

1
2

π3−2π2t +3πt2−2t3
)

sin(2t)+ (π3t−5π2t2 +8πt3−4t4)cos(2t)

− 1
4

π2 cos(4t)+
1
4

π2.

Using (4.3) and (4.4), we have, for 0 < t < π
2 −1.25,

J(t) > −
(

1
2

π3−2π2t +3πt2−2t3
)(

2t− 4
3
t3 +

4
15

t5
)

+(π3t−5π2t2 +8πt3−4t4)(1−2t2)− 1
4

π2
(

1−8t2 +
32
3

t4
)

+
1
4

π2

= t2
{

π2−
(

4
3

π3−2π
)

t +
14
3

π2t2−
(

2
15

π3 +12π
)

t3

+
(

8
15

π2 +
16
3

)
t4− 4

5
πt5 +

8
15

t6
}

> 0.

This proves I(x) > 0 for all 0 < x < π/2.
We then obtain G′(x) > for 0 < x < π/2. Therefore, the functions G(x) and

F ′
1(x)/F ′

2(x) are strictly increasing on (0,π/2) . By Lemma 2.2, the function

f (x) =
F1(x)
F2(x)

=
F1(x)−F1(0)
F2(x)−F2(0)

is strictly increasing on (0,π/2) . And hence, we have, 0 < x < π/2,

π2

12
= lim

u→0+
F(u) < F(x) =

ln
(

x
tanx

)
ln
(
1− ( 2x

π )2
) < lim

u→π/2−
F(u) = 1.

Hence, (4.2) holds for 0 < x < π/2, and the constants θ = π2/12 and ϑ = 1 are the
best possible. The proof is complete.

4.2. Sharp Papenfuss-type inequalities

By using Maple, we find that(
tanx

x

)′ (
π2−4x2)p =

2
3

π2px+
(

π2

5
− p

)
8π2p−2

5
x3 + . . . .
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This fact motivated us to establish Theorem 4.2. Theorem 4.2 presents sharp Papenfuss-
type inequality.

THEOREM 4.2. For 0 < x < π/2 , we have

2
3π2px3(

π2− (2x)2
)p < xsec2 x− tanx <

2
3π2qx3(

π2− (2x)2
)q , (4.5)

or alternatively
2
3π2px(

π2− (2x)2
)p <

(
tanx

x

)′
<

2
3 π2qx(

π2− (2x)2
)q , (4.6)

i.e.,
2
3x(

1− ( 2x
π )2
)p <

(
tanx

x

)′
<

2
3x(

1− ( 2x
π )2
)q , (4.7)

where the constants p = π2/5 = 1.97392 . . . and q = 2 are the best possible, in the
sense that p = π2/5 can not be replaced by a larger number, and q = 2 can not be
replaced by a smaller number.

Proof. The inequality (4.7) can be written for 0 < x < π/2 as

p <

ln
( 2

3 x

( tanx
x )′
)

ln
(
1− ( 2x

π )2
) < q.

For 0 � x < π/2, let

f1(x) = ln

(
2
3x( tanx
x

)′
)

= ln

(
2x3 cos2 x

3(x− sinxcosx)

)
, f1(0) = lim

x→0+
f (x) = 0

and

f2(x) = ln

(
1−
(

2x
π

)2)
,

and let

f (x) =
f1(x)
f2(x)

=
ln
( 2

3 x

( tanx
x )′
)

ln
(
1− ( 2x

π )2
) , 0 < x <

π
2

.

Then,

f ′1(x)
f ′2(x)

=
(3sinxcos2 x+2x2 sinx−3xcosx)(π2 −4x2)

8x2 cosx(x− sinxcosx)
=: g(x).
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Differentiation yields

g′(x) =
h(x)

4x3 cos2 x
(
x− sinxcosx

)2 ,

where

h(x) = −(6π2x+8x5−2π2x3)cos3 xsinx− x3(3π2−4x2)cosxsinx

+(3π2x2 +8x4)cos2 x+(3π2−8x4)cos4 x−3π2 cos6 x+ x4(π2−4x2).

Motivated by the investigations in [22], we are in a position to prove h(x) > 0 for
0 < x < π/2. We consider two cases.

Case 1: 0 < x � 1.25.
Let

H(x) =

⎧⎨
⎩

a, x = 0,
h(x)

x10(π
2 − x)3 , 0 < x � 1.25,

where a is constant determined with limit:

a = lim
x→0+

h(x)
x10(π

2 − x)3 =
3712π2−35840

1575π3 = 0.01629924 . . ..

Using Maple we determine Taylor approximation for the function H(x) by the polyno-
mial of the ninth order:

P(x) =
128(29π2−280)

1575π3 +
256(29π2−280)

525π4 x

+ · · ·+ 512(74687π10−7939920π8+394878120π6−10949178240π4+157491734400π2−799134336000)
638512875π12 x9

which has a bound of absolute error

ε1 = 0.00013674 . . .

for values 0 � x � 1.25. It is true that

H(x)− (P(x)− ε1) � 0

and

P(x)− ε1 > 0

for 0 � x � 1.25. Hence, for x∈ [0,1.25] it is true that H(x) > 0 and therefore h(x) > 0
for x ∈ (0,1.25] .

Case 2: 1.25 < x < π/2.
We now prove h(x) > 0 for 1.25 < x < π/2. Replacing x by π

2 − t leads to
equivalent inequality:

u(t) > 0, 0 < t <
π
2
−1.25,
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where

u(t) = −
{

6π2
(π

2
− t
)

+8
(π

2
− t
)5

−2π2
(π

2
− t
)3
}

sin3 t cost

−
(π

2
− t
)3
{

3π2−4
(π

2
− t
)2
}

sin t cost +
{

3π2
(π

2
− t
)2

+8
(π

2
− t
)4
}

sin2 t

+
{

3π2−8
(π

2
− t
)4
}

sin4 t−3π2 sin6 t +
(π

2
− t
)4
{

π2−4
(π

2
− t
)2
}

.

Let

U(t) =

⎧⎨
⎩

b, t = 0,
u(t)

t3(π
2 − t)10 , 0 < t < π

2 −1.25,

where b is constant determined with limit:

b = lim
t→0+

u(t)
t3(π

2 − t)10 =
512(π2−9)

3π7 = 0.04913843 . . ..

Using Maple we determine Taylor approximation for the function U(t) by the polyno-
mial of the third order:

Q(t) =
512(π2−9)

3π7 +
256(11π2−108)

π8 t

− 512(7920−810π2+ π4)
15π9 t2− 512(167400−17970π2+103π4)

45π10 t3

which has a bound of absolute error

ε2 = 0.000007293 . . .

for values 0 � t � π
2 −1.25. It is true that

U(t)− (Q(t)− ε2) � 0

and

Q(t)− ε2 > 0

for 0 � t � π
2 −1.25. Hence, for t ∈ [0, π

2 −1.25] it is true that U(t) > 0 and therefore
u(t) > 0 for t ∈ (0, π

2 −1.25) .
This proves h(x) > 0 for all 0 < x < π/2.
We then obtain g′(x) > for 0 < x < π/2. Therefore, the functions g(x) and

f ′1(x)/ f ′2(x) are strictly increasing on (0,π/2) . By Lemma 2.2, the function

f (x) =
f1(x)
f2(x)

=
f1(x)− f1(0)
f2(x)− f2(0)
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is strictly increasing on (0,π/2) . And hence, we have, 0 < x < π/2,

π2

5
= lim

u→0+
f (u) < f (x) =

ln
( 2

3 x

( tanx
x )′
)

ln
(
1− 2x

π

) < lim
u→π/2−

f (u) = 2.

Hence, (4.7) holds for 0 < x < π/2, and the constants p = π2/5 and q = 2 are the best
possible. The proof is complete.

REMARK 4.1. Integrating (4.6) from 0 to x , we obtain that, for 0 < x < π/2,

π2p

12(p−1)
(
π2− (2x)2

)p−1 −
π2

12(p−1)
<

tanx
x

−1

<
π2q

12(q−1)
(
π2− (2x)2

)q−1 −
π2

12(q−1)
. (4.8)

The choice p = π2/5 and q = 2 in (4.8) yields

π2π2/5

12(π2/5−1)
(
π2− (2x)2

)π2/5−1
+

12(π2/5−1)−π2

12(π2/5−1)
<

tanx
x

<
π2− (4− 1

3π2)x2

π2−4x2 .

(4.9)

There is no strict comparison between the two lower bounds in (1.11) and (4.9). Clearly,
the upper bound in (4.9) is sharper than that in (1.11).

5. An application

It is well-known that the Yang Le inequality plays an important role in the theory
of distribution of values of functions (see [41] for details). This inequality is stated
below:

If A1 > 0, A2 > 0, A1 +A2 � π and 0 � μ � 1, then,

cos2 μA1 + cos2 μA2−2cosμπ cosμA1 cosμA2 � sin2 μπ . (5.1)

Debnath and Zhao [17, Theorem 1] obtained an improvement of the Yang Le in-
equality and proved:

Let Ai > 0(i = 1,2, . . . ,n) with
n

∑
i=1

Ai � π , 0 � λ � 1, θ � 2, and let n � 2 be a

natural number. Then

N (λ ) � (n−1)
n

∑
k=1

cos2 λAk −2cosλ π ∑
1�i< j�n

cosλAi cosλAj � M (λ ) , (5.2)

where

N (λ ) =
(

n
2

)(
3−λ 2)2(λ cos

λ π
2

)2

and M (λ ) =
(

n
2

)
λ 2π2.
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By using inequality (3.3), we here present an improvement of the Yang Le inequal-
ity.

THEOREM 5.1. Let Ai > 0(i = 1,2, . . . ,n) with
n

∑
i=1

Ai � π , 0 � λ � 1 , θ � 2 ,

and let n � 2 be a natural number. Then

Nm (λ ) � (n−1)
n

∑
k=1

cos2 λAk −2cosλ π ∑
1�i< j�n

cosλAi cosλAj � Mm (λ ) , (5.3)

where

Nm (λ ) =
(

n
2

)( 4m

∑
j=0

2a j

j!

(π
2

) j+1
(λ −1) j

)2(
λ cos

λ π
2

)2

and

Mm (λ ) =
(

n
2

)(4m+2

∑
j=0

2a j

j!

(π
2

) j+1
(λ −1) j

)2

λ 2.

Proof. Let

Hi j = cos2 λAi + cos2 λAj −2cosλ π cosλAi cosλAj.

It follows from [44] that

sin2 λ π � Hi j � 4sin2 λ
2

π , 1 � i < j � n. (5.4)

By summing all of the inequalities in (5.4), we obtain

∑
1�i< j�n

sin2 λ π � ∑
1�i< j�n

Hi j � ∑
1�i< j�n

4sin2 λ
2

π ,

that is,

4

(
n
2

)
sin2 λ

2
π cos2 λ

2
π � (n−1)

n

∑
k=1

cos2 λAk −2cosλ π ∑
1�i< j�n

cosλAi cosλAj

� 4

(
n
2

)
sin2 λ

2
π . (5.5)

On the other hand, it follows from the inequality (3.3), by a direct calculation, that

4m

∑
j=0

a j

j!

(π
2

) j+1
(λ −1) jλ < sin

πλ
2

<
4m+2

∑
j=0

a j

j!

(π
2

) j+1
(λ −1) jλ . (5.6)
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Applying the inequality (5.6) to (5.5) leads to the desired inequality (5.3). The proof is
complete.

The choice m = 1 in (5.3) yields

N1 (λ ) � (n−1)
n

∑
k=1

cos2 λAk −2cosλ π ∑
1�i< j�n

cosλAi cosλAj � M1 (λ ) , (5.7)

where

N1 (λ ) =
(

n
2

)(
10− 3

4
π2 +

1
192

π4 +
(

9
4

π2−20− 1
48

π4
)

λ +
(

20− 5
2

π2 +
1
32

π4
)

λ 2

+
(

5
4

π2−10− 1
48

π4
)

λ 3 +
(

2+
1

192
π4− 1

4
π2
)

λ 4

)2(
λ cos

λ π
2

)2

and

M1 (λ ) =
(

n
2

)(
6− 1

4
π2 +

(
1
2

π2−6

)
λ +

(
−1

4
π2 +2

)
λ 2

)2

λ 2.

REMARK 5.1. Noting that

10− 3
4

π2 +
1

192
π4 +

(
9
4

π2−20− 1
48

π4
)

λ +
(

20− 5
2

π2 +
1
32

π4
)

λ 2

+
(

5
4

π2−10− 1
48

π4
)

λ 3 +
(

2+
1

192
π4− 1

4
π2
)

λ 4

> 10− 3
4

π2 +
1

192
π4 +

(
9
4

π2−20− 1
48

π4
)

λ −
(
−20+

5
2

π2− 1
32

π4
)

λ 2 > 0

holds for 0 � λ � 1, we find

10− 3
4

π2 +
1

192
π4 +

(
9
4

π2−20− 1
48

π4
)

λ +
(

20− 5
2

π2 +
1
32

π4
)

λ 2

+
(

5
4

π2−10− 1
48

π4
)

λ 3 +
(

2+
1

192
π4− 1

4
π2
)

λ 4 − (3−λ 2)

=
(λ −1)2

192

(
π4 +1344−144π2+(−2π4−1152+144π2)λ +(π4−48π2 +384)λ 2

)
> 0

for 0 � λ � 1. We then obtain

N (λ ) < N1 (λ ) .

Hence, the lower bound in inequality (5.3) is sharper than the one in inequality (5.2).

REMARK 5.2. There is no strict comparison between the two upper bounds in
inequalities (5.2) and (5.3).
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6. Open problem and conjecture

6.1. Open problem

Computer experiments suggest that, for 0 < x < π/2,

2
3(

1− ( 2x
π )2
)λ2

<

(
tanx

x

)′′
<

2
3(

1− ( 2x
π )2
)μ2

, (6.1)

16
5 x(

1− ( 2x
π )2
)λ3

<

(
tanx

x

)′′′
<

16
5 x(

1− ( 2x
π )2
)μ3

, (6.2)

16
5(

1− ( 2x
π )2
)λ4

<

(
tanx

x

)(4)

<
16
5(

1− ( 2x
π )2
)μ4

, (6.3)

272
7 x(

1− ( 2x
π )2
)λ5

<

(
tanx

x

)(5)

<
272
7 x(

1− ( 2x
π )2
)μ5

, (6.4)

272
7(

1− ( 2x
π )2
)λ6

<

(
tanx

x

)(6)

<
272
7(

1− ( 2x
π )2
)μ6

, (6.5)

7936
9 x(

1− ( 2x
π )2
)λ7

<

(
tanx

x

)(7)

<
7936

9 x(
1− ( 2x

π )2
)μ7

, (6.6)

7936
9(

1− ( 2x
π )2
)λ8

<

(
tanx

x

)(8)

<
7936

9(
1− ( 2x

π )2
)μ8

, (6.7)

where the constants

λ2 = 3, μ2 =
3π2

5
= 5.92176 . . . ,

λ3 = 4, μ3 =
85π2

168
= 4.99354 . . . ,

λ4 = 5, μ4 =
85π2

56
= 14.9806 . . . ,

λ5 = 6, μ5 =
434π2

459
= 9.332044 . . .,

λ6 = 7, μ6 =
434π2

153
= 27.9961 . . . ,

λ7 = 8, μ7 =
2073π2

1364
= 14.99977 . . . ,

λ8 = 9, μ8 =
6219π2

1364
= 44.99931 . . .

are the best possible.
In view of (6.1)-(6.7), we now propose the following open problem.
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Open problem 6.1. (i) Let n � 2 be a given integer. Find the best possible con-
stant q such that

T2n+1
2n+1 x(

1− ( 2x
π )2
)2n <

(
tanx

x

)(2n−1)

<

T2n+1
2n+1 x(

1− ( 2x
π )2
)q , 0 < x <

π
2

. (6.8)

(ii) Let n � 1 be a given integer. Find the best possible constant μ such that

T2n+1
2n+1(

1− ( 2x
π )2
)2n+1 <

(
tanx

x

)(2n)

<

T2n+1
2n+1(

1− ( 2x
π )2
)μ , 0 < x <

π
2

. (6.9)

Here T2n+1 are the tangent numbers.

The tangent numbers T2k−1 are defined by the series expansion of tanx ,

tanx =
∞

∑
k=1

T2k−1
x2k−1

(2k−1)!
, |x| < π

2
. (6.10)

The tangent numbers T2k−1 can be calculated by

T2k−1 =
22k−1(22k −1)

k
|B2k|, k ∈ N,

where Bn denote the Bernoulli numbers defined by the following generating function:

t
et −1

=
∞

∑
n=0

Bn
tn

n!
, |t| < 2π .

The first few tangent numbers are

T1 = 1, T3 = 2, T5 = 16, T7 = 272, T9 = 7936.

6.2. Conjecture

We here present (without proof) another sharp bounds for
(
tanx/x

)(n)
. The de-

nominators of the upper and lower bounds are the same.
Computer experiments suggest that, for 0 < x < π/2,

2
3 π6(

π2− (2x)2
)3 <

(
tanx

x

)′′
<

256π2(
π2− (2x)2

)3 , (6.11)

16
5 π8x(

π2− (2x)2
)4 <

(
tanx

x

)′′′
<

6144π2x(
π2− (2x)2

)4 (6.12)

and
16
5 π10(

π2− (2x)2
)5 <

(
tanx

x

)(4)

<
49152π4(

π2− (2x)2
)5 , (6.13)
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where the constants

2
3

π6, 256π2,
16
5

π8, 6144π2,
16
5

π10, 49152π4

are the best possible.
In view of (1.11), (1.21) and (6.11)-(6.13), we define the function Fn(x) and Gn(x)

by

Fn(x) =
(

tanx
x

)(2n−1)

·
(
π2− (2x)2

)2n

x
(6.14)

and

Gn(x) =
(

tanx
x

)(2n)

· (π2− (2x)2)2n+1
(6.15)

for 0 < x < π/2.
Theorem 6.1 gives the limits of Fn(x) and Gn(x) at x = 0 and x = π/2.

THEOREM 6.1. Let Fn(x) and Gn(x) be defined by (6.14) and (6.15). We have

lim
x→0+

Fn(x) =
T2n+1

2n+1
π4n, lim

x→π/2−
Fn(x) =

32
n

(4π)2n−2(2n)!,

lim
x→0+

Gn(x) =
T2n+1

2n+1
π4n+2, lim

x→π/2−
Gn(x) = 8(4π)2n(2n)!.

Proof. Write (6.10) as

tanx
x

=
∞

∑
k=1

T2k−1

(2k−1)!
x2k−2, |x| < π

2
.

We find that(
tanx

x

)(2n−1)

=
T2n+1

2n+1
x+O(x3) and

(
tanx

x

)(2n)

=
T2n+1

2n+1
+O(x2).

We then obtain

lim
x→0+

Fn(x) = π4n lim
x→0+

(
tanx

x

)(2n−1)

· 1
x

= π4n lim
x→0+

{
T2n+1

2n+1
+O(x2)

}
=

T2n+1

2n+1
π4n

and

lim
x→0+

Gn(x)= π4n+2 lim
x→0+

(
tanx

x

)(2n)

= π4n+2 lim
x→0+

{
T2n+1

2n+1
+O(x2)

}
=

T2n+1

2n+1
π4n+2.

Using (2.10), we have

Fn(x) =

(
π2− (2x)2

)2n

x2n+1

∫ x

0
t2n−1( tan t

)(2n)dt
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and

Gn(x) =

(
π2− (2x)2

)2n+1

x2n+1

∫ x

0
t2n( tan t

)(2n+1)dt.

Further, we have

lim
x→π/2−

Fn(x) =
(

2
π

)2n+1

lim
x→π/2−

∫ x
0 t2n−1

(
tan t

)(2n)dt(
π2− (2x)2

)−2n

=
(

2
π

)2n+1

lim
x→π/2−

x2n−1
(
tanx

)(2n)

16nx
(
π2− (2x)2

)−2n−1 (by L’Hospital’s rule)

=
1

16n

(
2
π

)3

lim
x→π/2−

(
tanx

)(2n)(π2− (2x)2)2n+1

=
1

16n

(
2
π

)3

lim
t→0+

(
cott

)(2n)42n+1t2n+1(π − t
)2n+1

(
where t =

π
2
− x
)

=
(4π)2n+1

16n

(
2
π

)3

lim
t→0+

(
cott

)(2n)
t2n+1

and

lim
x→π/2−

Gn(x) =
(

2
π

)2n+1

lim
x→π/2−

∫ x
0 t2n

(
tant

)(2n+1)
dt(

π2− (2x)2
)−2n−1

=
(

2
π

)2n+1

lim
x→π/2−

x2n
(
tanx

)(2n+1)

8(2n+1)x
(
π2− (2x)2

)−2n−2 (by L’Hospital’s rule)

=
1

8(2n+1)

(
2
π

)2

lim
x→π/2−

(
tanx

)(2n+1)(π2− (2x)2)2n+2

=
1

8(2n+1)

(
2
π

)2

lim
t→0+

(− cott
)(2n+1)

42n+2t2n+2(π − t
)2n+2

(
where t =

π
2
− x
)

=
8(4π)2n

2n+1
lim

t→0+

(− cott
)(2n+1)

t2n+2.

From the power series expansion

cott =
1
t
−

∞

∑
j=1

22 j|B2 j|
(2 j)!

t2 j−1, |t| < π , (6.16)

we find that

(cott)(2n) =
(2n)!
t2n+1 +O(t) and (cott)(2n+1) = − (2n+1)!

t2n+2 +O(1).
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We then obtain

lim
x→π/2−

Fn(x) =
(4π)2n+1

16n

(
2
π

)3

lim
t→0+

{
(2n)!
t2n+1 +O(t)

}
t2n+1 =

32
n

(4π)2n−2(2n)!

and

lim
x→π/2−

Gn(x) =
8(4π)2n

2n+1
lim

t→0+

{
(2n+1)!

t2n+2 +O(1)
}

t2n+2 = 8(4π)2n(2n)!.

The proof is complete.
It was proved in [7, 19] that G0(x) and F1(x) are both strictly decreasing for

0 < x < π/2. Computer experiments indicate that the functions Fn(x) (for n � 2) and
Gn(x) (for n � 1) are both strictly increasing for 0 < x < π/2. We then proposed the
following conjecture.

CONJECTURE 6.1. (i) For 0 < x < π/2 and n � 2, we have

T2n+1
2n+1 x(

1− ( 2x
π )2
)2n <

(
tanx

x

)(2n−1)

<
(2n)!
8n

(
4
π
)2n+2

x(
1− ( 2x

π )2
)2n . (6.17)

(ii) For 0 < x < π/2 and n � 1, we have

T2n+1
2n+1(

1− ( 2x
π )2
)2n+1 <

(
tanx

x

)(2n)

<
(2n)!

2

( 4
π
)2n+2(

1− ( 2x
π )2
)2n+1 . (6.18)

Here T2n+1 are the tangent numbers.

REMARK 6.1. When n = 1, the reversed inequality of (6.17) holds, that is to say,
the Papenfuss inequality (1.21) holds. When n = 0, the reversed inequality of (6.18)
holds, that is to say, the Becker-Stark inequality (1.11) holds.
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