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3-VARIABLE DOUBLE p-FUNCTIONAL INEQUALITIES OF DRYGAS

WENLONG SUN, YUANFENG JIN, CHOONKIL PARK AND GANG LU

(Communicated by A. Gildanyi)

Abstract. Drygas introduced the functional equation f(x+y)+ f(x—y) =2f(x)+ f(y) + f(—Y)
in quasi-inner product spaces. In this paper, we introduce and solve 3-variable double p-
functional inequalities associated to the functional equation f(x+y+z)+ f(x+y—z)=2f(x)+
2f(y)+ f(z) + f(—z). Moreover, we prove the Hyers-Ulam stability of the 3-variable double
p -functional inequalities in complex Banach spaces.

1. Introduction and preliminaries

A classical question in the theory of functional equations is the following:“When
is it true that a function which approximately satisfies a functional equation must be
closed to an exact solution of question?”. If the problem accepts a solution, we say
the equation is stable. The stability problem of functional equations originated from a
question of Ulam [22] concerning the stability of group homomorphisms. Let (Gy,.)
be a group and let (G,*) be a metric group with the metric d(.,.). Given € > 0,
does there exist a § > 0, such that if a mapping & : G| — G, satisfies the inequality
d(h(x.y),h(x)*h(y)) < & forall x,y € Gy, then there exists a homomorphism H : G| —
G, with d(h(x),H(x)) < € for all x € G1? In the other words, under what condition
does there exists a homomorphism near an approximate homomorphism? The concept
of stability for functional equation arises when we replace the functional equation by
an inequality which acts as a perturbation of the equation. In 1941, Hyers [13] gave the
first affirmative answer to the question of Ulam for additive groups in Banach spaces.
Hyers’ theorem was generalized by Aoki [1] for additive mappings and by Rassias [20]
for linear mappings by considering an unbounded Cauchy difference. A generalization
of the Th.M. Rassias theorem was obtained by Gévruta [ 10] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ approach. The
stability problems for several functional equations or inequalities have been extensively
investigated by a number of authors and there are many interesting results concerning
this problem (see [2, 3, 5, 7, 15, 16, 23]).

Gildnyi [11] showed that if f satisfies the functional inequality

12f(x) +2f () = fx =) < I (x+ )] (1
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then f satisfies the Jordan-von Neumann functional equation

2f()+2f(y) = fx+y) + f(x—).

See also [21]. Fechner [9] and Gildnyi [12] proved the Hyers-Ulam stability of the
functional inequality (1).

Park [17, 18] defined additive p -functional inequalities and proved the Hyers-
Ulam stability of the additive p -functional inequalities in Banach spaces and non-
Archimedean Banach spaces.

To obtain a Jordan and von Neumann type characterization theorem for the quasi-
inner-product spaces, Drygas [6] considered the functional equation

foe+y)+fx=y) =2f() + 5 () + f(-);

whose solution is called a Drygas mapping. The general solution of the above func-
tional equation was given by Ebanks, Kannappan and Sahoo [8] as

f(x) = 0(x) +A(x)

where A is an additive mapping and Q is a quadratic mapping. In [19], Park et al.
investigated the following inequalities

1F ) + £ )+ @I < |27 (559,
1FG) + )+ fEI < Ifx+y+2)],
IF )+ ) +2f @I < [[2f (5 +2) |

in Banach spaces. Recently, Cho et al. [4] investigated the following functional in-
equality

1)+ £0) + £(2) < H f(”y“)H (0< |kl < 3]

in non-Archimedean Banach spaces. Lu et al. [14] investigated 3-variable Jensen p -
functional inequalities associated to the following functional equations

fx+y+z)+flx+y—z)—2f(x) =2f(y) =
fx+y+z)—flx—y—2)—2f(y) —2f(z)=0

in complex Banach spaces.
The function equation

fx+y+a)+flx+y—2)=2f(x)+2f(y) + f(z) + f(—2)

is called 3-variable Drygas functional equation, whose solution is called a 3-variable
Drygas mapping.

In this paper, we introduce double p -functional inequalities associated to 3-variable
Drygas functional equation, and prove the Hyers-Ulam stability of the double p -functional
inequalities in complex Banach spaces.

Throughout this paper, assume that X is a complex normed vector space and that
Y is a complex Banach space.
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2. A double p -functional inequality relate to the 3-variable Drygas functional
equation /

In this section, we prove the Hyers-Ulam stability of the following 3-variable dou-
ble p -functional inequality

[f(x+y+2)+flx+y—2)=2f(x) =2f(y) = f(z) = f(=2)]
<llp1(fx+y+2) = f(x) = f(y) = f)l 2)
+p2(f(x+y—2) = f(x) = f(y) = f(=2))]

in complex Banach spaces, where p; and p, are fixed complex numbers with |p;| < 1
and [pi[+[p2| <2.

LEMMA 2.1. Let f: X — Y be a mapping. If it satisfies (2) for all x,y,z € X,
then f is additive.

Proof. Letting x = —y =z in (2), we get

2/lf @)+ f(=D < lpalllf (=2) + f @I + 2l (2) + f(=2) |
and so f(—x) = —f(x) forall x€ X, and f(0) =
Letting z =0 in (2), we have
12/ (x+y) =2f(x) =2f Wl < o1 (f(x+y) = f(x) = fFO)I
+ o2 (f (x+y) = fx) = F W)l
=(lp1l+[p2DI[f (x+y) = f(x) = fFOl

and so f(x+y) = f(x)+ f(y) forall x,y € X. Hence f:X — Y is additive. I
Now we prove the Hyers-Ulam stability of the double p -functional inequality (2)
in complex Banach spaces.

THEOREM 2.2. Let f:X — Y be a mapping. If there is a function ¢ : X> — [0, )
such that

[fr+y+2)+fe+y—2) =2/ (x) =2/ (y) = f(z) = f(=2)
<lpi(fx+y+2) = f(x) = F(y) = f2)] 3)
F P2 (fx+y—2) = f(x) = f(¥) = f(=2) I+ @ (x,3,2)
and
P(x,y,2) = l.(p (27x,27y,27z) <
=%
for all x,y,z € X, then there exists a unique additive mapping A : X — Y such that

1£(x) — AWl < !

2o o P50 @

forall x e X.
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Proof. Letting x =y =z =0 in (3), we get [[4£(0)| < [[2p1/(0)[| + [[2p2/(0)
and so f(0) =0.
Letting y=x and z =0 in (3), we get

12(2x) = 4f ()| < [palllf(2x) = 2f () + |2l [l £ (2x) = 2 (0) [ + @ (x, x,0)

forall x e X.
Thus
f(2x) 1 1
fx - X _QD x7x70
H ®) 2 2—|p1l—1p2|2 ( )
forall x € X.

Hence one may have the following formula for positive integers m,! with m > [,

1 Nl H L N L

=2 (%) = S (") < 55— 2, 59 (2x.27.0), ()

[ (@12) - e @) < sy & 305250

forall x € X. k
It follows from (5) that the sequence { f—(gkx)

1%
2k

} is a Cauchy sequence forall x € X.

Since Y is a Banach space, the sequence { } converges. So one may define the

mapping A : X — Y by

A(x) == lim {f(zkx) } . VxeX.

k—o0 2k

Taking [ = 0 and letting m tend to o in (5), we get (4).
It follows from (3) that

[A(x+y+2) +Ax+y—z) —2A(x) —2A(y) — A(z) —A(=2)||

= lim o [F 2"y + O]+ F2 by — 9] - 2 (2')

—2f(2"y) = f(2"2) = f(=2"7)]

S,}g{}c;—n o1 (f[2"(x+y+2)] = f(2"%) = £ (2") — f(2"2))]
+}}g§°2in 2 (f[2"(x+y—2)] = f(2"x) = £ (2"%) — f(=2"2))
+lim 2in<p(2"x, 2y, 27

=lp1(A(x+y+2) —Ax) —A(y) —A(2))]|
+lp2(A(x+y—2) —Alx) —A(y) —A(=2))]|

for all x,y,z € X. Sot A satisfies (2) and so it is additive by Lemma 2.1.
Now, we show that the uniqueness of A. Let T : X — Y be another additive
mapping satisfying (3). Then one has
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1A(x) - T(x)|| = ‘ %A (2" ) 21 T (2’<x)

< (4 () -7 (@) |+ (24) - (249)])

1
2?(p(2kx, 2kx,0)

which tends to zero as k — oo for all x € X. So we can conclude that A(x) = T'(x) for
alxeX. O

COROLLARY 2.3. Let r < 1 and 0 be nonnegative real numbers, and let f: X —
Y be a mapping such that

1f(r+y+2)+fx+y—2) =2/ (x) =2/ (y) = f(z) = f(=2)
<lp1(fx+y+2) = f(x) = f) = fD)] (6)
Fp2(fx+y—2) = f(x) = ) + F @)+ O(Ix[1"+ [y "+ []z]]")
for all x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

20 .
1£6) =AW < =35 =T

forall x € X.

THEOREM 2.4. Let f:X — Y be a mapping with f(0) = 0. If there is a function
@ : X3 — [0,00) satisfying (3) such that

< Z
o@xx.7) ; o (537 2,><°°

for all x,y,z € X, then there exists a unique additive mapping A : X — Y such that

1£(x) — AW < !

2 Tp a0

forall x € X.

Proof. By a similar method to the proof of Theorem 2.2, we can get
Xy
-2 (3)] <3 v(33)
H Pl\ “1pal ?
forall x e X.

Next, we can prove that the sequence {2"f (2"—,,) is a Cauchy sequence for all
x € X, and define a mapping A: X — Y by
. X
Alx) = lim 2"f <?>

forall x e X.
The rest proof is similar to the corresponding part of the proof of Theorem2.2. [



1240 W. SUN, Y. JIN, C. PARK AND G. LU

COROLLARY 2.5. Let r > 1 and 6 be nonnegative real numbers and let f: X —
Y ba a mapping satisfying (6). Then there exists a unique additive mapping A: X — Y
such that

20

1) =AW < =55 = =10

[

forall x e X.

3. A double p -functional inequality relate to the 3-variable Drygas functional
equation /7

In this section, we prove the Hyers-Ulam stability of the following 3-variable dou-
ble p -functional inequality

[fx+y+2)+ fx+y—z) —2f(x) = 2f(y) — f(z) = f(—2)
<lpt(fx+y—2)+ flx—y+2) =2f(x) = f(y) = f(=y) = f(2) = fF(=2)Il
+lp2(f(x+y+2) = flx+2) = fO)l

in complex Banach spaces, where p; and p, are fixed complex numbers with |p;|+
lp2| < 1.

THEOREM 3.1. Let f:X — Y be a mapping. If there is a function ¢ : X3 — [0, o)
such that

[f(x+y+2)+ flx+y—2)=2f(x) =2f(y) — f(z) — F(=2)
<lpr(fxe+y—2)+flx—y+2) =2f(x) = fv) = f(=y) = f&) = fF(=2)I (D
+p2(f(x+y+2) = fx+2) = FO)) I+ @ (x,,2)

and
B(x.0.2) 241 (27,273, 272) < oo ®)

for all x,y,z € X, then there exists a unique Drygas mapping A : X — Y such that

1

m[ ?(x,0,x) + @(—x,0,x)] ©)

1A(x) = f(x) = f(=x)[| <

Proof. Letting x =y =z =0 in (7), we get 4| f(0)|| < (4|p1| + |p2|)||f(0)]| and
so f(0) =

Letting y =0 in (7), we get

2+ )~ 2£() — £2) — -2 < ‘<P(X»O»Z) (10)

=lpil
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for all x,z € X . Letting z = x in (10), we get

1
1/(2x) = 3f(x) = f(=2) | € 779 (x,0,x)
1—|pi]
for all x € X. Similarly, we get
1
1/(=2x) =3f(—x) = f(¥)[| < —p? ¢(—x,0,x)

for all x € X. Thus we have

[1F(2%) + f(=2x) =41 (x) = 4f (=)
< f(2x) =3f(x) = f(=0) | + 1/ (=2%) = 3f(=x) = f() |

[(P(x’ O,X) + (P(—X,O,)C)}

1—|pi]
for all x € X. Therefore

1

)+ A9 € g

’[9&1&:&2 [#(x,0,%) + ¢ (=x,0,%)]

4

forall x € X.
Hence one may have the following formula for positive integers m,l with m > [,

fF(2%)+£(=2%)  F(2m)+f(=2")

4l 4m
m—1 1 (1 1)
S 2 414(1 - \pll) (9(2x,0,2'%) + ¢(—2'x,0,2%)) ,
forall xe X.
It follows from (8) that the sequence { W } is a Cauchy sequence for all

k k
x € X. Since Y is a Banach space, the sequence {W} converges. So one
may define the mapping A: X — Y by

A(x) := lim {M}, Vx e X.

k—so0 4k

Taking [ = 0 and letting m tend to e in (11), we get (9).
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It follows from (7) that
JAGe+3) +Alr— )~ 24() ~ AG) ~ A(-)]
= lim 2 2o )] S 2 )] S22 ()
~2f (2 -2 (~2%) — F(2'9) ~ (2]
< lim 2oy (7 (2 +2%) +/ (25— 2') 2/ (') — £ (2") — f (-2')|
Flim o (-2~ 2') (24 2) 2 (-2'%) — 1(2')  (-2')|

<1 1 lpi

<lim — P (2m,0,2%y) = 0
i ™ 2

for all x,y € X. So A is a Drygas mapping.

Now, we show that the uniqueness of A. Let T : X — Y be another Drygas map-
ping satisfying (9). Then one has

4G — Tl = | A (25) - 27 (%)

< (4 () -7 (%)~ (=2 + [ () -7 () - (=2

2 _ N
<—— (9(2%x,0,2%x) + ¢(—2x,0,2%x
o (o )+ ))

which tends to zero as k — oo for all x € X. So we can conclude that A(x) = T'(x) for
alxeX. 0O

COROLLARY 3.2. Let r <2 and 6 be nonnegative real numbers, and let f: X —
Y be a mapping such that

[f(x+y+2)+ flx+y—2)=2f(x) =2f(y) — f(z) = F(=2)
<lp1(fx+y+2) = flx—y—2) =2f(x) = f(y) = f(=y) = f(2) = f(=2)Il (12)
+lp2(f(x+y+2) = flx+2) = FONI+O x|+ Iy[I"+ llz]")

for all x,y,z € X. Then there exists a unique Drygas mapping A : X — Y such that

40

1AW £~ F < g

[Ix”

forall x e X.

THEOREM 3.3. Let f:X — Y be a mapping with f(0) = 0. If there is a function
@ : X3 — [0,0) satisfying (7) and

ser = Swo(3.3.3) -

J=1
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for all x,y,z € X, then there exists a unique Drygas mapping A : X — Y such that

1
1AG) = 7 (x) = f (=0 < 5

m [a(xvovx) + 6(_)67 07)6)]

forall x e X.

Proof. By a similar method to the proof of Theorem 3.1, we can get

X

s+ (3) oo (D) < -t (o0 2ot 0.2)

forall x € X.
Next, we can prove that the sequence {4”[f(37)+ f(—757)]} is a Cauchy sequence
forall x € X, and define a mapping A: X — Y by

. X X
A(x) := lim 4" [f () + f(—5-)]
n—eoo 2 2

forall x € X.
The rest proof is similar to the corresponding part of the proof of Theorem 3.1. [

COROLLARY 3.4. Let r > 2 and 6 be nonnegative real numbers and let f: X —
Y be a mapping satisfying (12). Then there exists a unique Drygas mappingA : X — Y
such that

40

1)+ f(=x) —A)[| < [T

[l

forall x € X.
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