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Abstract. In the article, we establish several new inequalities for the generalized trigonometric
and hyperbolic functions with one parameter, generalize the well known Mitrinović-Adamović,
Lazarević, Huygens-type, Wilker-type and Cusa-Huygens-type inequalities to the cases of the
generalized trigonometric and hyperbolic functions with one parameter.

1. Introduction

It is well known that the trigonometric and hyperbolic functions as well as their in-
verse functions are very common elementary functions in mathematics, they are widely
used in all branches of mathematics [2, 3, 14, 17, 19, 20, 25, 30, 32, 35, 38, 41, 46,
50, 52, 61, 70, 74, 77, 81, 83, 85, 86, 87, 88], they are closely related to the bivariate
means [15, 26, 54, 55, 56, 68, 73, 75, 78] and special functions [1, 7, 12, 13, 21, 22,
27, 28, 36, 51, 57, 58, 59, 60, 62, 65, 69, 72, 82]. Recently, many remarkable results
[4, 5, 6, 16, 18, 23, 29, 33, 34, 39, 40, 42, 43, 45, 47, 53, 63, 64, 66, 67, 71, 76, 80, 89]
in mathematics, physics, mechanics, game theory, control and optimization theory and
so on have been established via these functions.

From the basic knowledge of calculus we clearly see that

arcsin(x) =
∫ x

0

1

(1− t2)1/2
dt, 0 � x � 1

and
π
2

= arcsin(1) =
∫ 1

0

1

(1− t2)1/2
dt.

Since the function arcsin(x) is differentiable on (0,1) , and strictly increasing from
[0,1] onto [0,π/2] , it has a differentiable inverse function x �→ sin(x) on [0,π/2] .
By defining sin(x) = sin(π − x) for x ∈ [π/2,π ] and extending sin(x) to [−π ,π ] by
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oddness, and to (−∞,+∞) by 2π -periodicity, we obtain the trigonometric sine function
defined on the whole R .

In 2012, Edmunds, Gurka and Lang [24] considered the Dirichlet problem for
(p,q)-Laplacian and introduced generalized trigonometric sine function with two pa-
rameters as an eigenfunction. Indeed, for p,q > 1, the authors defined

arcsinp,q(x) =
∫ x

0
(1− tq)−1/pdt, x ∈ [0,1],

and the generalized circumference ratio

πp,q = 2
∫ x

0
(1− tq)−1/pdt.

Clearly x �→ arcsinp,q(x) is strictly increasing from [0,1] to [0,πp,q/2] . Consequently,
it also has the inverse function denoted by sinp,q . By the standard extension procedures
as the classical sine function one has the generalized trigonometric sine function with
two parameters on (−∞,+∞) .

In this paper, we focus on the generalized trigonometric function sinp,q with
1/p + 1/q = 1 (q is the conjugate of p ), which was first studied by Lindqvist and
Peetre in [48, 49]. Actually, for p > 1, set

arcsin∗p(x) = arcsin p
p−1 ,p(x) =

∫ x

0
(1− t p)−

p−1
p dt, x ∈ [0,1] (1.1)

and
π∗

p

2
= arcsin∗p(1) =

∫ 1

0
(1− t p)−

p−1
p dt =

1
p
B

(
1
p
,
1
p

)
, (1.2)

where B(u,v)=
∫ 1
0 tu−1(1−t)v−1dt = Γ(u)Γ(v)/Γ(u+v) (u,v > 0) is the classical Beta

function [31, 37], and Γ(u) =
∫ +∞
0 tu−1e−tdt (u > 0) is the Gamma function [79, 84].

Then we also obtain the increasing function sin∗p defined on the interval [0,π∗
p/2] as

the inverse function of arcsin∗p , and then extend it to R analogously. Since sin∗p has
one free parameter p , we called sin∗p the generalized trigonometric sine function with
one parameter,

Define cos∗p : [0,π∗
p/2] → [0,1] by

cos∗p(x) =
[
1− (sin∗p x)p]1/p

. (1.3)

It is clear to see that cos∗p(0) = 1 and cos∗p(π∗
p/2) = 0. We also can extend cos∗p to

(−∞,+∞) by evenness about 0, oddness about π∗
p/2 and 2π∗

p -periodicity. It follows
the definitions of sin∗p and cos∗p that

|cos∗p(x)|p + |sin∗p(x)|p = 1, x ∈ R.

Obviously, when p = 2, the functions sin∗p and cos∗p agree with the classical trigono-
metric sine and cosine function sinx and cosx , respectively.
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In the recent past, sin∗p and cos∗p have been investigated by several authors from
different points of view [9, 24, 48, 49]. For example, sin∗p and cos∗p are applied in the
parametrization of so-called p -circle

|x|p + |y|p = Rp

by Lindqvist and Peetre in [49], in which the authors proved that the area closed by the
p -circle is π∗

pR
2 , and the q -length ( lq metric) of p -circle is 2π∗

pR . In 2012, making
use of elliptic functions, Edmunds, Gurka and Lang [24] established the duplication
formula for sin∗4(x) :

sin∗4(2x) =
2sin∗4(x)cos∗4(x)[

1+4sin∗4
4(x)cos∗4

4(x)
]1/2

,

which is similar to sin(2x) = 2sinxcosx , furthermore, they showed that for all p ∈
(1,+∞) , the functions sin∗p(π∗

pnx) form a basis in Lebesgue space Lr(0,1) for all r ∈
(1,+∞) . In 2017, the basis properties of the generalized trigonometric functions with
one parameter in Lr(0,1)n for any r ∈ (1,+∞) and n � 3 were investigated by Bakşi
et al. in [9].

It is worthy mentioning that, another special case of sinp,q , sinp,p = sinp (p > 1)
and some other related functions have attracted the attention of many researchers. In
particular, a lot of well known properties and inequalities for the classical trigonometric
functions had been generalized to these cases [10, 11, 44].

The aim of this paper is to generalize some well known inequalities satisfied
by classical trigonometric and hyperbolic functions, such as Mitrinović-Adamović in-
equality, Lazarević inequality, Huygens-type inequality, Wilker-type inequality, Cusa-
Huygens-type inequality, to the cases of the generalized trigonometric and hyperbolic
functions with one parameter (See Section 2).

2. Preliminaries and Basic Definitions

Throughout this section, we assume that 1 < p < +∞ . At first, we introduce some
definitions and formulas for the generalized trigonometric and hyperbolic functions
with one parameter. By (1.1) and (1.3), we have, on (0,π∗

p/2) ,

d cos∗p(x)
dx

= −[sin∗p(x)]
p−1,

d sin∗p(x)
dx

= [cos∗p(x)]
p−1.

Replacing x by arccos∗p(x) in (1.3), one has

arccos∗p(x) =
∫ 1

x

dt

(1− t p)
p−1
p

, x ∈ [0,1],

so that

arccos∗p(x)+ arcsin∗p(x) =
π∗

p

2
.
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The generalized tangent function with one parameter is defined as in the classical
case:

tan∗p(x) =
sin∗p(x)
cos∗p(x)

, x ∈ R\
{

kπ∗
p +

π∗
p

2
,k ∈ Z

}
.

It follows that
d tan∗p(x)

dx
=

1
[cos∗p(x)]2

, x ∈
(
−π∗

p

2
,

π∗
p

2

)
.

Thus x �→ tan∗p(x) is strictly increasing from (−π∗
p/2,π∗

p/2) onto (−∞,+∞) .
Analogously, we also define the generalized hyperbolic sine, cosine and tangent

functions as follows (see [11]):

arcsinh∗p(x) =
∫ x

0
(1+ t p)−

p−1
p dt, x ∈ [0,+∞),

m∗
p =

∫ +∞

0
(1+ t p)−

p−1
p dt

and
sinh∗p(x) : (0,m∗

p) → (0,+∞).

Noting that m∗
p = +∞ for 1 < p � 2, and for p > 2,

m∗
p =

∫ +∞

0
(1+ t p)−

p−1
p dt =

1
p

∫ 1

0
x−2/p(1− x)1/p−1dx =

1
p
B

(
1− 2

p
,
1
p

)

by substituting 1+ t p = 1/x , then using the formula Γ(2z) = 22z−1Γ(z)Γ(z+1/2)/
√

π
gives rise to

m∗
p =

1
p
B

(
1− 2

p
,
1
p

)
=

1

41/pp
B

(
1
p
,
1
2
− 1

p

)
.

For x ∈ (−∞,0) , let arcsin∗p(x) = −arcsin∗p(−x) , then sinh(x) = −sinh(−x) for x ∈
(−m∗

p,0) . Similarly, define

cosh∗p(x) = [1+ |sinh∗p(x)|p]1/p, x ∈ (−m∗
p,m

∗
p),

tanh∗p(x) =
sinh∗p(x)
cosh∗p(x)

, x ∈ (−m∗
p,m

∗
p).

Then it follows that

[cosh∗p(x)]
p −|sinh∗p(x)|p = 1, x ∈ (−m∗

p,m
∗
p),

and for x ∈ (0,m∗
p) , one has

d sinh∗p(x)
dx

= [cosh∗p(x)]
p−1,

d cosh∗p(x)
dx

= [sinh∗p(x)]
p−1,

d tanh∗p(x)
dx

=
1

[cosh∗p(x)]2
.

Obviously, the functions sinh∗p , cosh∗p and tanh∗p are strictly increasing on (0,m∗
p) , and

sinh∗p(0) = tanh∗p(0) = 0, cosh∗p(0) = tanh∗p(m∗
p) = 1, sinh∗p(m∗

p) = cosh∗p(m∗
p) = +∞ .
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LEMMA 2.1. (See [8, Theorem 1.25, l’Hôptial Monotone Rule]) Let −∞ < a <
b < +∞ and f ,g : [a,b] → R be continuous on [a,b] and differentiable on (a,b) .
Assume that g′(x) �= 0 for each x ∈ (a,b) . If f ′/g′ is (strictly) increasing (decreasing)
on (a,b) , then so are the functions

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

LEMMA 2.2. Let p ∈ (1,+∞) . Then the following statements hold:
(1) The function f (x)= x/(sin∗p(x)[cos∗p(x)]1−p) is strictly decreasing from (0,π∗

p/2)
onto (0,1);

(2) The function g(x) = sinh∗p(x)[cosh∗p(x)]1−p/x is strictly decreasing on (0,m∗
p) ,

and the range of g is (2− p,1) if p ∈ (1,2] , while the range is (0,1) if p ∈ (2,+∞);
(3) The inequality

sinh∗p(x)
x

−1 > (p−1)
[
1− tanh∗p(x)/x

2

]
(2.1)

holds for all x ∈ (0,m∗
p) ,

Proof. For part (1), let f1(x) = x , f2(x) = sin∗p(x)[cos∗p(x)]1−p . Then f1(0) =
f2(0) = 0, and simple computations one has

f ′1(x)
f ′2(x)

=
1

1− [sin∗p(x)]p(1− p)[cos∗p(x)]−p =
1

1+(p−1)[tan∗p(x)]p
,

which is strictly decreasing on (0,π∗
p/2) due to tan∗p(x) is strictly increasing from

(0,π∗
p/2) onto (0,+∞) . By application of Lemma 2.1, f (x) is also strictly decreasing

on (0,π∗
p/2) . Moreover,

lim
x→0+

f (x) = lim
x→0+

f ′1(x)
f ′2(x)

= 1, lim
x→ π∗p

2

− f (x) = 0.

For part (2), let g1(x) = sinh∗p(x)[cosh∗p(x)]1−p, g2(x) = x . Then g1(0) = g2(0) =
0 and

g′1(x)
g′2(x)

= 1+[sinh∗p(x)]
p(1− p)[cosh∗p(x)]

−p = 1+(1− p)[tanh∗p(x)]
p,

which is strictly decreasing on (0,m∗
p) since tanh∗p(x) is strictly increasing from (0,m∗

p)
onto (0,1) . By Lemma 2.1, g(x) is also strictly decreasing on (0,m∗

p) . Moreover, by
l’Hôptial’s Rule we get lim

x→0
g(x) = lim

x→0
g′1(x)/g′2(x) = 1, and

lim
x→+∞

g(x) = lim
x→+∞

g′1(x)
g′2(x)

= 1+(1− p) = 2− p if p ∈ (1,2],
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while if p ∈ (2,+∞) , then

lim
x→m∗

p

g(x) = lim
x→m∗

p

sinh∗p(x)
cosh∗p(x)

· 1
x[cosh∗p(x)]p−2 = 0.

For part (3), define h on (0,m∗
p) by

h(x) = 2sinh∗p(x)+ (p−1) tanh∗p(x)− (1+ p)x.

Then taking derivative twice in succession yields

h′(x) = 2[cosh∗p(x)]
p−1 +(p−1)[cosh∗p(x)]

−2− (1+ p)

and

h′′(x) = 2(p−1)[cosh∗p(x)]
p−2[sinh∗p(x)]

p−1 +(p−1)(−2)[cosh∗p(x)]
−3[sinh∗p(x)]

p−1

= 2(p−1)[sinh∗p(x)]
p−1[cosh∗p(x)]

−3([cosh∗p(x)]
p+1−1).

It is clear to see that h′′(x) > 0 for all x ∈ (0,m∗
p) , so that h′(x) is strictly increas-

ing on (0,m∗
p) . Consequently, h′(x) > h′(0) = 0 for all x ∈ (0,m∗

p) , and therefore h(x)
is strictly increasing (0,m∗

p) and h(x) > h(0) = 0 for all x ∈ (0,m∗
p) . This leads to

inequality (2.1) immediately. �

LEMMA 2.3. Let

F(x) = log

(
2x2

x+1

)
+2logΓ(x)− logΓ(2x), x ∈ (0,1).

Then there exists unique x0 = 0.435 · · · ∈ (0,1) such that F(x) < 0 for x ∈ (0,x0) ,
F(x) > 0 for x ∈ (x0,1) and F(x0) = 0 .

Proof. Employing digamma function ψ(x) = Γ′(x)/Γ(x) and its duplication for-
mula 2ψ(2x) = ψ(x)+ ψ(x+1/2)+ log4, we obtain

F ′(x) =
x+2

x(x+1)
+2ψ(x)−2ψ(2x) =

2
x
− 1

x+1
+ ψ(x)−ψ

(
x+

1
2

)
− log4

=
2
x
− 1

x+1
+ ψ(x+1)− 1

x
−ψ

(
x+

1
2

)
− log4

=
1
x
− 1

x+1
+ ψ(x+1)−ψ

(
x+

1
2

)
− log4.

Continuing to differentiate F ′ yields

F ′′(x) =
[
− 1

x2 +
1

(x+1)2

]
+
[

ψ ′(x+1)−ψ ′
(

x+
1
2

)]
< 0
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for all x ∈ (0,1) since ψ ′(x) = ∑∞
k=0[1/(x+k)2] . Hence F ′(x) is strictly decreasing on

(0,1) . Noting that

F ′(0+) = +∞, F ′(1−) = −1
2
,

we conclude that there exists unique ξ ∈ (0,1) such that F ′(x) > 0 for x ∈ (0,ξ ) and
F ′(x) < 0 for x ∈ (ξ ,1) . This together with the limiting values F(0+) = 0 and

lim
x→0+

F(x) = lim
x→0+

[log2− log(x+1)+2logΓ(x+1)− logΓ(2x+1)+ log(2x)] = −∞,

leads to the conclusion that there exists x0 ∈ (0,1) such that F(x) < 0 for x ∈ (0,x0)
and F(x) > 0 for x ∈ (x0,1) . Furthermore, numerical computations show that

F(0.4352) = −0.0000264 · · ·, F(0.4353) = 0.000612 · · ·,
Thus x0 = 0.435 · · · ∈ (0.4352,0.4353) . This completes the proof of Lemma 2.3. �

COROLLARY 2.4. Let p ∈ (1,+∞) . Then there exists unique p0 = 2.297 · · · ∈
(1,+∞) such that π∗

p0
= p0 + 1 , π∗

p > p+ 1 for p ∈ (1, p0) and π∗
p < p+ 1 for p ∈

(p0,+∞) .

Proof. Let x = 1/p ∈ (0,1) . Then

log

( π∗
p

p+1

)
= log

[
(2/p)B(1/p,1/p)

p+1

]
= log

[
2xB(x,x)
1/x+1

]

= log

(
2x2

x+1

)
+2logΓ(x)− logΓ(2x).

By Lemma 2.3, Corollary 2.4 follows. �

LEMMA 2.5. Let

G(x) = logΓ(x+1)+ logΓ
(

1
2
− x

)
+ log(1− x)

− x log4− 1
2

logπ − log(1+ x), x ∈
(

0,
1
2

)
.

Then there exists unique x1 = 0.37027 · · · ∈ (0,1) such that G(x) < 0 for x ∈ (0,x1) ,
G(x) > 0 for x ∈ (x1,1/2) and G(x1) = 0 .

Proof. Simple computations yield

lim
r→0+

G(x) = 0, lim
x→ 1

2
− G(x) = +∞, (2.2)

G′(x) = ψ(x+1)−ψ
(

1
2
− x

)
− 1

1− x
− log4− 1

1+ x
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= ψ(x+1)−ψ
(

3
2
− x

)
+

2
1−2x

− 1
1− x

− log4− 1
1+ x

,

lim
r→0+

G′(x) = ψ(1)−ψ
(

1
2

)
− log4−2 = −2, lim

x→ 1
2
− G′(x) = +∞ (2.3)

and

G′′(x) = ψ ′(x+1)+ ψ ′
(

1
2
− x

)
− 1

(1− x)2 +
1

(1+ x)2

=
∞

∑
k=0

1
(x+1+ k)2 +

∞

∑
k=0

1
(1/2− x+ k)2 −

1
(1− x)2 +

1
(1+ x)2

>
∞

∑
k=1

1
(x+1+ k)2 +

∞

∑
k=1

1
(1/2− x+ k)2 > 0. (2.4)

It follows from (2.2)-(2.4) and similar argument in Lemma 2.4 that there exists
x1 ∈ (0,1) such that G(x) < 0 for x ∈ (0,x1) , G(x) > 0 for x ∈ (x1,1/2) and G(x1) =
0. Furthermore, numerical computations show that

g(0.37027) = −0.0000158 · · ·, g(0.37028) = 0.0000270 · · ·.

Thus x∗0 ∈ (0.37027,0.37028) . This completes the proof of Lemma 2.5. �

COROLLARY 2.6. Let p ∈ (2,+∞) . Then there exists unique p1 = 2.7007 · · · ∈
(2,+∞) such that m∗

p1
= (p1 +1)/(p1−1) , m∗

p > (p+1)/(p−1) for p ∈ (2, p1) and
m∗

p < (p+1)/(p−1) for p ∈ (p1,+∞) .

Proof. Let x = 1/p ∈ (0,1/2) . Then

log

[
m∗

p(p−1)
p+1

]
= log

[
B(1/p,1/2−1/p)(p−1)

4−1/p · p(p+1)

]

= log

[
Γ(1/p)Γ(1/2−1/p)(p−1)√

π4−1/p · p(p+1)

]

= logΓ(x)+ logΓ
(

1
2
− x

)
+ log

(
1
x
−1

)
− x log4− 1

2
logπ − log

1
x
− log

(
1
x

+1

)

= logΓ(x+1)+ logΓ
(

1
2
− x

)
+ log(1− x)− x log4− 1

2
logπ − log(1+ x).

By Lemma 2.5, Corollary 2.6 follows. �

LEMMA 2.7. Let p ∈ (1,+∞) and

J(t) =
2(p−1)2

p+1
t p/2− (p−1)(p−3)

p+1
− (p−1)t, t ∈ (0,1).
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Then the following statements holds
(1) If p∈ (1,2] , then J(t) > 0 for t ∈ (0,1) , J(t) < 0 for t ∈ (1,+∞) and J(1) =

0 ;
(2) If p∈ (2,1+

√
2) , then J(t)> 0 for all t ∈ (0,1) , and there exists t0 ∈ (1,+∞)

such that J(t) < 0 for t ∈ (1,t0) and J(t) > 0 for t ∈ (t0,+∞);
(3) If p = 1+

√
2 , then J(t) > 0 for all t ∈ (0,+∞);

(4) If p ∈ (1+
√

2,3) , then J(t) > 0 for t ∈ (1,+∞) , and there exists t∗0 ∈ (0,1)
such that J(t) > 0 for t ∈ (0,t∗0 ) and J(t) < 0 for t ∈ (t∗0 ,1);

(5) If p ∈ [3,+∞) , then J(t) < 0 for t ∈ (0,1) , J(t) > 0 for t ∈ (1,+∞) and
J(1) = 0 .

Proof. Clearly when p = 2, J(t) = −t/3+ 1/3, the assertion of J(t) for p = 2
in part (1) holds true. In the remaining proof, we assume that p �= 2. Note that

J(0) = − (p−1)(p−3)
p+1

, J(1) = 0.

We clearly see that J(0) > 0 for p∈ (1,3) , J(0) < 0 for p∈ (3,+∞) and J(0) = 0 for
p = 3.

Differentiating J gives

J′(t) =
p(p−1)2

p+1
t p/2−1− (p−1) = (p−1)t p/2−1J1(t),

where J1(t) = p(p−1)/(p+1)− t1−p/2 is monotone on (0,+∞) and

J1(1) =
p(p−1)− p−1

p+1
=

p2−2p−1
p+1

.

We divide the proof into five cases.
Case 1 p ∈ (1,2) . Then J1(0+) = p(p−1)/(p+1) > 0 and J1(1−) < 0, so that

there exists λ ∈ (0,1) such that J′1(t) > 0 for t ∈ (0,λ ) and J′1(t) < 0 for t ∈ (λ ,+∞) .
Hence J(t) is strictly increasing on (0,λ ) and strictly decreasing on (λ ,+∞) . It
follows from J(0) > 0 and J(1) = 0 that J(t) > 0 for t ∈ (0,1) and J(t) < 0 for
t ∈ (1,+∞) .

Case 2 p ∈ (2,1+
√

2) . Then J1(0+) = −∞ , J1(1−) < 0 and J1(+∞) = p(p−
1)/(p + 1) > 0, so that there exists δ ∈ (1,+∞) such that J′1(t) < 0 for t ∈ (0,δ )
and J′1(t) > 0 for t ∈ (δ ,+∞) . Hence J(t) is strictly decreasing on (0,δ ) and strictly
increasing on (δ ,+∞) . Since J(0) > 0 and J(1) = 0, we conclude that J(t) > 0 for
t ∈ (0,1) , and there exists t0 ∈ (δ ,+∞) such that J(t) < 0 for t ∈ (1,t0) and J(t) > 0
for t ∈ (t0,+∞) .

Case 3 p = 1 +
√

2. Then J1(0+) = −∞ , J1(1−) = 0 and J1(+∞) = p(p−
1)/(p+1) > 0, so that J′1(t) < 0 for t ∈ (0,1) and J′1(t) > 0 for t ∈ (1,+∞) . Hence
J(t) is strictly decreasing on (0,1) and strictly increasing on (1,+∞) . This together
with J(0) > 0 and J(1) = 0 leads to the conclusion that J(t) � 0 for all t ∈ (0,+∞)
and J(t) = 0 if and only if t = 1.
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Case 4 p ∈ (1+
√

2,3) . Then J1(0+) = −∞ , J1(1−) > 0 and J1(+∞) = p(p−
1)/(p+1) > 0, so that there exists λ ∗ ∈ (0,1) such that J′1(t) < 0 for t ∈ (0,λ ∗) and
J′1(t) > 0 for t ∈ (λ ∗,+∞) . Hence J(t) is strictly decreasing on (0,λ ∗) and strictly
increasing on (λ ∗,+∞) . Therefore, part (4) directly follows from the piecewise mono-
tonicity of J(t) on (0,+∞) together with J(0) > 0 and J(1) = 0.

Case 5 p ∈ [3,+∞) . Then making use of the similar argument in Case 4, we
conclude that there exists δ ∗ ∈ (0,1) such that J(t) is strictly decreasing on (0,δ ∗)
and strictly increasing on (δ ∗,+∞) . Noting that J(0) � 0 in this case, the assertion in
part (5) takes place. �

REMARK 2.8. It is apparent from Lemma 2.2(1) and (2) that Lemma 2.1 is a
key tool to prove some monotonicity theorems involving generalized trigonometric and
hyperbolic functions. In fact, by application of Lemma 2.1, we can easily show that

(1) The function x �→ sin∗p(x)/x is strictly decreasing from (0,π∗
p/2) onto (2/π∗

p,1) ;
(2) The function x �→ tan∗p(x)/x is strictly increasing from (0,π∗

p/2) onto (1,+∞) ;
(3) The function x �→ sinh∗p(x)/x is strictly increasing from (0,m∗

p) onto (1,+∞) ;
(4) The function x �→ tanh∗p(x)/x is strictly decreasing on (0,m∗

p) , and if p ∈
(1,2] , then the range is (0,1) , while if p ∈ (2,+∞) , then the range is (1/m∗

p,1) .

3. Main Results

THEOREM 3.1. (Generalized Mitrinović-Adamović inequality) Let p ∈ (1,+∞) .
Then the function

f (x) =
log
[
sin∗p(x)/x

]
log[cos∗p(x)]

is strictly increasing from (0,π∗
p/2) onto (0,(p− 1)/(p + 1)) . In particular, the in-

equality

[cos∗p(x)]
α <

sin∗p(x)
x

< [cos∗p(x)]
β (3.1)

holds for all p∈ (1,+∞) and x∈ (0,π∗
p/2) with the best constants α = (p−1)/(p+1)

and β = 0 .

Proof. Let f1(x) = log[sin∗p(x)/x] , f2(x) = log[cos∗p(x)] . Then f1(x) = f2(x) = 0,
and

f ′1(x) =
x[cos∗p(x)]p−1− sin∗p(x)

xsin∗p(x)
, f ′2(x) = − [sin∗p(x)]p−1

cos∗p(x)
,

and thereby
f ′1(x)
f ′2(x)

=
sin∗p(x)cos∗p(x)− x[cos∗p(x)]p

x[sin∗p(x)]p
.

Write f11(x)= sin∗p(x)cos∗p(x)−x[cos∗p(x)]p , f22(x)= x[sin∗p(x)]p , then f11(0)= f22(0)=
0, and

f ′11(x) = [cos∗p(x)]
p− [sin∗p(x)]

p− [cos∗p(x)]
p + xp[cos∗p(x)]

p−1[sin∗p(x)]
p−1
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= px[sin∗p(x)cos∗p(x)]
p−1− [sin∗p(x)]

p,

f ′22(x) = px[sin∗p(x)cos∗p(x)]
p−1 +[sin∗p(x)]

p

and

f ′11(x)
f ′22(x)

=
px[sin∗p(x)cos∗p(x)]p−1− [sin∗p(x)]p

px[sin∗p(x)cos∗p(x)]p−1 +[sin∗p(x)]p

= 1− 2[sin∗p(x)]p

px[sin∗p(x)cos∗p(x)]p−1 +[sin∗p(x)]p
= 1− 2

1+
px

sin∗p(x)[cos∗p(x)]1−p

.

Lemma 2.2(1) shows that f ′11(x)/ f ′22(x) is strictly decreasing on (0,π∗
p/2) . Ap-

plying Lemma 2.1 twice, we derive that f (x) is also strictly decreasing on (0,π∗
p/2) .

Moreover,

lim
x→0+

f (x) = lim
x→0

f ′11(x)
f ′22(x)

=
p−1
p+1

, lim
x→ π∗p

2

− f (x) = lim
x→ π∗p

2

−
f ′1(x)
f ′2(x)

= 0.

Therefore, the proof of inequality (3.1) is completed. �

THEOREM 3.2. (Generalized Lazarević-type inequality) Let p ∈ (1,+∞) . Then
the function

f (x) =
log[sinh∗p(x)/x]
log[cosh∗p(x)]

is strictly increasing on (0,m∗
p) . And if p ∈ (1,2] , then the range of f (x) is ((p−

1)/(p+1), p−1) , while if p∈ (2,+∞) , then the range of f (x) is ((p−1)/(p+1),1) .
In particular, for all p ∈ (1,2] (p ∈ (2,+∞)) , the inequality

[cosh∗p(x)]
α <

sinh∗p(x)
x

< [cosh∗p(x)]
β (3.2)

holds for all x ∈ (0,m∗
p) , with the best constant α = (p−1)/(p+1) , β = p−1 (β =

1) .

Proof. Let f1(x) = log[sinh∗p(x)/x] and f2(x) = log[cosh∗p(x)] . Then f1(0) =
f2(0) = 0 and

f ′1(x) =
x

sinh∗p(x)
−sinh∗p(x)+ [cosh∗p(x)]p−1x

x2 =
[cosh∗p(x)]p−1x− sinh∗p(x)

xsinh∗p(x)
,

f ′2(x) =
[sinh∗p(x)]p−1

cosh∗p(x)
.

So that
f ′1(x)
f ′2(x)

=
[cosh∗p(x)]px− sinh∗p(x)cosh∗p(x)

x[sinh∗p(x)]p
.
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If we also let f11(x) = [cosh∗p(x)]px−sinh∗p(x)cosh∗p(x) and f22(x)= x[sinh∗p(x)]p ,
then f11(0) = f22(0) = 0 and

f ′11(x) = [cosh∗p(x)]
p + xp[cosh∗p(x)]

p−1[sinh∗p(x)]
p−1− [cosh∗p(x)]

p − [sinh∗p(x)]
p,

f ′22(x) = [sinh∗p(x)]
p + px[cosh∗p(x)sinh∗p(x)]

p−1,

and thereby

f ′11(x)
f ′22(x)

=
xp[cosh∗p(x)sinh∗p(x)]p−1− [sinh∗p(x)]p

xp[cosh∗p(x)sinh∗p(x)]p−1 +[sinh∗p(x)]p

= −1+
2px[cosh∗p(x)sinh∗p(x)]p−1

[sinh∗p(x)]p + px[cosh∗p(x)sinh∗p(x)]p−1

= −1+
2p

p+
sinh∗p(x)[cosh∗p(x)]1−p

x

.

We divide the proof into two cases.
Case 1 p∈ (1,2] . Then the function f ′11(x)/ f ′22(x) is strictly increasing on (0,+∞)

since x �→ sinh∗p(x)[cosh∗p(x)]1−p/x is strictly decreasing from (0,+∞) onto (2− p,1)
by Lemma 2.2(2). Applying Lemma 2.1, f (x) is also strictly increasing on (0,+∞) .
Moreover, by the l’Hôptial rule, we obtain

lim
x→0+

f (x) = lim
x→0

f ′11(x)
f ′22(x)

=
p−1
p+1

,

lim
x→+∞

f (x) = lim
x→+∞

f ′11(x)
f ′22(x)

= p−1.

Case 2 p ∈ (2,+∞) . Then the function f ′11(x)/ f ′22(x) is strictly increasing on
(0,m∗

p) since x �→ sinh∗p(x)[cosh∗p(x)]1−p/x is strictly decreasing from (0,m∗
p) onto

(0,1) by Lemma 2.2(2), so is f (x) by Lemma 2.1. Moreover, lim
x→0+

f (x) = (p−1)/(p+

1) , and by Lemma 2.2(2) and the l’Hôptial rule we get

lim
x→m∗

p

f (x) = −1+
2p

p+0
= 1. �

THEOREM 3.3. (Generalized Huygens-type inequality) Let p ∈ (1,+∞) . Then
the inequality

(p+1)
sin∗p(x)

x
+(p−1)

1
cos∗p(x)

> 2p (3.3)

holds for all x ∈ (0,π∗
p/2) , and the inequality

(p+1)
sinh∗p(x)

x
+(p−1)

1
cosh∗p(x)

> 2p (3.4)

holds for all x ∈ (0,m∗
p) .
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Proof. By substituting t = 1/2+1/(2p) , a = sin∗p(x)/x and b = 1/cos∗p(x) into
the Bernoulli inequality ta+(1− t)b> atb1−t (a,b > 0, t ∈ (0,+∞)) , we obtain

(
1
2

+
1
2p

)
sin∗p(x)

x
+
(

1
2
− 1

2p

)
1

cos∗p(x)
>

(
sin∗p(x)

x

)1/2+1/(2p)
(

1
cos∗p(x)

)1/2−1/(2p)

.

According to the left hand of inequality (3.1), one has

(
sin∗p(x)

x

)1/2+1/(2p)
(

1
cos∗p(x)

)1/2−1/(2p)

>
([

cos∗p(x)
](p−1)/(p+1)

)1/2+1/(2p)
(

1
cos∗p(x)

)1/2−1/(2p)

= 1,

so that inequality (3.3) follows. Similarly, it follows from the Bernoulli inequality and
inequality (3.2) that

(
1
2

+
1
2p

)
sinh∗p(x)

x
+
(

1
2
− 1

2p

)
1

cosh∗p(x)

>

(
sinh∗p(x)

x

)1/2+1/(2p)
(

1
cosh∗p(x)

)1/2−1/(2p)

>
([

cosh∗p(x)
](p−1)/(p+1)

)1/2+1/(2p)
(

1
cosh∗p(x)

)1/2−1/(2p)

= 1.

That is,

(p+1)
sinh∗p(x)

x
+(p−1)

1
cosh∗p(x)

> 2p

for all x ∈ (0,m∗
p) . �

THEOREM 3.4. (Generalized Wilker-type inequality) Let p ∈ (1,+∞) . Then the
inequality [

sinh∗p(x)
x

]p

+
p(p−1)

2

tanh∗p(x)
x

>
p2− p+2

2
(3.5)

holds for all x ∈ (0,m∗
p) .

Proof. Substituting t = sinh∗p(x)/x−1 and α = p into another Bernoulli inequal-
ity (1+ t)α > 1+ αt (α > 0, t > 0) , one has

[
sinh∗p(x)

x

]p

> 1+ p

[
sinh∗p(x)

x
−1

]
.
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This together with Lemma 2.2(3) yields[
sinh∗p(x)

x

]p

> 1+ p

[
sinh∗p(x)

x
−1

]
> 1+

p(p−1)
2

[
1− tanh∗p(x)

x

]
.

By transposition of terms in the above inequality we immediately obtain (3.5). �

THEOREM 3.5. (Generalized Cusa-Hugens-type inequality for trigonometric functions)
Let p ∈ (1,+∞) and p0 be defined as in Corollary 2.4. Then the inequality

sin∗p(x)
x

<
2

p+1
+

p−1
p+1

cos∗p(x) (3.6)

holds for all x ∈ (0,π∗
p/2) if and only if p ∈ (1, p0] , and the inverse inequality

sin∗p(x)
x

>
2

p+1
+

p−1
p+1

cos∗p(x) (3.7)

holds for all x ∈ (0,π∗
p/2) if and only if p ∈ [1+

√
2,∞) .

Proof. Let α = 2/(p+1)∈ (0,1) and

f (x) = αx+(1−α)xcos∗p(x)− sin∗p(x), x ∈ (0,π∗
p/2
)
.

Then simple computations lead to

f (0) = 0, (3.8)

f

(π∗
p

2

)
=

π∗
p

2
α −1, (3.9)

f ′(x) = α +(1−α)cos∗p(x)− (1−α)x[sin∗p(x)]
p−1− [cos∗p(x)]

p−1,

f ′(0) = 0, (3.10)

f ′
(π∗

p

2

)
= α − (1−α)

π∗
p

2
, (3.11)

f ′′(x) = −(1−α)[sin∗p(x)]
p−1− (1−α)[sin∗p(x)]

p−1

− (1−α)x(p−1)[sin∗p(x)]
p−2[cos∗p(x)]

p−1

+(p−1)[cosp∗(x)]p−2[sin∗p(x)]
p−1

= [sin∗p(x)]
p−2[cos∗p(x)]

p−1g(x), (3.12)

where

g(x) = −2(1−α)sin∗p(x)
[
cos∗p(x)

]1−p− (1−α)(p−1)x+(p−1) tan∗p(x).
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It is easy to check that
g(0) = 0, (3.13)

g

(π∗
p

2

)
=

{
+ ∞, p ∈ (1,2],
−∞, p ∈ (2,+∞)

(3.14)

and

g′(x) = −2(1−α)+2(1−α)(1− p)[cos∗p(x)]
−p−1]

− (1−α)(p−1)+ (p−1)[cos∗p(x)]
−2.

If we denote t =
[
cos∗p(x)

]−2 , then t ∈ (1,+∞) , and g′(x) = −J(t) , where J(t) is
defined as in Lemma 2.7. The remaining proof can be divided into three cases: p ∈
(1,2] , p ∈ (2,1+

√
2) and p ∈ [1+

√
2,+∞) .

Case 1 p ∈ (1,2] . Then it follows from Lemma 2.7(1) that g′(x) > 0 for all
x ∈ (0,π∗

p/2) . Thus from equations (3.8), (3.10), (3.12) and (3.13) we conclude that
f (x) > 0 for all x ∈ (0,π∗

p/2) , namely, inequality (3.6) holds for all x ∈ (0,π∗
p/2) and

p ∈ (1,2] .
Case 2 p ∈ (2,1 +

√
2) . Then it follows from Lemma 2.7(2) that there exists

ζ ∈ (0,π∗
p/2) such that g′(x) > 0 for x∈ (0,ζ ) and g′(x) < 0 for x∈ (ζ ,π∗

p/2) , so that
g(x) is strictly increasing on (0,ζ ) and strictly decreasing on (ζ ,π∗

p/2) . This together
with (3.13) and (3.14) leads to the conclusion that there exists ζ ∗ ∈ (0,π∗

p/2) such
that g(x) > 0 for x ∈ (0,ζ ∗) and g(x) < 0 for x ∈ (ζ ∗,π∗

p/2) , so that f ′(x) is strictly
increasing on (0,ζ ∗) and strictly decreasing on (ζ ∗,π∗

p/2) by (3.12). Since f ′(0) = 0,
the sign characterize of f ′(x) on (0,π∗

p/2) is either positive or positive then negative.
Hence f (x) is either strictly increasing or increasing then decreasing on (0,π∗

p/2) .
Note that f (0) = 0, and f (π∗

p/2) = π∗
p/2α − 1 � (<)0 for p ∈ (1, p0] (p0,1+

√
2)

by Corollary 2.4, we obtain that f (x) > 0 for all x ∈ (0,π∗
p/2) if and only if p � p0 ,

namely, inequality (3.6) holds for all x ∈ (0,π∗
p/2) and p ∈ (2, p0] , and there exists no

p ∈ (p0,1+
√

2) such that f (x) < 0 or f (x) > 0 holds for all x ∈ (0,π∗
p/2) .

Case 3 p ∈ [1+
√

2,+∞) . Then it follows from Lemma 2.3(3)-(5) that g′(x) < 0
for all x ∈ (0,π∗

p/2) . Thus from equations (3.8), (3.10), (3.12) and (3.13) we know that
f (x) < 0 for all x ∈ (0,π∗

p/2) , namely, inequality

sin∗p(x)
x

>
2

p+1
+

p−1
p+1

cos∗p(x)

holds for all x ∈ (0,π∗
p/2) and p ∈ [1+

√
2,+∞) . �

THEOREM 3.6. (Generalized Cusa-Hugens-type inequality for hyperbolic functions)
Let p ∈ (1,+∞) and p1 be defined as in Corollary 2.6. Then the inequality

sinh∗p(x)
x

<
2

p+1
+

p−1
p+1

cosh∗p(x) (3.15)
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holds for all x ∈ (0,m∗
p) if and only if p ∈ (1,1+

√
2] , and the inverse inequality

sinh∗p(x)
x

>
2

p+1
+

p−1
p+1

cosh∗p(x) (3.16)

holds for all x ∈ (0,m∗
p) if and only if p ∈ [p1,∞) .

Proof. Let α = 2/(p+1) , and

f (x) = αx+(1−α)xcosh∗p(x)− sinh∗p(x), x ∈ (0,m∗
p). (3.17)

Then by simple computations we have

f (0) = 0, (3.18)

f ′(x) = α +(1−α)cosh∗p(x)+ (1−α)x[sinh∗p(x)]
p−1− [cosh∗p(x)]

p−1,

f ′(0) = 0, (3.19)

f ′′(x) = 2(1−α)[sinh∗p(x)]
p−1 +(1−α)(p−1)x[sinh∗p(x)]

p−2[cosh∗p(x)]
p−1

−(p−1)[cosh∗p(x)]
p−2[sinh∗p(x)]

p−1

= [sinh∗p(x)]
p−2[cosh∗p(x)]

p−1g(x), (3.20)

where

g(x) = 2(1−α)sinh∗p(x)[cosh∗p(x)]
1−p +(1−α)(p−1)x− (p−1) tanh∗p(x). (3.21)

Moreover,
g(0) = 0, (3.22)

g′(x) = 2(1−α)+2(1−α)(1− p)[tanh∗p(x)]
p +(1−α)(p−1)− (p−1)[cosh∗p(x)]

−2

= 2(1−α)+2(1−α)(p−1)[cosh∗p(x)]
−p− (1−α)(p−1)− (p−1)[cosh∗p(x)]

−2.

If we denote t = [cosh∗p(x)]−2 , then t ∈ (0,1) , and g′(x) = J(t) , which is defined as

in Lemma 2.7. The remaining proof can be divided into three cases: p ∈ (1,1+
√

2] ,
p ∈ (1+

√
2,3) and p ∈ [3,+∞) .

Case 1 p ∈ (1,1+
√

2] . Then it follows from Lemma 2.7(1)-(3) that g′(x) > 0 for
all x ∈ (0,m∗

p) . Thus from equations (3.18)-(3.22) we conclude that f (x) > 0 for all

x ∈ (0,m∗
p) , namely, inequality (3.15) holds for all x ∈ (0,m∗

p) and p ∈ (1,1+
√

2] .
Case 2 p ∈ (1+

√
2,3) . Then Lemma 2.7(4) implies that there exists η ∈ (0,m∗

p)
such that g′(x) < 0 for x ∈ (0,η) and g′(x) > 0 for x ∈ (η ,m∗

p) , so that g(x) is strictly
decreasing on (0,η) and strictly increasing on (η ,m∗

p) .
Subcase 2.1 p ∈ (1 +

√
2, p1) . Then Corollary 2.6 shows that g(m∗

p) = (p−
1)[(1−α)m∗

p − 1] > 0, so that there exists η∗ ∈ (0,m∗
p) such that g(x) < 0 for x ∈
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(0,η∗) and g(x) > 0 for x ∈ (η∗,m∗
p) . Hence by (3.20), f ′(x) is strictly decreasing on

(0,η∗) and strictly increasing on (η∗,m∗
p) . Furthermore, the limiting values

lim
r→m∗

p

f (x) = lim
x→m∗

p

cosh∗p(x)
(
αx[cosh∗p(x)]

−1 +(1−α)x− tanh∗p(x)
)

= +∞

and

lim
r→m∗

p

f ′(x) = lim
x→m∗

p

[cosh∗p(x)]
p−1
(

α[cosh∗p(x)]
1−p +(1−α)[cosh∗p(x)]

2−p

+(1−α)x[tanh∗p(x)]
p−1−1

)
= +∞

imply that there exists η∗∗ ∈ (0,m∗
p) such that f (x) < 0 for x ∈ (0,η∗∗) and f (x) > 0

for x∈ (η∗∗,m∗
p) . Consequently, inequality (3.16) holds for x∈ (0,η∗∗) and inequality

(3.15) holds for x ∈ (η∗∗,m∗
p) .

Subcase 2.2 p ∈ [p1,3) . Then Corollary 2.6 leads to the conclusion that g(m∗
p) =

(p−1)[(1−α)m∗
p−1] � 0, so that g(x) < 0 for all x∈ (0,m∗

p) . Therefore, from (3.18)-
(3.22) we know that f (x) < 0 for all x ∈ (0,m∗

p) , namely, inequality (3.16) holds for
all x ∈ (0,m∗

p) and p ∈ [p1,3) .
Case 3 p∈ [3,+∞) . Then Lemma 2.7(5) shows that g′(x) < 0 for all x ∈ (0,m∗

p) .
This together with equations (3.18)-(3.22) leads to the conclusion that f (x) < 0 for all
x ∈ (0,m∗

p) , namely, inequality (3.16) holds for all x ∈ (0,m∗
p) and p ∈ [3,+∞) . �
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