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OPTIMAL BOUNDS FOR THE TANGENT
AND HYPERBOLIC SINE MEANS II

MONIKA NOWICKA AND ALFRED WITKOWSKI*
(Communicated by L. Mihokovic)
Abstract. We provide the optimal bounds for the tangent and hyperbolic sine means in terms of

various weighted means of the arithmetic and harmonic means.

1. Introduction, definitions and notation

The means
X—Y
5 tan 22 xFy
Mean(x,y) = ¢ 2tanigy , (tangent mean)
x xX=y
and
X—y
2smhr 7Y esi
Mginn (x,y) = { =S 7y (hyperbolic sine mean)
x X=y

have been introduced in [4], where one of the authors investigates the means of the form

=yl
My () = § 27 (4
X xX=y

ey

It was shown that every symmetric and homogeneous mean can be represented in the
form (1) and that every function f : (0,1) — R (called Seiffert function) satisfying

Z Z
—( < fl@) s —
14z /@) -z
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produces a mean. The correspondence between means and Seiffert functions is given
by the formula
Z lx =y
f(Z)—m7 where Z—m.

The aim of this paper is to determine various optimal bounds for the My, and
Mginh by the arithmetic and harmonic means (denoted here by A and H). Note that
the optimal bounds of the above in terms of the geometric and arithmetic means can be
found in [3].

For two means M,N the symbol M < N means that the inequality M(x,y) <
N(x,y) holds for all x # y.

Our main tool will be the obvious fact that if for two Seiffert means the inequality
f < g holds, then their corresponding means satisfy My > M, . Thus every inequality
between means can be expressed in terms of their Seiffert functions.

REMARK 1.1. Note that the Seiffert function of the harmonic mean H(x,y) = )?T"yy
xty

is h(z) = =7 and that of the arithmetic mean A(x,y) = == is the identity function
a(z) = z. Clearly, the Seiffert functions of My, and Mgy, are the functions tan and
sinh respectively.

For the reader’s convenience in the following sections we place the main results
with their proofs, while all lemmas and technical details can be found in the last section
of this paper.

The motivation for our research are the inequalities H < L < Mgy < Mginp < A
proven in [4, Lemma 3.2].

2. Linear bounds

Given three means K < L < M one may try to find the best o, 3 satisfying double
inequality (1 —a)K+aM <L < (1—B)K+ BM or equivalently o < &5 < g If
k,l,m are respective Seiffert functions, then the latter can be written as

1 1

a< Ik p. )
%

m

Thus the problem reduces to finding the upper and lower bound for certain function
defined on the interval (0,1).

THEOREM 2.1. The inequalities
(I—a)H+ oA <My, < (1—B)H+BA

hold if and only if o < i1 ~0.6421 and 8 > 3.
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Proof. By formula (2) and Remark 1.1 we investigate the function

- 1

_ tanz Z _ _ — _
h(z) = 112 (tanz z>+l'_ ZP(Z)—H'
z Z

(cosz sin Z) <0 (by

The function p satisfies lim,_op(z) =0 and p"(z) =

Lemma 7.1), so by Property 7.2 the function p(z)/z decreases and so does the function

h. We complete the proof by noting that lin(l)h(z) = % .
7!

THEOREM 2.2. The inequality
(1 —(X)H+OCA< Mginn < (l—ﬁ)H—FﬁA

5
5 and ﬁ smhl

holds if and only if a0 < 3 ~ 0.8509.

Proof. According to formula (2) we should investigate the function

1 1-22
= = 1 1 1
h(z) = sinhz z - _ 1.
(2) 1_1-2 z \sinhz z +

Z Z

We shall show that / increases. Now

H(z) = —— (2sinh®z — zsinhz — 22 coshz) > 0
Z3sinh“z

because using the inequality sinhx > x +x3/3! 4+ x°/5! and Lemma 7.4 and 7.5

2sinh?z — zsinhz — 72 coshz
2

3 5\ 2 3 e 4 6
a4 Z Z Z
>2(z+ +5') (H— +25'> <1+ +4'+25)

10 8 6
< - +11Z—>O

~ 7200 360 360
We complete the proof by noting that lim,_.¢k(z) = % .

3. Harmonic bounds

In this sectlon we look for the optimal bounds for means K < L < M of the form
e = ﬁ + g or, in terms of their Seiffert functions,

a<lZ™ g 3)
k—m

We shall use the above to prove two theorems.
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THEOREM 3.1. The inequalities

1—«a

Lo 1B
A H Mam A

B
T
hold if and only if o <0 and > 3.

Proof. Taking into account formula (3) we should investigate the function

tanz —z

tanz —z 2

_z_
1-22

h(z)

We shall show that & decreases. Observe that

(o) — 2zcos?z+2—2° + (z2 —3)coszsinz
(@)= Ztcos?z ’

The function p(z) = 2zcos?z+z—z> + (z% — 3) coszsinz satisfies p(0) = p/(0) =0
and
P"(z) = (3—27%)sin2z — 6z < (3 —27%)2z — 6z = —47° < 0.

Thus p is negative and so is /’. Consequently, i decreases. We complete the proof by
noting that lim,_oh(z) = %.
And now it is time for the bound of Mgy, .

THEOREM 3.2. The inequalities

11—«

PP S el
A H Mgm A 'H

hold if and only if o <0 and B > +¢.

Proof. We use once more formula (3) and investigate the function

sinhz —z 2
h = = 1—
(2) — (1=2)—

sinhz —z
—

We shall show that % is decreasing. We have

(z—2%)coshz+ (22 — 3)sinhz + 2z
4 .

The function p(z) = (z—z°) coshz+ (2> — 3) sinhz+ 2z satisfies p(0) = p/(0) = p"(0) =
0 and

H(z) =

p"(z) = —z[(z* + 11) sinhz + 8zcoshz] < 0.

So p is negative and so is &’'. Consequently, i decreases. A simple calculation shows
that lim, o /(z) = #.
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4. Quadratic bounds

Given three means K < L < M one may try to find the best o, B satisfying dou-
ble inequality /(1 — a)K2+aM? < L < /(1 — B)K2+ BM? or equivalently o <
LZ_KZ

< B.If k,I,m are respective Seiffert functions, then the latter can be written as

M2-K?
11
2 k2
o< T <B. %)
mr K

Thus the problem reduces to finding the upper and lower bound for certain function
defined on the interval (0,1).

THEOREM 4.1. The inequalities

v/ (1= 0)H? + 0 A2 < Mn < /(1 = B)H2+ BA?

hold if and only if o < —5- ~0.4123 and > 3.

tanZ 1

Proof. Using formula (4) we investigate the function

hz) = — 7 ((z2—1)sinz—zcosz)((z* — 1)sinz+zcosz)

1 a-zy (2 —2)sin’z
4

We show that the function / decreases. We have
2
W(z) = ———— (*sinzcos?z+2(1 — 22)sin 2+ (2 — 2)Z cosz) < 0
) 23(22—2)2sin3z( ( ) ( ) )

by Lemma 7.3.
We complete the proof noting that lim,_o A(z) = % .
And here comes the hyperbolic sine version of the previous theorem.

THEOREM 4.2. The inequalities

(I—OC)H2+OCA2<MSinh< (1—[3)H2+ﬂA2

. . 1 5
hold if and only if o < ~0.7241 and B > 3.

sinh? 1
Proof. The function to be investigated this time is

1 (1-22)° 2

1 u=z)7 = 1
_ sinh? z 22 _ sinh? z o

h(z) = %_(17?2 = (1_22)2_14-1.— g(z)+ 1.

b4 b4
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We investigate the monotonicity of g using the monotone form of de I’Hospital’s Rule
(Lemma 7.2). We have

42 3 2 2\ i
d dz \ sinn?; 4z —2z—2z(2—2z%)cosh2z+ (3 —z%)sinh 2z

>0
dzdiz((l_z2)2_1) 4(z—1)%(z+1)?sinh*z

because using Lemma 7.4

47> —27—22(2 — 2%) cosh2z + (3 — 7%) sinh 2z
2 4 6 3
>4 - 22-222-2) (1+ G + B 288 ) 13- 2) 2+ &)

4 7 2
= — 742 +7)>0.
4SZ(Z ) >

Thus g increases and h decreases from lim,_gh(z) = %

5. Bounds by weighted power mean of order —2

In this section we look for the optimal bounds for means K < L < M of the form
£/ 11;1—20‘ + % < % < 1}\;—2[3 + % or, in terms of their Seiffert functions,

12— m?

*< 53

<B. (5)

THEOREM 5.1. The inequalities

[lme o 1 _J1-B B
A2 H2 T My, Az " H?

hold if and only if o <0 and B > 3.

Proof. Using formula (5) we get

he) tan’z—z>  (1—2%)%(tan’>z —2%)
9="z = 7 2
(1—27)2_12 #(2-722)

The function /4 satisfies lim,_,1 i(z) =0 and lim,_¢h(z) = 1/3 so to complete the
6

proof it is enough to show that /(z) < 1/3 for 0 <z < 1. Since cosx > 1 — ;—2, + ’f% — &
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we can write

1 A2-2)-3(1-2) (tan’z— 22)
3 h(z) = 3742 - 22)
(3= =) +2%)cos?z—3(1 —22)?
N 3z4(2 —z7%)cos?z
6 2
3-(1-A)+0) (1-5+5-5) —3(1-22)?
_ (B2 2+ (1-5+5-5%) -3( 2,

3z4(2 —7%)cos?z

The last inequality is valid because

2
518:00 (((3—24)(1—2) )(1_54_3‘: é—c:) —3(1—12)2>

Z

= 967680 — 11356207% + 363600z* — 4751728 + 32977 — 121! 42712
= (810 —701z%)% 4 (311580 — 127801z* — 475172°%) 4 28(3297 — 12122 + 27*) > 0.

THEOREM 5.2. The inequalities

M sinh A2

hold if and only if o <0 and B > +¢.

Proof. The function to be considered here is

sinh?z—z2 (1 —2%)*(sinh?>z—2%)
o= ——5= #2-22)
=27 ¢ '

Since lim,_.; A(z) =0 and lim,_ok(z) = 1/6 the only thing we have to show is A(z) <
1/6 forall 0 < z < 1. Using Lemma 7.4 we obtain

l—h( )= 3—7z4+525-3(1 —27%)?cosh2z
6 T 62— 22)
6
3724520 3(1-2) 1+ E + BF 0
~ 62— 2)

(371422 -87%)

0. O
90(2 — 72) -

6. Bounds with varying arguments

If N is a mean that the formula N (x,y) = N (32 + 152, 552 — 15Y) defines a
homotopy between the arithmetic mean A =N O and N=N {1} . Therefore ifN<M<
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A it make sense to ask what are the optimal numbers o, B satisfying N1® < M < N1B}
Theorem 6.1 from [4] gives a method for finding such numbers in terms of the Seiffert
functions of the means involved. It says

THEOREM 6.1. For a Seiffert function k denote %(z) =k(z)/z. Let M and N be
two means with Seiffert functions m and n, respectively. Suppose that n(z) is strictly
S 1
monotone and let py = 1IZ1f % and qo = stzlp "(Zﬂ
If A(x,y) < M(x,y) < N(x,y) for all x #y then the inequalities
NPH(x,y) < M(x,y) < N (x,)

hold if and only if p < po and q > qo
If N(x,y) < M(x,y) < A(x,y) for all x #y then the inequalities

N (x,y) < M(x,y) <NPH(x,y)
hold if and only if p < po and q > qo
In case of N =H we see that h(z) = ﬁ and h'(x) =vI—x 1.
THEOREM 6.2. The inequalities
HE 4 o Y — o) < Mg < H (32 4+ B52, 52 — B22)

hold if and only if o > v/T—cotl ~ 0.5983 and B < \@ ~0.5774.

Proof. By Theorem 6.1 the function to investigate is

1 1
h(z) =1/ — .
@ 22 ztang
From the proof of Theorem 2.1 we know that the function g(z) = % (ﬁ - %) <0
decreases. Thus h(z) = \/—g(z) increases, which completes the proof.

THEOREM 6.3. The inequalities

H(SE 4+ 052, 52— o) < Mg < H (52 4+ A2, 2 — g

hold if and only if & > \@ ~0.4082 and B < /1 — it ~0.3861.

Proof. This time we consider the function

1 1
zsinhz’

Monotonicity of the function h? follows from the proof of Theorem 2.2, so evaluation
of the values of / at the endpoints completes the proof.
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7. Tools and lemmas

In this section we place the all technical details needed to prove our main results.

PROPERTY 7.1. A function f: (a,b) — R is convex if and only if for every a <
0 < b its divided difference L{;(e) increases for x # 6.

xX—

Simple consequence of Property 7.1 is

PROPERTY 7.2. If a function f: (a,b) — R is convex and lim,_., f(x) = ©, then
the function f(;‘)f;@ increases.

LEMMA 7.1. (Mitrinovi¢ & Adamovié¢ [2]) Consider the functions f, : [0,7/2) —
R

Sfu(x) =cos“xsinx—x, —1<u<O0.

For —1<u< —% the functions f, are positive. For —% <u <0 thereexists 0 < x, < %
such that f, is negative in (0,x,) and positive in (x,,0).

Proof. We have f,(0) = f/(0) =0 and

/!
u

14 3u ]

(x) = u(u — 1)sinxcos" x [tanzx— W 1)

If —1<u< —1/3 we have 3utl < 0, so f, is convex, thus positive.

u(u—1)
For —1/3 < u < 0 the equation tan®x — ul(bf’f) = 0 has exactly one solution &,,

so fy is concave and negative on (0,&,). Then it becomes convex and tends to infinity,
thus assumes zero at exactly one point x;, .

LEMMA 7.2. ([1]) Suppose f,g: (a,b) — R are differentiable with g'(x) # 0 and
such that lim,_,, f(x) = lim,_, g(x) = 0 or lim,_;, f(x) =lim,_, g(x) = 0. Then

1. lfg is increasing on (a,b), then g is increasing on (a,b),
2. lfg is decreasing on (a,b), then g is decreasing on (a,b).

LEMMA 7.3. For 0 <x <1 we have

x*sinxcos?x +2(1 —x?)sin® x 4 (x* — 2)x’ cosx < 0.
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. . 3 5 2 4
Proof. Given that sinx <x—3; + 3 and 1 — 2, < cosx < 1— %+ % we have

x*sinxcos?x +2(1 —x?)sin® x4 (x> — 2)x’ cosx

3 5 2 4N 2 3 5\ 3
4 XX XX 5 XX
<x (x———i—s') (1———1-4') +2(1—x)<x—§+§)

+u¢-mﬁ<1-§)

ﬂ@%Bﬁ—w&+ﬁuﬁwﬁ—BM%HAEmmkﬁwwm<0
1728000

LEMMA 7.4. For 0 < x < 1 the following inequality holds

(2x)?  (20)* _(2x)°
h2x < 1 (27
TR TR ]
Proof.
2792 (204 (2x)° (208 (2x)10
cosh2x—1—( x) (20" (20)° _ (2%) (2x)

T R T T
2x)0 [ 22 24 2x)0
<@ (_+7+...)<<x>. 0

6! 7-8 7-8-9-10 6!

LEMMA 7.5. For 0 < x < 1 the following inequality holds

X x

sinhx < x+ — +2§.

Proof.

ih ¥ x5_x7 x’
sin x—x—§ §_ﬂ+§+

<21 PR SR DL S
51\6:7"76.7.89 )50
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