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OPTIMAL BOUNDS FOR THE TANGENT

AND HYPERBOLIC SINE MEANS II

MONIKA NOWICKA AND ALFRED WITKOWSKI ∗

(Communicated by L. Mihoković)

Abstract. We provide the optimal bounds for the tangent and hyperbolic sine means in terms of
various weighted means of the arithmetic and harmonic means.

1. Introduction, definitions and notation

The means

Mtan(x,y) =

⎧⎨⎩
x− y

2tan x−y
x+y

x �= y

x x = y
, (tangent mean)

and

Msinh(x,y) =

⎧⎨⎩
x− y

2sinh x−y
x+y

x �= y

x x = y
(hyperbolic sine mean)

have been introduced in [4], where one of the authors investigates the means of the form

M f (x,y) =

⎧⎪⎨⎪⎩
|x− y|

2 f
( |x−y|

x+y

) x �= y

x x = y

. (1)

It was shown that every symmetric and homogeneous mean can be represented in the
form (1) and that every function f : (0,1) → R (called Seiffert function) satisfying

z
1+ z

� f (z) � z
1− z
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produces a mean. The correspondence between means and Seiffert functions is given
by the formula

f (z) =
z

M(1− z,1+ z)
, where z =

|x− y|
x+ y

.

The aim of this paper is to determine various optimal bounds for the Mtan and
Msinh by the arithmetic and harmonic means (denoted here by A and H). Note that
the optimal bounds of the above in terms of the geometric and arithmetic means can be
found in [3].

For two means M,N the symbol M < N means that the inequality M(x,y) <
N(x,y) holds for all x �= y .

Our main tool will be the obvious fact that if for two Seiffert means the inequality
f < g holds, then their corresponding means satisfy Mf > Mg . Thus every inequality
between means can be expressed in terms of their Seiffert functions.

REMARK 1.1. Note that the Seiffert function of the harmonic mean H(x,y) = 2xy
x+y

is h(z) = z
1−z2

and that of the arithmetic mean A(x,y) = x+y
2 is the identity function

a(z) = z . Clearly, the Seiffert functions of Mtan and Msinh are the functions tan and
sinh respectively.

For the reader’s convenience in the following sections we place the main results
with their proofs, while all lemmas and technical details can be found in the last section
of this paper.

The motivation for our research are the inequalities H < L < Mtan < Msinh < A
proven in [4, Lemma 3.2].

2. Linear bounds

Given three means K < L < M one may try to find the best α,β satisfying double
inequality (1−α)K + αM < L < (1−β )K + βM or equivalently α < L−K

M−K < β . If
k, l,m are respective Seiffert functions, then the latter can be written as

α <
1
l − 1

k
1
m − 1

k

< β . (2)

Thus the problem reduces to finding the upper and lower bound for certain function
defined on the interval (0,1) .

THEOREM 2.1. The inequalities

(1−α)H+ αA < Mtan < (1−β )H+ βA

hold if and only if α � 1
tan1 ≈ 0.6421 and β � 2

3 .
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Proof. By formula (2) and Remark 1.1 we investigate the function

h(z) =
1

tanz − 1−z2
z

1
z − 1−z2

z

=
1
z

(
1

tanz
− 1

z

)
+1 :=

1
z
p(z)+1.

The function p satisfies limz→0 p(z) = 0 and p′′(z) = 2
sin3 z

(
cosz− sin3 z

z3

)
< 0 (by

Lemma 7.1), so by Property 7.2 the function p(z)/z decreases and so does the function
h . We complete the proof by noting that lim

z→0
h(z) = 2

3 .

THEOREM 2.2. The inequality

(1−α)H+ αA < Msinh < (1−β )H+ βA

holds if and only if α � 5
6 and β � 1

sinh1 ≈ 0.8509 .

Proof. According to formula (2) we should investigate the function

h(z) =
1

sinhz − 1−z2
z

1
z − 1−z2

z

=
1
z

(
1

sinhz
− 1

z

)
+1.

We shall show that h increases. Now

h′(z) =
1

z3 sinh2 z
(2sinh2 z− zsinhz− z2 coshz) > 0

because using the inequality sinhx > x+ x3/3!+ x5/5! and Lemma 7.4 and 7.5

2sinh2 z− zsinhz− z2 coshz

> 2

(
z+

z3

3!
+

z5

5!

)2

− z

(
z+

z3

3!
+2

z5

5!

)
− z2

(
1+

z2

2
+

z4

4!
+2

z6

6!

)
=

z10

7200
+

z8

360
+11

z6

360
> 0.

We complete the proof by noting that limz→0 h(z) = 5
6 .

3. Harmonic bounds

In this section we look for the optimal bounds for means K < L < M of the form
1−α
M + α

K < 1
L < 1−β

M + β
K or, in terms of their Seiffert functions,

α <
l−m
k−m

< β . (3)

We shall use the above to prove two theorems.
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THEOREM 3.1. The inequalities

1−α
A

+
α
H

<
1

Mtan
<

1−β
A

+
β
H

hold if and only if α � 0 and β � 1
3 .

Proof. Taking into account formula (3) we should investigate the function

h(z) =
tanz− z

z
1−z2

− z
= (1− z2)

tanz− z
z3 .

We shall show that h decreases. Observe that

h′(z) =
2zcos2 z+ z− z3 +(z2−3)coszsinz

z4 cos2 z
.

The function p(z) = 2zcos2 z + z− z3 +(z2 − 3)coszsin z satisfies p(0) = p′(0) = 0
and

p′′(z) = (3−2z2)sin2z−6z < (3−2z2)2z−6z = −4z3 < 0.

Thus p is negative and so is h′ . Consequently, h decreases. We complete the proof by
noting that limz→0 h(z) = 1

3 .
And now it is time for the bound of Msinh .

THEOREM 3.2. The inequalities

1−α
A

+
α
H

<
1

Msinh
<

1−β
A

+
β
H

hold if and only if α � 0 and β � 1
6 .

Proof. We use once more formula (3) and investigate the function

h(z) =
sinhz− z

z
1−z2

− z
= (1− z2)

sinhz− z
z3 .

We shall show that h is decreasing. We have

h′(z) =
(z− z3)coshz+(z2−3)sinhz+2z

z4 .

The function p(z)= (z−z3)coshz+(z2−3)sinhz+2z satisfies p(0)= p′(0)= p′′(0)=
0 and

p′′′(z) = −z
[
(z2 +11)sinhz+8zcoshz

]
< 0.

So p is negative and so is h′ . Consequently, h decreases. A simple calculation shows
that limz→0 h(z) = 1

6 .
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4. Quadratic bounds

Given three means K < L < M one may try to find the best α,β satisfying dou-
ble inequality

√
(1−α)K2 + αM2 < L <

√
(1−β )K2 + βM2 or equivalently α <

L2−K2

M2−K2 < β . If k, l,m are respective Seiffert functions, then the latter can be written as

α <
1
l2
− 1

k2

1
m2 − 1

k2

< β . (4)

Thus the problem reduces to finding the upper and lower bound for certain function
defined on the interval (0,1) .

THEOREM 4.1. The inequalities√
(1−α)H2 + αA2 < Mtan <

√
(1−β )H2 + βA2

hold if and only if α � 1
tan2 1

≈ 0.4123 and β � 2
3 .

Proof. Using formula (4) we investigate the function

h(z) =
1

tan2 z
− (1−z2)2

z2

1
z2
− (1−z2)2

z2

=
((z2 −1)sinz− zcosz)((z2 −1)sinz+ zcosz)

z2(z2 −2)sin2 z
.

We show that the function h decreases. We have

h′(z) =
2

z3(z2 −2)2 sin3 z

(
z4 sinzcos2 z+2(1− z2)sin3 z+(z2−2)z3 cosz

)
< 0

by Lemma 7.3.
We complete the proof noting that limz→0 h(z) = 2

3 .
And here comes the hyperbolic sine version of the previous theorem.

THEOREM 4.2. The inequalities√
(1−α)H2 + αA2 < Msinh <

√
(1−β )H2 + βA2

hold if and only if α � 1
sinh2 1

≈ 0.7241 and β � 5
6 .

Proof. The function to be investigated this time is

h(z) =
1

sinh2 z
− (1−z2)2

z2

1
z2
− (1−z2)2

z2

= −
z2

sinh2 z
−1

(1− z2)2 −1
+1 := −g(z)+1.
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We investigate the monotonicity of g using the monotone form of de l’Hospital’s Rule
(Lemma 7.2). We have

d
dz

d
dz

(
z2

sinh2 z
−1
)

d
dz ((1− z2)2−1)

=
4z3 −2z−2z(2− z2)cosh2z+(3− z2)sinh2z

4(z−1)2(z+1)2 sinh4 z
> 0

because using Lemma 7.4

4z3−2z−2z(2− z2)cosh2z+(3− z2)sinh2z

> 4z3−2z−2z(2− z2)
(
1+ (2z)2

2! + (2z)4
4! +2 (2z)6

6!

)
+(3− z2)

(
2z+ (2z)3

3!

)
=

4
45

z7(4z2 +7) > 0.

Thus g increases and h decreases from limz→0 h(z) = 5
6 .

5. Bounds by weighted power mean of order −2

In this section we look for the optimal bounds for means K < L < M of the form√
1−α
M2 + α

K2 < 1
L <

√
1−β
M2 + β

K2 or, in terms of their Seiffert functions,

α <
l2 −m2

k2 −m2 < β . (5)

THEOREM 5.1. The inequalities√
1−α
A2 +

α
H2 <

1
Mtan

<

√
1−β
A2 +

β
H2

hold if and only if α � 0 and β � 1
3 .

Proof. Using formula (5) we get

h(z) =
tan2 z− z2

z2

(1−z2)2 − z2
=

(1− z2)2(tan2 z− z2)
z4(2− z2)

.

The function h satisfies limz→1 h(z) = 0 and limz→0 h(z) = 1/3 so to complete the

proof it is enough to show that h(z) < 1/3 for 0 < z < 1. Since cosx > 1− x2

2! + x4

4! − x6

6!
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we can write

1
3
−h(z) =

z4(2− z2)−3(1− z2)2(tan2 z− z2)
3z4(2− z2)

=
((3− z4)(1− z2)+ z6)cos2 z−3(1− z2)2

3z4(2− z2)cos2 z

>
((3− z4)(1− z2)+ z6)

(
1− z2

2! + z4
4! − z6

6!

)2 −3(1− z2)2

3z4(2− z2)cos2 z
> 0.

The last inequality is valid because

518400
z6

(
((3− z4)(1− z2)+ z6)

(
1− z2

2!
+

z4

4!
− z6

6!

)2

−3(1− z2)2

)
= 967680−1135620z2+363600z4−47517z6 +3297z8−121z10 +2z12

= (810−701z2)2 +(311580−127801z4−47517z6)+ z8(3297−121z2+2z4) > 0.

THEOREM 5.2. The inequalities√
1−α
A2 +

α
H2 <

1
Msinh

<

√
1−β
A2 +

β
H2

hold if and only if α � 0 and β � 1
6 .

Proof. The function to be considered here is

h(z) =
sinh2 z− z2

z2

(1−z2)2 − z2
=

(1− z2)2(sinh2 z− z2)
z4(2− z2)

.

Since limz→1 h(z) = 0 and limz→0 h(z) = 1/6 the only thing we have to show is h(z) �
1/6 for all 0 < z < 1. Using Lemma 7.4 we obtain

1
6
−h(z) =

3−7z4 +5z6−3(1− z2)2 cosh2z
6z4(2− z2)

>
3−7z4 +5z6−3(1− z2)2

(
1+ (2z)2

2! + (2z)4
4! +2 (2z)6

6!

)
6z4(2− z2)

=
z2(37−14z2−8z4)

90(2− z2)
> 0. �

6. Bounds with varying arguments

If N is a mean that the formula N{t}(x,y) = N
( x+y

2 + t x−y
2 , x+y

2 − t x−y
2

)
defines a

homotopy between the arithmetic mean A= N{0} and N =N{1} . Therefore if N < M <
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A it make sense to ask what are the optimal numbers α,β satisfying N{α} < M < N{β} .
Theorem 6.1 from [4] gives a method for finding such numbers in terms of the Seiffert
functions of the means involved. It says

THEOREM 6.1. For a Seiffert function k denote k̂(z) = k(z)/z. Let M and N be
two means with Seiffert functions m and n, respectively. Suppose that n̂(z) is strictly

monotone and let p0 = inf
z

n̂−1(m̂(z))
z and q0 = sup

z

n̂−1(m̂(z))
z .

If A(x,y) < M(x,y) < N(x,y) for all x �= y then the inequalities

N{p}(x,y) � M(x,y) � N{q}(x,y)

hold if and only if p � p0 and q � q0 .
If N(x,y) < M(x,y) < A(x,y) for all x �= y then the inequalities

N{q}(x,y) � M(x,y) � N{p}(x,y)

hold if and only if p � p0 and q � q0 .

In case of N = H we see that ĥ(z) = 1
1−z2

and ĥ−1(x) =
√

1− x−1 .

THEOREM 6.2. The inequalities

H
( x+y

2 + α x−y
2 , x+y

2 −α x−y
2

)
< Mtan < H

( x+y
2 + β x−y

2 , x+y
2 −β x−y

2

)
hold if and only if α �

√
1− cot1 ≈ 0.5983 and β �

√
1
3 ≈ 0.5774 .

Proof. By Theorem 6.1 the function to investigate is

h(z) =

√
1
z2 − 1

z tanz
.

From the proof of Theorem 2.1 we know that the function g(z) = 1
z

(
1

tan z − 1
z

)
< 0

decreases. Thus h(z) =
√−g(z) increases, which completes the proof.

THEOREM 6.3. The inequalities

H
( x+y

2 + α x−y
2 , x+y

2 −α x−y
2

)
< Msinh < H

( x+y
2 + β x−y

2 , x+y
2 −β x−y

2

)
hold if and only if α �

√
1
6 ≈ 0.4082 and β �

√
1− 1

sinh1 ≈ 0.3861 .

Proof. This time we consider the function

h(z) =

√
1
z2 −

1
zsinhz

.

Monotonicity of the function h2 follows from the proof of Theorem 2.2, so evaluation
of the values of h at the endpoints completes the proof.
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7. Tools and lemmas

In this section we place the all technical details needed to prove our main results.

PROPERTY 7.1. A function f : (a,b) → R is convex if and only if for every a <

θ < b its divided difference f (x)− f (θ)
x−θ increases for x �= θ .

Simple consequence of Property 7.1 is

PROPERTY 7.2. If a function f : (a,b)→ R is convex and limx→a f (x) = Θ , then

the function f (x)−Θ
x−a increases.

LEMMA 7.1. (Mitrinović & Adamović [2]) Consider the functions fu : [0,π/2)→
R

fu(x) = cosu xsinx− x, −1 < u < 0.

For −1� u�− 1
3 the functions fu are positive. For − 1

3 < u< 0 there exists 0< xu < π
2

such that fu is negative in (0,xu) and positive in (xu,∞) .

Proof. We have fu(0) = f ′u(0) = 0 and

f ′′u (x) = u(u−1)sinxcosu x

[
tan2 x− 1+3u

u(u−1)

]
.

If −1 � u < −1/3 we have 3u+1
u(u−1) � 0, so fu is convex, thus positive.

For −1/3 < u < 0 the equation tan2 x− 1+3u
u(u−1) = 0 has exactly one solution ξu ,

so fu is concave and negative on (0,ξu) . Then it becomes convex and tends to infinity,
thus assumes zero at exactly one point xu .

LEMMA 7.2. ([1]) Suppose f ,g : (a,b)→R are differentiable with g′(x) �= 0 and
such that limx→a f (x) = limx→a g(x) = 0 or limx→b f (x) = limx→b g(x) = 0 . Then

1. if f ′
g′ is increasing on (a,b) , then f

g is increasing on (a,b) ,

2. if f ′
g′ is decreasing on (a,b) , then f

g is decreasing on (a,b) .

LEMMA 7.3. For 0 < x < 1 we have

x4 sinxcos2 x+2(1− x2)sin3 x+(x2−2)x3 cosx < 0.
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Proof. Given that sinx < x− x3

3! + x5

5! and 1− x2

2! < cosx < 1− x2

2! + x4

4! we have

x4 sinxcos2 x+2(1− x2)sin3 x+(x2−2)x3 cosx

< x4
(

x− x3

3!
+

x5

5!

)(
1− x2

2!
+

x4

4!

)2

+2(1− x2)
(

x− x3

3!
+

x5

5!

)3

+(x2−2)x3
(

1− x2

2!

)
=

x7
(
x8(23x2−978)+ x4(16560x2−134480)+459200x2−777600

)
1728000

< 0.

LEMMA 7.4. For 0 < x < 1 the following inequality holds

cosh2x < 1+
(2x)2

2!
+

(2x)4

4!
+2

(2x)6

6!
.

Proof.

cosh2x−1− (2x)2

2!
− (2x)4

4!
− (2x)6

6!
=

(2x)8

8!
+

(2x)10

10!
+ . . .

<
(2x)6

6!

(
22

7 ·8 +
24

7 ·8 ·9 ·10
+ . . .

)
<

(2x)6

6!
. �

LEMMA 7.5. For 0 < x < 1 the following inequality holds

sinhx < x+
x3

3!
+2

x5

5!
.

Proof.

sinhx− x− x3

3!
− x5

5!
=

x7

7!
+

x9

9!
+ . . .

<
x5

5!

(
1

6 ·7 +
1

6 ·7 ·8 ·9 + . . .

)
<

x5

5!
. �
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tions trigonométriques, Univ. Beograd. Publ. Elektrotehn., Fak. Ser. Mat. Fiz., No. 143–155 (1965)
23–34.



TANGENT AND HYPERBOLIC SINE MEANS II 33

[3] M. NOWICKA AND A. WITKOWSKI, Optimal bounds for the tangent and hyperbolic sine means,
submitted.

[4] A. WITKOWSKI, On Seiffert-like means, J. Math. Inequal., 9, 4 (2015), 1071–1092, doi:10.7153/jmi-
09-83.

(Received August 9, 2019) Monika Nowicka
Institute of Mathematics and Physics

UTP University of Science and Technology
al. prof. Kaliskiego 7

85-796 Bydgoszcz, Poland
e-mail: monika.nowicka@utp.edu.pl

Alfred Witkowski
Institute of Mathematics and Physics

UTP University of Science and Technology
al. prof. Kaliskiego 7

85-796 Bydgoszcz, Poland
e-mail: alfred.witkowski@utp.edu.pl

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


