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AN EXTENSION BY MEANS OF o-WEIGHTED CLASSES
OF THE GENERALIZED RIEMANN-LIOUVILLE
k-FRACTIONAL INTEGRAL INEQUALITIES

P. AGARWAL AND J. E. RESTREPO

(Communicated by J. Pecari¢)

Abstract. In this paper, we aim at establishing an analog of the recently published results [1]
with the help of new k— type fractional integral operator Ry[f](¢), which is introduced here
by using the @-weighted classes. Then we establish some new ®-weighted Pdlya-Szego type
integral inequalities and @-weighted fractional integral inequalities, which are the an analog of
the recently published results [1].

1. Introduction

Present investigation is devoted to the construction of the analog of the recent results
established by Agarwal ef al. [1], which relates some new Pélya-Szego type integral
inequalities involving the generalized Riemann-Liouville k-fractional integral operator.
And, these inequalities are used then to establish some fractional integral inequalities
of Chebyshev type. The paper gives an extension of the results [1] by means of a
w-weighted classes and a new w-operator that becomes in the generalized Riemann-
Liouville k-fractional integral in a particular case.

In this paper, some new ®-weighted Pélya-Szego type inequalities by making use of a
new operator and then use them to establish some @ -weighted Chebyshev type integral
inequalities.

The well known functional was introduced by Chebyshev [2] and during last four
decades or so, several interesting and useful rediscovered for their many applications,
in various inequalities have been considered by several authors [3, 4, 5, 6, 7, 8, 9, 10]
and, for recent work, see Wang et al. [11] and P. Agarwal et al [1]; it is defined by

bia/abf(x)dx> (b—ia/ubg(x)dx) (1.1)

where f and g are two integrable functions. If these functions are synchronous on
[a,b], i.e., forany x,y € [a,b]

(f(x) = f(¥)(gx) —g(y)) =0, (1.2)
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then T(f,g) >0
The well known Griiss inequality [12] established

(M —m)(N—m)

T(f,9)| < ———, (1.3)

where f and g are two integrable functions which are synchronous on [a,b] and satisfy:
m< f(x) SM,n<g(y) SN, xyé€la,b], (1.4)

for some m,M,n,N € R.
Pélya and Szego [13] proved the following inequality:

b b
Ja ()], g2 ( [MN ﬁMN> 0s)

(S r(x)g(x)dx

Dragomir and Diamond [14] by using the Pélya and Szegé inequality, proved that

(M —m)(N
TG0 < 3 ) "o [ gt (16)

where f and g are two positive integrable functions which are synchronous on [a,b],
and
0<m< flx) SM<eo,0<n<g(y) <N <eo, x,y€la,b], (1.7)

for some m,M,n,N € R.

Now, some neccesary definitions to introduce our new @-weighted class € and the
new operator R, .

DEFINITION 1.1. Let k > 0, then the generalized k-gamma and k-beta functions
defined by [15]

n ¥—1
Te(x) = fim KR (1.8)

n—soo (x)n,k

where (x),x is the Pochhammer k-symbol defined by
(g =x(x+k)(x+2k)...(x+(n—1)k) (n>1).
DEFINITION 1.2. The k-gamma function is defined by
l"k(x):/ow ! *Tdt Re x > 0.
and it has the following properties:

[(x) = im (), Ti(x)=ki"'T (f) L Te(x+k) = 2Ty ().
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DEFINITION 1.3. If k> 0, let f € L'(a,b), a >0, then the Riemann-Liouville
k-fractional integral RO‘ of order o0 > 0 for a real- valued continuous function f(t) is
defined by ([1], [16], [17])

REAIO} = gy [ =18 mar, re o) 19)

For k = 1, this operator becomes to the classical Riemann-Liouville fractional integral.

DEFINITION 1.4. If k>0, f € L' (a,b), a >0 and r € R\ {—1} then the gen-
eralized Riemann-Liouville k-fractional integral Rg’kr of order o0 > 0 for a real-valued
continuous function f(t) is defined by [18]

-2 o
(l+r) ) /(tH_l—‘L'H_l)T_lf(T)dL tG[a,b]~ (1.10)

RyAf(0)} = i (o)

This operator has the following properties:

CHRETLF(0)) = REPT (7 (1)) = RET{RYL{F(0)}) (1.11)

and
(1 — r+1)%

(1+ )i (o +k)

Rﬁf;{{l}: o > 0. (1.12)
Everywhere below, a function o(z,7) is said to be is of the class Q, if ay(r,7) =

20(.1) > 0 for any 1,7 € (¢,d) x (e, f) (c,d,e,f € R) and is continuous respect to
varible T in [e, f].

For a functional parameter @(¢) € Q, everywhere in this paper, we use the following
operator which we formally define on real-valued continuous function f(z) given in
[a,b] (a>0) by:

Rolf1(0) ”'""/mtm T, reab] (1.13)

for any r e R\ {—1}, k>0 and o > 0. One can see that the parameter % is

a bounded constant then it will be useful for the future consider the following operator
without the constant, it means:

:/t(o,(tﬁ)f(r)dn t € a,b]. (1.14)

REMARK 1.1. Note that in a particular case when o(t,t) = (1'+! — ¢/+1)e/k
(a <t <b,a< t<1t), we get the generalized Riemann-Liouville k-fractional integral
RYT of order o0 > 0 given in definition 1.4, i.e. Ro[f](t) =R {f(t)}.
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i- !
REMARK 1.2. If o(,7) = "= ,jfl( 25— for 1,1 €[0,1], Rex >0, Rey >0,
k>0 and f is a continuous function on [0, 1], then the operator (1.14)

Rolf() = [ 771 =0F = B ),

i.e., it becomes to the k-beta function of [15] when t = 1. Hence, if t € [0,d) (d < 1)

we shall undertand the last integral as ﬂ,go’t] (x,y) because at one point of view is the
same function defined in a small domain.

On the other hand, if ®(t,7) = M then

R, [1] =B (x,).

REMARK 1.3. If 0(1,7) = ("' = o) TS for t € [a,b], t > T>a, k>0,
o >0, se R\{—1} and f is a continuous function on |a,b|, then the operator (1.14)

(14977 o
Rolfl(1) = ooy [+ =7 ) e pm)ar = ),
i.e., (k;s)-Riemann-Liouville fractional integral of f of order o > 0 of [18].

These remarks have demostrated that the operator Ry, and R/, defined in (1.13) and
(1.14) respectively, it has many applications when we consider some particular cases.

2. Some w-weighted Polya-Szego types inequalities

To continuation, we prove some @-weighted Pélya-Szegé type integral inequalities for
positive integrable functions involving the w-weighted classes Q and the operator R, .

LEMMA 2.1. Let f and g be two positive integrable funstions on [a,e). Assume
that there exist four integrable functions @y, @2, W, and VW, on |a,) such that:

(H1) 0 <@i(7) < f(7) < 2(1),0 < yu(7) <g(7) < ya(7) (7 € [as],1 > a).

Then, fort >a, k>0, a>0, oo>0, re R\ {—1} and o € Q, the following inequality
holds:

Ro[vivaPL(0)Ro 01 0262)0) _ 1 o
2 X . .
Ro[(@ry1 +@2yn)fel()] 4

Proof. From (H1), for T € [a,t], t > a, we have

1) _ 1) 02
~ ll/ .

hence

<<P2(T) B @) > 0. 2.3)
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Similarly, we get

o(1) _ f()
(o) < g(0) .
s D) D)
) ot
(L5 o)=0 2

Multiplying (2.3) and (2.5), it follows

(34-43) G- 39

i.e.

00 o)
(wr) - wm)

The last inequality can be written as

o |~
—
A
N
~
L3S
—~
A
N

(1) 7 (1) wi(D)ya(r)

(@1 (D)1 (1) + (D)2 (1) f(7)g(7) = wi(D)ya(0) (1) + @1 (D)2 (7)6° (7). (2:6)

. . . —a/
Consequently, , multiplying both sides of (2.6) by %

grating with respect to 7 from a to 7, we obtain

(w € Q) and inte-

Rol(@1w1 + @292) £38)(t) = Ro[wivaf?](t) + Rol@1 9287 (1)
Besides, by AM-GM inequality,i.e., a+ b > 2v/ab a,b € RT, we get

Rol(orv1 + @2v0) fe](t) > 2\/ Ro[y1vaf?](1)Ro[919287](1)

and it follows straightforward the statement (2.1).

Corollary 2.1. Let f and g be two positive integrable functions on [0,e0) satisfy-
ing
(H2) 0<m< f(t)<M,0<n<g(t)<N(t€lat],t>a).

Then, fort >a, k>0,a>0, a >0, re R\{—1} and o € Q, we obrain

RolP)(ORo[8)(0) _ (v, m>2
Rolfsl0)F = \VMN )

LEMMA 2.2. Let f and g be two positive integrable funstions on [a,e). Assume
that there exist four integrable functions @1, @2, W and Y on |a,) satisfying (H1)
on [a,*). Then, fort >a, k>0,a>0, >0, B >0, re R\{—1} and w1, € Q,
the following inequality holds:

Roy [@102] ()R (Y1 Y2] ()R [F2] ()R e [2)(1) 1
[Ro [@1./1(1) Rary [W18] (1) + R, [02F) (1) Roy [y2g] ()]> ~ 47

2.7

(2.8)
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Proof. By condition (H1), it clear that

p
and
(fr 1)20,
g(p) »(p)

These inequalities imply that
<<P1(T) @2(1)) @) () ¢(Dea(7) .
valp)  wilp)/ g(p) = &*(p) ~ wilp)ya(p)
Besides, multiplying both sides of (2.9) by v (p )

) :
@1 (T)f(DWi(p)s(p) + ¢2(7)f () y2(p)g(p)
> vi(p)va(p)f(7) + @1(1)92(7)8* (p) (2.10)
hence, multiplying both sides of (2.10) by
(147" o1, (1,7) _ (14 7r)Plkan,(1,p)
Ti(a)to Ti(B)B
and double integrating with respect to 7 and p from « to ¢, we have
Ry [01/1(1)Ra [W18](1) + Roy, [@2/1(1)Ror, [W28] (1)
> Roy[/?](1)Ra [y1 2] (1) + Ray [9192] (1) Ry [8°] (1)

Finally, applying the AM-GM inequality to the last inequality, we come to (2.8).

(2.9)

LEMMA 2.3. Let f and g be two positive integrable functions on [a,). Assume
that there exist four integrable functions @1, @2, Wi and Y, on [a,*) satisfying (H1)
on [a,). Then, fort >a, k>0,a>0, >0, >0, re R\{—1} and w1, € Q,
the following inequality holds:

Ry [/)(1)Ra, [8%)(1) < Roy [(92/8)/w1)(1)Ra, (W2 3) / 1] (1) (2.11)
Proof. By (2.2), we have for any @, € Q

r —a/k
% 2 o0 0

(VI ()

S Tetora Jo 7Dy

which implies

Roy [£°]() < Ray [(92£8)/y1] (1) (2.12)
and analogously, by (2.4), we get

R, [8°](t) < Ry [(y218)/ 1] (1) (2.13)
hence, by multiplying (2.12) and (2.13) follow (2.11).
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Corollary 2.2. Let f and g be two positive integrable functions on [0,e0) satisfy-
ing (H2). Then, fort >a, k>0, a>0, >0, >0, re R\{—1} and w;, € Q,
we obtain

Rwl [fz}(t)Ra)z[gz}(t) < M

Ro, [f8](t1)Ra, [ f8](t) ~ mn’ (2.14)

3. w-weighted Chebyshev type integral inequalities

In this section, some @-weighted Chebyshev type integral inequalities are established
involving the operator R, and using the w-weighted P6lya-Szego fractional integral
inequality of Lemma 2.1.

THEOREM 3.1. Let f and g be two positive integrable funstions on [a,). As-
sume that there exist four integrable functions @y, @2, Y and W, on [a,) satisfying
(H1). Then, fort >a, k>0,a>0, a>0, B >0, re R\{—1} and w1, € Q, the
following inequality holds:

|Rw, [£8](1)Rw, [1](2) + Ray [£&](t)Re, [1](7)
—Rao, [f](t)Rw, (8] (t) — Ra [8](t)Ray [ f1(2)]
< 2[G6017602(f7 §017¢2)(I)Gw17w2(g»(l’17 %)(I)}lﬁ (31)

where

_ L[Ro, [+ w)u)(1)]?
8 R, [vw](1)

— Ray [u) (1) Ry, [ua] (1)

Gwh&)z(”vv7w)(t)

Proof. For t,p € (a,t) (t > a), we defined A(t,p) = (f(7) — f(p))(g(T) —
g(p)), what is the same

A(t,p) = f(7)g(7) + f(p)e(p) — f(T)g(p) — f(p)g(7). 3.2)

Further, multiplying both sides of (3.2) by

(14 Fo,(t,7) (1+1) f o, (t,p)
Tl a (BB
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where o), € Q and double integrating with respect to 7 and p from a to ¢, we obtain

(I+r)"% (l—|—r £
Fk(a)t’a Fk Zrﬁ

/wu 1,7)an,(t,p)A(T,p)dTdp

T ot 7% t
=% [ ot 0@ )t,ﬁ [ 24(t.p)ap
+§}+rt, /amtp)f 1+rrﬂ/“’“”
(4 E g
Fk( ) /(1)17[(l7T)f(T)dT (ﬂ)trﬂ,/,la)27[(t7p)g(p)dp
1—|—r 1—|—r)7§ !
RVCIT, /wmr B)p / w2, (t,p)f(p)dp
—Rwl &l (1) Ran [1](1) + R, [ 8] (1) Ry, [1] (7)
— Ro, [f1(1)Ra [8) () = Roy, 8] (1) Ry [£1(2) (3.3)
By using the Cauchy-Schwartz inequality for double integrals, we have
1+rt:(; 1—1k+rtr[3 /u /u o1 ,4(t,T)an A(t,p)dtdp
<<(1+rt_(; F1k+r“ [//w“” [F(0)2ddp

+ [ [ o000, 0.0)l(p)Pdzap

t ot 1/2
2 [ [ 0wt 0ntep)(e) ip)dap]

" (L+7r)"% (1+r) ?
Ti(a)tmo T(B)e B

+/ / o1,4(1, 7)) [g(p)Pddp

[/ [ onste.510m, 0. p)ls(0)Pazap

-2 / / wu(r,r)an,:(np)g(r)g(p)drdp})1/2 (3.4)

hence, it follows

(1+r)"F (1+r)" £

T (@) TeB)rp a/aw“” (t,p)A(T, p)drdp

<2{1/2Rg[f ialG )R, [1](7) + 1/2sz[f2](f)Rw1[1}(l)—Rwl[f](f)sz[ﬂ(t)}l/z
x {1/2Ru [8°](t)Rary [1](¢) + 1 /2R 8] (1) Ry [1](t) — Ren [8] (1) Rery [8] (1) } /> (3.5)
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By applying Lemma 2.1, for y(t) = ya(t) = g(tr) = 1, we get for any @ € Q

1 {Ro[(@1 + @2).f1(1)}?
4 Rolpi1](t)

Rolf?)(1) <
this implies

1/2Rw, [f?](1)Ray [1](1) +1/2Ray 1] (1) Re, [1](1) — Ra, [f](1) R, [£](1)
1{Ro,[(¢1 + @) f1()}? 1 {Ra, (01 + 92) f1(1)]}?

~ 8 Rw1 [(Pl(Pﬂ(t) sz[l}(t)_Fg sz[(Pl(Pﬂ(t) Rwl[l](t)
—Ro, [f](1)Ra, [f1(t) = Gy, (f, 01, 02)(2) (3.6)
Analogously, it is clear

1 /2Ry [2)(6)Ro [1)(1) + 1/2Ren[) (1)Ren [1)(1) — Re [8)(0) R 8] 1)
1 {Ro, (@1 + 92)g](1)} L {Ray[(91 + @2)e] ()]}
ST Raoodn) Ot e R el

— R, [8](1)Rw, [8](1) = Gay,0, (8: 91, 92)(2) (3.7
Thus, by (3.3), (3.5), (3.6) and (3.7), we come to inequality (3.1).

Corollary 3.1. Let f and g be two positive integrable functions on [a,°). Assume
that there exist four integrable functions @y, @, Wi and Y, on [a,) satisfying (H1).
Then, fort >a, k>0, a>0, oo>0, re R\ {—1} and o € Q, the following inequality
holds:

[Ro([fg](t)Ro[1](?) — Rolg](1)Rw[f](7)]
<[Goo(f01,02)(t)Go.n(g, (PI»(Pz)(t)}l/z (3.8)

where

1 [Ro[(v+w)u) ()]
4 Ro[vw] (1)

Besides, if f and g satisfy (H2), then

Go,o(u,v,w)(t) = Ro[l] = (Rou] (f))z

GoolfrmM)(1) = == (Rolf](1))?, (3.9)
and N 5
GaoolgnM)(0) = S (Rylel 1)) 310

REMARK 3.1. The above results can be obtained analogously for the operator
R, defined in formula (1.14).

REMARK 3.2. One can see easily that when ® = w; = @, is defined as remark
1.1, then the results in [1] are the same up to some constants.
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4. Examples

The following applications show the multipurpose of the operator Ry, R), and the
inequalities proved.

PROPOSITION 4.1. If m, n, p, and q are positive real numbers satisfying the
condition (p—m)(q—n) <0 and k >0, then

B (p+kon+ 1) B (m+kyqg+ k)
2
Bl (2 k2 0

1 B (1—b\ T P\ % [1—a\ %
<= - - . .
S 4 (b) <l—a) * <a> (1—1)) “-1)

q—n

Proof. Setting, f(1) = "% and glr)=r1 %, one can convinced that they are
synchronous on [0, 1]. Furthermore,

lT’n/k 1—1 n/k
w(t,r):%, O<a<t<b<l, 7«it,

we get

R 2)(r) = %/t (1 = tylhde = BN p kot k), 1€ [a,b]
where the notation ﬁ,f“”] is the same defined in remark 1.2. And,

R,y [)(1) = % / Lol 1)kt = B kg +R), 1€ [a,b].
Now, note that for any 7 € [a,b]

p—m p—m p—m q—n q—n q—n

Pr=a% <T% <bXx =q@, Yy = (1—b)2_ (1-1)T<(1-g)7:1’/2,

Ry (prv1 -+ 92y2) fe) O] = (o (k. b) Ry [£&) (1))
t 2
[CZ7rn(k7a7b)}2 (%/ﬂ; Tp;km(l—’[)q;?dﬂ[)

2
g, 2| plat] [P+ M q-+n
[Cpm(k,a,b)} [[3 ( 5 + k, > +k .

where Cin(k,a,b) = a% (1— b) " +p'w "(1—a)™ ‘% . Finally, by Lemma 2.1, remark
3.1 and some straightforward calculus, we come to the desired statement (4.1).
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PROPOSITION 4.2. If f and g be two positive integrable functions satisfying
(H2). Then, for t >a, k>0, a>0, aa>0 and s € R\ {—1}, the following in-
equality holds:

(ts+1 s+1)a/k "
W e
(145)%/¥Ti(a+ k)< 8(t) =ila 1)
=)
4< /

—e——1la (RIS (1). (4.2)

Proof. By Corollary 3.1, formula (?31.9) and (3.10), we get that inequality (3.8) is
true. Besides, if o(t,7) = (+*! — 1) ¥ 1% for ¢ € [a,b], t > T > a, then by remark
1.3, Rp[f](t) =5J% f(¢). Hence, inequality (3.8) becomes to

[ &)1l (1) = g g (0)idg f (1)

(M_m)2 s yo

e S G 0)? @3

~

where it is easy to prove that
(151 — gshya/k
(1+ )%/ T (o + k)

Wa 1(0) =

Hence, we arrive to inequality (4.2).
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