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Abstract. Let P(z) be a polynomial of degree n and for any complex number α , let DαP(z) :=
nP(z)+ (α − z)P′(z) denote the polar derivative of the polynomial P(z) with respect to α . In
this paper, we first extend a recently proved result contained in a paper published in this journal
to the polar derivative of a polynomial. We shall also point out a fault in other result published
in the same paper and discuss in detail the validity of that result.

1. Introduction

If P(z) is a polynomial of degree n , then concerning the estimate of |P′(z)| on the
unit disk |z| = 1, we have

max
|z|=1

|P′(z)| � nmax
|z|=1

|P(z)|. (1.1)

The above inequality which is an immediate consequence of Bernstein’s inequality on
the derivative of Trigonometric polynomial is best possible with equality holding for
the polynomial P(z) = λ zn,λ being a complex number.

If we restrict ourselves to the class of polynomials having no zeros in |z|< 1, then
the above inequality can be sharpened. In fact, Erdös conjectured and later Lax [5]
proved that, if P(z) �= 0 in |z| < 1, then

max
|z|=1

|P′(z)| � n
2

max
|z|=1

|P(z)|. (1.2)

The above inequality is best possible and equality holds for all polynomials having their
zeros on |z| = 1.

As an extension of (1.2), Malik [7] proved that, if P(z) �= 0 in |z| < k,k � 1, then

max
|z|=1

|P′(z)| � n
1+ k

max
|z|=1

|P(z)|. (1.3)
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As a generalization of (1.3), Aziz and Shah [1] proved that, if P(z) has no zeros
in |z| < k,k � 1 except with s− fold zeros at the origin, then

max
|z|=1

|P′(z)| � n+ ks
1+ k

max
|z|=1

|P(z)|. (1.4)

Chan and Malik [2] generalized (1.3) in a different direction and proved that, if

P(z) = a0 +
n
∑

ν=μ
aνzν , μ � 1, is a polynomial of degree n which does not vanish in

|z| < k where k � 1, then

max
|z|=1

|P′(z)| � n
1+ kμ max

|z|=1
|P(z)|. (1.5)

As a refinement of (1.5), Pukhta [9] proved that, if P(z) = a0 +∑n
ν=μ aνzν , 1 � μ � n ,

is a polynomial of degree n not vanishing in |z| < k , k � 1, then

max
|z|=1

|P′(z)| � n
1+ kμ

{
max
|z|=1

|P(z)|−min
|z|=k

|P(z)|
}

. (1.6)

Further, Kumar and Lal [6] generalized (1.6) by proving that, if P(z)= zs
(
a0 + ∑n−s

ν=μ aνzν)
,

1 � μ � n− s , 0 � s � n−1, is a polynomial of degree n having a zero of order s at
the origin and remaining n− s zeros in |z| � k , k � 1, then

max
|z|=1

|P′(z)| � n+ skμ

1+ kμ max
|z|=1

|P(z)|− n− s
ks(1+ kμ)

min
|z|=k

|P(z)|. (1.7)

Very recently, K. M. Nakprasit and J. Somsuwan [8] proved the following generaliza-
tion of (1.7).

THEOREM A. If P(z) = (z−z0)s
(
a0 + ∑n−s

ν=μ aνzν)
, 1 � μ � n−s, 0 � s � n−1 ,

is a polynomial of degree n having a zero of order s at z0 with |z0| < 1 and the
remaining n− s zeros in |z| � k , k � 1 , then

max
|z|=1

|P′(z)| �
[

s
(1−|z0|) +

A
(1−|z0|)s

]
max
|z|=1

|P(z)|− A
(k+ |z0|)s min

|z|=k
|P(z)|, (1.8)

where

A =
(1+ |z0|)s+1(n− s)
(1+ kμ)(1−|z0|) . (1.9)

In the same paper K. M. Nakprasit and J. Somsuwan also claim to have proved the
following result.

THEOREM B. If P(z) = (z−z0)s
(
a0 + ∑n−s

ν=μ aνzν)
, 1 � μ � n−s, 0 � s � n−1 ,

is a polynomial of degree n having a zero of order s at z0 with |z0| < 1 and the
remaining n− s zeros on |z| = k , k � 1 , then

max
|z|=1

|P′(z)| �
[

s
(1−|z0|) +

(1+ |z0|)s+1(n− s)
(kn−s−2μ+1 + kn−s−μ+1)(1−|z0|)s+1

]
max
|z|=1

|P(z)|. (1.10)
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Let DαP(z) denote the polar derivative of the polynomial P(z) of degree n with
respect to the point α . Then

DαP(z) = nP(z)+ (α − z)P′(z).

The polynomial DαP(z) is of degree at most n− 1 and it generalizes the ordinary
derivative in the sense that

lim
α→∞

{
DαP(z)

α

}
= P′(z),

uniformly with respect to z for |z|� R , R > 0. As a generalization of (1.6) to the polar
derivative of P(z) , Dewan, Singh and Mir [3] proved that, if P(z) = a0 + ∑n

ν=μ aνzν ,
1 � μ � n , is a polynomial of degree n having no zeros in |z| < k , k � 1, then for
every α with |α| � 1,

max
|z|=1

|DαP(z)| � n
1+ kμ

{
(|α|+ kμ)max

|z|=1
|P(z)|− (|α|−1)min

|z|=k
|P(z)|

}
. (1.11)

Here, we shall extend Theorem A to the polar derivative of a polynomial and thereby
obtain generalizations of (1.7) and (1.8). Besides, we point out a fault in Theorem B
and discuss in detail the validity of this result.

THEOREM 1. If P(z) = (z−z0)s
(
a0 + ∑n−s

ν=μ aνzν)
, 1 � μ � n−s, 0 � s � n−1 ,

is a polynomial of degree n having a zero of order s at z0 with |z0| < 1 and the
remaining n− s zeros in |z| � k , k � 1 , then for every α ∈ C with |α| � 1 , we have

max
|z|=1

|DαP(z)| �
[
s(|α|+ |z0|)
(1−|z0|) +

A(|α|+ kμ)
(1−|z0|)s

]
max
|z|=1

|P(z)|− A(|α|−1)
(k+ |z0|)s min

|z|=k
|P(z)|,

(1.12)

where A is defined by (1.9).

Clearly Theorem 1 generalizes inequality (1.8) and to obtain (1.8) from the above
theorem, simply divide both sides of (1.12) by |α| and let |α| → ∞ .

REMARK 1. By letting z0 = 0 in Theorem 1, we get A = n−s
1+kμ and

max
|z|=1

|DαP(z)| �
[
s(|α|−1)kμ +n(|α|+ kμ)

(1+ kμ)

]
max
|z|=1

|P(z)|− (n− s)(|α|−1)
ks(1+ kμ)

min
|z|=k

|P(z)|,

which is a generalization of (1.7).

2. Proof of Theorem 1 and some comments
on Theorem B

2.1. Proof of Theorem 1. Let P(z) = (z−z0)sφ(z) where φ(z) = a0+∑n−s
ν=μ aνzν ,

1 � μ � n− s , is a polynomial of degree n− s having no zeros in |z| < k , k � 1.
Applying the inequality (1.11) to the polynomial φ(z) , we get for |α| � 1,

|Dα φ(z)| � n− s
1+ kμ

{
(|α|+ kμ)max

|z|=1
|φ(z)|− (|α|−1)m′

}
, (2.1)
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where m′ = min|z|=k |φ(z)| .
Now

DαP(z) = nP(z)+ (α − z)P′(z)

= n(z− z0)sφ(z)+ (α − z)
{
s(z− z0)s−1φ(z)+ (z− z0)sφ ′(z)

}
= n(z− z0)sφ(z)+ s(α − z0)(z− z0)s−1φ(z)

− s(z− z0)sφ(z)+ (α − z)(z− z0)sφ ′(z)

= (z− z0)s {(n− s)φ(z)+ (α − z)φ ′(z)
}

+ s(α − z0)(z− z0)s−1φ(z)

= (z− z0)sDα φ(z)+ s(α − z0)(z− z0)s−1φ(z),

which implies

(z− z0)DαP(z) = (z− z0)s+1Dα φ(z)+ s(α − z0)(z− z0)sφ(z)

= (z− z0)s+1Dα φ(z)+ s(α − z0)P(z). (2.2)

Hence for |z| = 1, we get from (2.2) that

max
|z|=1

|z− z0||DαP(z)| � s|α − z0|max
|z|=1

|P(z)|+max
|z|=1

|z− z0|s+1|Dα φ(z)|. (2.3)

For |z| = 1, we have

|z− z0| � |z|− |z0| = 1−|z0|,

and

|z− z0| � |z|+ |z0| = 1+ |z0|.

We obtain from (2.3) that

(1−|z0|)max
|z|=1

|DαP(z)| � s(|α|+ |z0|)max
|z|=1

|P(z)|+(1+ |z0|)s+1 max
|z|=1

|Dα φ(z)|. (2.4)

Inequality (2.4) when combined with (2.1), gives

(1−|z0|)max
|z|=1

|DαP(z)|

� (1+ |z0|)s+1
(

n− s
1+ kμ

){
(|α|+ kμ)max

|z|=1
|φ(z)|− (|α|−1)min

|z|=k
|φ(z)|

}

+ s(|α|+ |z0|)max
|z|=1

|P(z)|. (2.5)

The relation between φ(z) and P(z) yields

min
|z|=k

|φ(z)| = min
|z|=k

[
1

|z− z0|s |P(z)|
]

� 1
(k+ |z0|)s min

|z|=k
|P(z)|,
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and

max
|z|=1

|φ(z)| = max
|z|=1

|
[

1
|z− z0|s |P(z)|

]
� 1

(1−|z0|)s max
|z|=1

|P(z)|.

Applying these relations in (2.5), we obtain

max
|z|=1

|DαP(z)| �
[
s(|α|+ |z0|)
(1−|z0|) +

A(|α|+ kμ)
(1−|z0|)s

]
max
|z|=1

|P(z)|− A(|α|−1)
(k+ |z0|)s min

|z|=k
|P(z)|,

where A is defined by (1.9) and this proves Theorem 1 completely.

2.2. Some comments on Theorem B. Going through the proof of Theorem B, we
notice that it uses the following result of Dewan and Hans [4], which the authors call
Theorem 3 (see [8], page 144). Unfortunately, this result of Dewan and Hans is false
and a counter example in support of our claim is presented below after the statement of
the result.

THEOREM 2. If P(z) = a0 + ∑n
ν=μ aνzν , 1 � μ � n, is a polynomial of degree n

having all its zeros zeros on |z| = k , k � 1 , then

max
|z|=1

|P′(z)| � n
kn−2μ+1 + kn−μ+1 max

|z|=1
|P(z)|. (2.6)

To see that Theorem 2 is false, let us consider the polynomial P(z) = zn + kn , which is
a polynomial of the form a0 + ∑n

ν=μ aνzν , 1 � μ � n with

a0 = kn, aν = 0 for ν = μ , μ +1, ...,n−1 and an = 1,

where 1 � μ � n.

Clearly, P(z) has all its zeros on |z|= k , max|z|=1 |P(z)|= 1+kn and max|z|=1 |P′(z)|=
n .

Thus if (2.6) is true, then we would have

n � n
kn−2μ+1 + kn−μ+1 (1+ kn),

for any μ ∈ {1,2, ...,n} . For convenience, we take n = 2μ − 1, then it amounts to
saying that 1+ kμ � 1+ k2μ−1 . For k < 1, this is obviously false except when μ = 1.

Thus the example zn +kn shows that Theorem 2 is false for 2 � μ � n and k < 1.
This further implies that Theorem B is false for 2 � μ � n− s , s � 0.
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