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Abstract. In this paper, we use q -derivative operator to define a new subclass of starlike func-
tions related with the lemniscate of Bernoulli. For this function class we obtain upper bound
of the third Hankel determinant. For validity of our results, relevant connections with those in
earlier works are also pointed out.

1. Introduction and Basic Definitions

Let by H (U) we denote the class of functions which are analytic in the open unit
disk

U = {z : z ∈ C and |z| < 1} ,

where C is the set of complex numbers and let A be the class of analytic functions
having the form

f (z) = z+
∞

∑
n=2

anz
n (∀ z ∈ U) , (1.1)

in the open unit disk U, centered at origin and normalized by the conditions

f (0) = 0 and f ′ (0) = 1.

Also, let S , the subclass of analytic function class A , be the class of functions which
are univalent in U .

Furthermore, let the class of starlike functions in U will be denoted by S ∗ , which
consists of normalized functions f ∈ A that satisfy the following inequality:

ℜ
(

z f ′ (z)
f (z)

)
> 0 (∀ z ∈ U) .
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Moreover, by S L ∗ , we denote the class of a function f ∈ A that satisfy the
following inequality: ∣∣∣∣∣

(
z f ′ (z)
f (z)

)2

−1

∣∣∣∣∣ < 1 (∀ z ∈ U) .

Thus a function f ∈ S L ∗ is such that z f ′(z)
f (z) lies in the region bounded by the right

half of the lemniscate of Bernoulli given by the relation∣∣w2−1
∣∣ < 1.

This class of function was introduced by Sokól and Stankiewicz (see [25]) .
Next, If two functions f and g are analytic in U , we say that the function f is

subordinate to the function g and write as

f ≺ g or f (z) ≺ g(z) ,

if there exists a Schwarz function w which is analytic in U with

w(0) = 0 and |w(z)| < 1,

such that
f (z) = g(w(z)) .

Furthermore, if the function g is univalent in U then it follows that:

f (z) ≺ g(z) (z ∈ U) ⇒ f (0) = g(0) and f (U) ⊂ g(U).

In particular, if the function g is univalent in U then we have the following equivalence
(cf., eg., [20], see also [21]) :

f (z) ≺ g(z) (z ∈ U) ⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

We next denote by P the class of analytic functions p which are normalized by

p(z) = 1+
∞

∑
n=1

cnz
n, (1.2)

such that
ℜ(p(z)) > 0 (∀ z ∈ U) .

We now recollect some basic definitions and concept details of the q -calculus which
are used in this paper. We suppose throughout the paper that 0 < q < 1 and that

N = {1,2,3...} = N0\{0} (N0 := {0,1,2, ...}) .

DEFINITION 1. Let q ∈ (0,1) and define the q -number [λ ]q by

[λ ]q =

⎧⎪⎨⎪⎩
1−qλ

1−q (λ ∈ C)

∑n−1
k=0 qk = 1+q+q2+ ...+qn−1 (λ = n ∈ N) .



UPPER BOUND OF THE THIRD HANKEL DETERMINANT 55

DEFINITION 2. (see [11] and [12]) Let 0 < q < 1. The q -derivative (or q -
difference) Dq of a function f defined is in a given subset of C by

(Dq f ) (z) =

⎧⎪⎨⎪⎩
f (z)− f (qz)

(1−q)z (z 
= 0)

f ′ (0) (z = 0)
(1.3)

provided that f ′ (0) exists.

We note from Definition 2 that

lim
q→1−

(Dq f ) (z) = lim
q→1−

f (z)− f (qz)
(1−q)z

= f ′ (z) ,

for a differentiable function f in a given subset of C. It is readily deduced from
(1.1) and (1.3) that

(Dq f ) (z) = 1+
∞

∑
n=2

[n]q anz
n−1. (1.4)

In Geometric Function Theory, many subclasses of normalized analytic functions
class A have been studied already in different aspect. The above defined q -calculus
gives invaluable tools that have been extensively used in order to investigate several
subclasses of class A . Historically speaking, Ismail et al. [10] were the first who used
the q -derivative operator Dq to study the q -calculus analogous of the class S ∗ of
starlike functions in U (see Definition 3 below). A firm footing usage of the q -calculus
in the context of Geometric Function Theory was presented mainly and basic (or q -
) hypergeometric functions were first used in Geometric Function Theory in a book
chapter by Srivastava (see, for details, [28, pp. 347 et seq.]). Subsequently, a great deal
of work has been developed by many mathematicians, which has played an important
role in the development of Geometric Function Theory. In particular, Srivastava and
Bansal [29] studied the close-to-convexity of q -Mittag-Leffler functions, while also
Srivastava et al. [32] introduced the generalized subfamilies of q -starlike functions
related with the Janowski functions. On the other hand, Mahmood et al. [19] studied
the class of q -starlike functions in the conic region. Also for some recent investigations
regarding q -calculus in the context of Geometric Function Theory one may refer to
[3, 1, 6, 7, 9, 17, 35].

DEFINITION 3. (see [10]) A function f ∈ A is said to belong to the class S ∗
q if

f (0) = f ′ (0)−1 = 0 (1.5)

and ∣∣∣∣ z
f (z)

(Dq f ) z− 1
1−q

∣∣∣∣ � 1
1−q

. (1.6)

It is readily observe that as q → 1− the closed disk∣∣∣∣w− 1
1−q

∣∣∣∣ � 1
1−q
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becomes the right-half plane and the class S ∗
q of q -starlike functions reduces to the fa-

miliar class S ∗. Equivalently, by using the principle of subordination between analytic
functions, we can rewrite the conditions in (1.5) and (1.6) as follows (see [36]) :

z
f (z)

(Dq f ) (z) ≺ p̂

(
p̂ =

1+ z
1−qz

)
.

Motivating and inspired by the work of Srivastava et al. [27], Oçar [36] and from
the above mentioned q -Calculus, we define the following.

DEFINITION 4. A function f of the form (1.1) is said to be in the class S L ∗
q if

and only if ∣∣∣∣∣
(

z(Dq f ) (z)
f (z)

)2

− 1
1−q

∣∣∣∣∣ <
1

1−q
, (1.7)

or equivalently

z(Dq f ) (z)
f (z)

≺
√

2(1+ z)
2+(1−q)z

(∀z ∈ U) .

Thus a function f ∈S L ∗
q is such that

z(Dq f)(z)
f (z) lies in the region bounded by the

right half of the generalized lemniscate of Bernoulli given by the relation∣∣∣∣w2 − 1
1−q

∣∣∣∣ <
1

1−q
.

It is worthy of note that, if we let q→ 1− , in condition (1.7) , we are led the well-known
function class S L ∗, which was introduced by Sokól and Stankiewicz (see [25]) and
further investigated by the many authors see for example [2, 23, 26].

Let n � 0 and q � 1. Then the qth Hankel determinant is defined as:

Hq (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1

an+1 . .
. . .
. . .
. . .
an+q−1 . . . . an+2(q−1)

∣∣∣∣∣∣∣∣∣∣∣∣
The determinant has been studied by several authors. In particular, sharp upper

bounds on H2 (2) were obtained by the authors of articles [8, 13, 22, 24, 31, 33]
for various classes of functions. It is well-known that the Fekete-Szegö functional∣∣a3−a2

2

∣∣ = H2 (1) . This functional is further generalized as
∣∣a3− μa2

2

∣∣ for some μ
real as well as complex. Fekete and Szegö gave sharp estimates of

∣∣a3− μa2
2

∣∣ for
μ real and f ∈ S , the class of univalent functions. It is also know that the functional∣∣a2a4−a2

3

∣∣ is equivalent to H2 (2) . Babalola [4] studied the Hankel determinant H3 (1)
for some subclasses of analytic functions. The Hankel determinant H3 (1) has been also
studied by the many authors see for example [18, 30, 34]. In the present investigation,
our focus is on the Hankel determinant H3 (1) for the function class S L ∗

q.
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2. A Set of Lemmas

In order to prove our main results, we need the following lemmas.

LEMMA 1. (see [16]) Let

p(z) = 1+ c1z+ c2z
2 + . . .

is in the class P of functions positive real part in U , then for any complex number υ

∣∣c2−υc2
1

∣∣ �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−4υ +2 (υ � 0)

2 (0 � υ � 1)

4υ −2 (υ � 1) .

(2.1)

When υ < 0 or υ > 1 , equality holds true in (2.1) if and only if

p(z) =
1+ z
1− z

or one of its rotations. If 0 < υ < 1, then equality holds true in (2.1) if and only if

p(z) =
1+ z2

1− z2

or one of its rotations. If υ = 0, equality holds true in (2.1) if and only if

p(z) =
(

1+ ρ
2

)
1+ z
1− z

+
(

1−ρ
2

)
1− z
1+ z

(0 � ρ � 1)

or one of its rotations. If υ = 1 , then the equality in (2.1) holds true if p(z) is a
reciprocal of one of the functions such that the equality holds true in the case when
υ = 0.

LEMMA 2. [14, 15] Let

p(z) = 1+ c1z+ c2z
2 + . . .

is in the class P of functions positive real part in U , then

2c2 = c2
1 + x

(
4− c2

1

)
for some x, |x| � 1 and

4c3 = c3
1 +2

(
4− c2

1

)
c1x−

(
4− c2

1

)
c1x

2 +2
(
4− c2

1

)(
1−|x|2

)
z

for some z, |z| � 1.
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LEMMA 3. [5] Let
p(z) = 1+ c1z+ c2z

2 + . . .

is in the class P of functions positive real part in U , then

|ck| � 2 (k ∈ N)

and the inequality is sharp.

3. Main Results and their Demonstrations

In this section, we will prove our main results. Throughout our discussion we will
assume that, q ∈ (0,1) .

THEOREM 1. Let f ∈ S L ∗
q and be of the form (1.1) , then

∣∣a3− μa2
2

∣∣ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3q2−3q+2)−2(1+q)2μ
32q2

(
μ < 3q2+11q+2

2(1+q)2

)
1
4q

(
3q2+11q+2

2(1+q)2
� μ � 3q2+5q+2

2(1+q)2

)
2(1+q)2μ−(3q2−3q+2)

32q2

(
μ > 3q2+5q+2

2(1+q)2

)
.

These results are sharp.

Proof. If f ∈ S L ∗
q then it follows from definition that

z(Dq f ) (z)
f (z)

≺ φ (z) , (3.1)

where

φ (z) =
(

2(1+ z)
2+(1−q)z

) 1
2

.

Define a function

p(z) =
1+w(z)
1−w(z)

= 1+ c1z+ c2z
2 + ...

it is clear that p ∈ P . This implies that

w(z) =
p(z)−1
p(z)+1

.

From (3.1) we have
z(Dq f ) (z)

f (z)
≺ φ (z) ,
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with

φ (w(z)) =
(

4p
(1+q)+ (3−q) p

) 1
2

.

Now (
4p

(1+q)+ (3−q) p

) 1
2

= 1+
(1+q)

8
c1z+

(1+q)
128

[
16c2 +(3q−13)c2

1

]
z2

+
(1+q)
1024

[
128c3 +(48q−208)c1c2 +

(
5q2−38q+85

)
c3
1

]
z3 + ...

Similarly

z(Dq f ) (z)
f (z)

= 1+qa2z+
{(

q+q2)a3−qa2
2

}
z2 +

{(
q+q2 +q3)a4

−(
2q+q2)a2a3 +qa3

2

}
z3 + ...

Therefore

a2 =
(1+q)

8q
c1 (3.2)

a3 =
1

64q

[
8c2 +

3q2−11q+2
2q

c2
1

]
(3.3)

a4 =
(1+q)

1024(q+q2 +q3)

[
128c3 +

16
(
3q2−12q+2

)
q

c1c2 + ζc3
1

]
. (3.4)

Where

ζ =
5q4−35q3 +78q2−24q+2

q2 .

Thus ∣∣a3− μa2
2

∣∣ =
1
8q

∣∣c2−κc2
1

∣∣ , (3.5)

where

κ =
2(1+q)2 μ − (

3q2−11q+2
)

16q

Using Lemma 1 on (3.5) , we obtain the required result.
The results are sharp for the functions H1 (z) and H2 (z) , such that

z(DqH1)(z)
H1(z) =

√
2(1+z)

2+(1−q)z , if μ < 3q2+11q+2
2(1+q)2

or μ > 3q2+5q+2
2(1+q)2

z(DqH2)(z)
H2(z) =

√
2(2+2(1−q)z+(1+q2)z2)

(2+(1−q)z)2
, if 3q2+11q+2

2(1+q)2
< μ < 3q2+5q+2

2(1+q)2
.
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THEOREM 2. Let f ∈ S L ∗
q and of the form (1.1) , then

∣∣a2a4−a2
3

∣∣ � 1
16q2 . (3.6)

This result is sharp.

Proof. Making use of (3.2), (3.3) and (3.4), we have

a2a4−a2
3 =

(1+q)2

64q2 (1+q+q2)
c1c3 +

2q2−13q+1
512q2 (1+q+q2)

c2
1c2

+
q4 +7q3−50q2 +171q−29

16384q2 (1+q+q2)
c4
1.

Putting the value of c2 and c3 from Lemma 2, using triangular inequality and replacing
|x| < 1 by ρ and c1 by c, we have

|a2a4−a2
3| �

1
ϒ(q)

[
Λ(q)c4 +128(1+q)2

(
4− c2)+16Ω(q)c2 (

4− c2)ρ

+
(
64c2q+4

(
1+q+q2)−128(1+q)2

)(
4− c2)ρ2

]
= F (c,ρ) , (3.7)

where
ϒ(q) = 16384q2(

1+q+q2) ,

Λ(q) =
∣∣q4 +7q3−18q2−27q−13

∣∣
and

Ω(q) =
∣∣2q2−5q+1

∣∣.
Differentiating (3.7) with respect to ρ , we have

∂F
∂ρ

=
1

ϒ(q)
[
16Ω(q)c2 (

4− c2)
+2

(
64c2q+4

(
1+q+q2)−128(1+q)2

)(
4− c2)ρ

]
.

It is clear that ∂F(c,ρ)
∂ρ > 0.

Which shows that F(c,ρ) is an increasing function on the closed interval [0,1] .
This implies that maximum value occurs at ρ = 1. That is for maximum of F(c,ρ) =
F(c,1) = G(c) say.

Now

G(c) =
1

ϒ(q)
[
(Λ(q)−16Ω(q)−64)c4

+(64Ω(q)−256q(1+q))c2 +512
(
(1+q)2 +

(
1+q2))]

. (3.8)
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Differentiating (3.8) with respect to c we have

G′(c) =
1

ϒ(q)
[−4(Λ(q)−16Ω(q)−64)c3

+2(64Ω(q)−256q(1+q))c

Differentiating again above equation with respect to c we have

G′′(c) =
1

ϒ(q)
[−12(Λ(q)−16Ω(q)−64)c2

+2(64Ω(q)−256q(1+q))] .

For c = 0 this shows that the maxG(c) occurs at c = 0. Hence we obtain∣∣a2a4−a2
3

∣∣ � 1
16q2 .

This result is sharp for the functions

z(Dq f ) (z)
f (z)

=

√
2(1+ z)

2+(1−q)z

or
z(Dq f ) (z)

f (z)
=

√
2(2+2(1−q)z+(1+q2)z2)

(2+(1−q)z)2 .

THEOREM 3. Let f ∈ S L ∗
q and of the form (1.1) , then

|a2a3−a4| � (1+q)
4q(1+q+q2)

.

Proof. Using the values of (3.2), (3.3) and (3.4), we have

a2a3−a4 =
(1+q)
λ (q)

[−128q2c3−16
(
3q4−13q3 +q2−q

)
c1c2

−(
2q4−27q3 +84q2−15q+21

)
c3
1

]
,

where
λ (q) = 1024q3(

1+q+q2) .

Using Lemma 2 and since c1 � 2 by Lemma 3, let c1 = c and assume without restric-
tion that c ∈ [0,2] . Taking absolute and applying the triangle inequality with ρ = |x|
we obtain

|a2a3−a4| � (1+q)
λ (q)

[
χ (q)c3 +64q2(4− c2)+ ψ (q)

(4− c2)cρ +32q2 (c−2)
(
4− c2)ρ2]

= F(ρ) say,
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where
χ (q) =

∣∣−26q4 +131q3−124q2 +32q−21
∣∣

and
ψ (q) =

∣∣24q4−104q3 +72q2−8q
∣∣ .

Differentiating F(ρ) with respect to ρ we have

F ′(ρ) =
(1+q)
λ (q)

[
ψ (q)(4− c2)c+64q2 (c−2)

(
4− c2)ρ

]
> 0.

This implies that F(ρ) is an increasing function of ρ on the closed interval [0,1] .
Hence F(ρ) � F(0) for all ρ ∈ [0,1] that is

F(ρ) � (1+q)
λ (q)

[
χ (q)c3 +64q2(4− c2)

]
= G(c) say.

Differentiating G(c) with respect to c we have

G′(c) =
(1+q)
λ (q)

[
3χ (q)c2 −128q2c

]
.

Again differentiating the above equation with respect to c we have

G′′(c) =
(1+q)
λ (q)

[
6χ (q)c−128q2] .

Since c ∈ [0,2] , by the assumption, it follows that G(c) attains maximum at c = 0,
which corresponds to ρ = 0 and it is the desired upper bound.

In its special case, if we let q → 1− , Theorem 3 reduce to the following known
result.

COROLLARY 1. (see [23]) If a function f of the form (1.1) is in the class S L ∗,
then

|a2a3−a4| � 1
6
.

To prove Theorem 4, we need the following Lemma (Lemma 4) .

LEMMA 4. If a function f of the form (1.1) is in the class S L ∗
q, then

|a2| � (1+q)
4q

|a3| � 1
4q

|a4| � (1+q)
4q(1+q+q2)

|a5| � (1+q)
4q(1+q+q2+q3)

.
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Proof. The proof of Lemma 4 is similar to that of result which has been already
proved by Sokól (see [26]) , therefore we here choice to omit the detial of the proof of
Lemma 4.

THEOREM 4. Let f ∈ S L ∗
q and of the form (1.1) , then

H3(1) � q6 +10q5 +20q4 +24q3 +20q2 +10q+1

64q3 (q2 +1)(q2 +q+1)2
.

Proof. Since

H3(1) � |a3|
∣∣(a2a4−a2

3

)∣∣+ |a4| |(a2a3−a4)|+ |a5|
∣∣(a1a3−a2

2

)∣∣ .
Using the fact that a1 = 1, with Theorem 1, Theorem 2, Theorem 3 and Lemma 4 we
have the required result.

If we let q → 1− , in Theorem 4, we are led the following known result.

COROLLARY 2. (see [23]) If a function f of the form (1.1) is in the class S L ∗,
then

H3(1) � 43
576

.
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