
Journal of
Mathematical

Inequalities

Volume 14, Number 1 (2020), 67–82 doi:10.7153/jmi-2020-14-06

THE DIRICHLET PROBLEM FOR A SUB–ELLIPTIC EQUATION WITH
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Abstract. This paper studies the following singular sub-elliptic equation:⎧⎨⎩−ΔHu = h(ξ )
uγ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ Hn is a smooth bounded domain, γ > 0 and h � 0 . We first use the Schauder’s fixed
point theorem and approximating method to prove the existence of solutions to the above equa-
tion. We then obtain the uniqueness result by proving a weak comparison principle and further
deduce that the solution is cylindrically symmetric under some necessary structural conditions
on Ω and h .

1. Introduction and main results

The Heisenberg group Hn is the space R2n+1 endowed with the group action ◦
defined by

ξ0 ◦ ξ = (x0 + x,y0 + y,t0 + t +2(x · y0− y · x0)),

where · denotes the inner product in Rn and

ξ0 = (x0,y0, t0) = (x01, · · ·,x0n,y01, · · ·,y0n,t0), ξ = (x,y, t) = (x1, · · ·,xn,y1, · · ·,yn,t).

There is a natural group of dilations on Hn given by δλ (ξ ) = (λx,λy,λ 2t) for any
λ > 0. Hence, δλ (ξ0 ◦ξ ) = δλ (ξ0)◦δλ (ξ ) and Hn = (R2n+1,◦,δλ ) is a homogeneous
Lie group and the number Q = 2n+2 is the homogeneous dimension of Hn . For any
ξ ∈ H

n , let us define the norm

|ξ |H =
(
(x2 + y2)2 + t2

)1/4
,

which is homogeneous of degree one with respect to the dilation δλ . Therefore the as-
sociated distance between two points ξ ,η of Hn is defined by d(ξ ,η) = |η−1 ◦ ξ |H ,
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where η−1 denotes the inverse of η with respect to the group action ◦ . Similarly, the
set Br(ξ ) = {η ∈ Hn : d(ξ ,η) < r} denotes the Heisenberg ball of radius r centered
at ξ . Meanwhile, the natural volume in Hn is the Haar measure, which coincides with
Lebesgue measure L2n+1 in R2n+1 . Therefore |Br(ξ )| = αQrQ , where αQ = |B1(0)| .
In addition, the Heisenberg group Hn corresponding Lie Algebra of left-invariant vec-
tor fields is generated by

Xj =
∂

∂x j
+2y j

∂
∂ t

, Yj =
∂

∂y j
−2x j

∂
∂ t

, T =
∂
∂ t

for j = 1, · · ·,n . The second order self-adjoint operator: ΔH = ∑n
j=1(X

2
i +Y2

j ) , that is,

ΔH =
n

∑
j=1

∂ 2

∂x2
j

+
∂ 2

∂y2
j

+4y j
∂ 2

∂x j∂ t
−4x j

∂ 2

∂y j∂ t
+4(x2

j + y2
j)

∂ 2

∂ t2

is usually called the Kohn Laplacian or Heisenberg Laplacian. This type of operator has
been successfully applied to the Brownian motion, to the kinetic theory of gases and
to the mathematical models in theoretical physics and diffusion processes, see [1, 2, 3].
Let

∇H = (X1, · · ·,Xn,Y1, · · ·,Yn),

and A denotes the following (2n+1)× (2n+1) matrix⎛⎝ In 0 2yT

0 In −2xT

2y −2x 4(x2 + y2)

⎞⎠ ,

where In is the n×n identity matrix and x2 + y2 = ∑n
j=1(x

2
j + y2

j) . Then

ΔHu = div(A(ξ )∇u),

which implies that the Kohn Laplacian ΔH is very degenerate, since det(A(ξ )) = 0 for
any ξ ∈ Hn . However, it is easy to check that Xj and Yj satisfy

[Xi,Yj] = −4Tδi j, [Xi,Xj] = [Yi,Yj] = 0

for any i, j ∈ {1, · · ·,n}. This means that the vector fields Xj,Yj and their first or-
der commutator span the whole Lie algebra. Therefore the operator ΔH satisfies the
Hörmander rank condition, see [4,3], which implies that ΔH is hypoelliptic and Bony’s
maximum principle is satisfied, see [5]. On the other hand, a basic role in the functional
analysis on Hn is played by the following Sobolev type inequality:

‖φ‖2
Q∗ � BQ‖∇Hφ‖2

2, ∀φ ∈C∞
0 (Hn), (1)

where Q∗ = 2Q
Q−2 and BQ is the best Sobolev constant, see Jerison and Lee [6], and

here and below ‖ ·‖p denotes the usual Lp -norm. Let Ω be a smooth bounded domain
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of Hn , we define the associated Sobolev space as following

S1(Ω) = {u ∈ L2(Ω) : ∇Hu ∈ L2(Ω)}.
The space S1(Ω) is a Banach space when equipped with the norm

‖u‖S1(Ω) = ‖u‖2 +‖∇Hu‖2. (2)

Let S1
0(Ω) be the closure of C∞

0 (Ω) with respect to the norm (2). It follows from (1)
that the norm ‖ · ‖S1(Ω) is equivalent in S1

0(Ω) to that generated by the inner product

〈u,v〉S1
0
=
∫

Ω
∇Hu∇Hvdξ .

Therefore (S1
0(Ω),‖ ·‖S1

0
) is a Hilbert space. In particular, when 1 � p < Q∗ , S1

0(Ω) is

compactly embedded in Lp(Ω) , and when p = Q∗ , the embedding is continuous. This
means that there exists Bp > 0 such that for any 1 � p � Q∗ ,

‖φ‖p � Bp‖φ‖S1
0
, ∀φ ∈ Lp(Ω). (3)

Besides, we also need to use the local Sobolev space S2
loc(Ω) which is defined by saying

that u ∈ S1
loc(Ω) if and only if u ∈ S1(ω) for any ω ⊂⊂ Ω .

In this paper we study the following singular sub-elliptic equation:⎧⎨⎩−ΔHu = h(ξ )
uγ in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(4)

where Ω is a smooth bounded domain of the Heisenberg group H
n , and γ is a positive

parameter, and h is a nonnegative function and it is not identically zero. The aim of
this paper is to prove existence and uniqueness of the solution to (4), and then deduce
that the solution is cylindrically symmetric under some necessary structural conditions
on h and Ω . Here, we say that a weak solution of the equation in (4) is a function
u ∈ S1

loc(Ω) such that, for any ω ⊂⊂ Ω , there exists cω > 0 such that u � cω a.e. in
ω and ∫

Ω
∇Hu∇Hϕdξ =

∫
Ω

hϕ
uγ dξ , ∀ϕ ∈C∞

c (Ω). (5)

Since the solution u may do not belong to S1
0(Ω) , u|∂Ω = 0 has to be understood in a

generalized meaning, that is, u is nonnegative and (u− ε)+ ∈ S1
0(Ω) for any ε > 0.

The Dirichlet problems of singular elliptic equations appeared in many applied
fields, such as the theory of heat conduction in electrically conducting materials and
pseudoplastic fluids, the binary communications by signals and etc, see [7,8,9]. Mean-
while, since the work of Stuart [10] and Grandall and Rabinowitz et al. [11], singular
elliptic problems in Rn have been widely studied by many scholars and many meaning-
ful results are obtained by using the fixed point theory, variational methods and some
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analysis techniques. Here, with respect to the case of bounded domain Ω , we refer the
reader to Canino [12], Canino and Degiovanni [13], Boccardo and Orsina [14], Canino
and Sciunzi [15], Canino and Grandinetti et al. [16,17], Canino and Montoro et al. [18],
Canino and Esposito et al. [19] while for the whole space Rn , please see Kusano and
Swanson [20], Lair and Shaker [21], Alves and Goncalves et al. [22]. However, to
the best of our knowledge, there are few results about the sub-elliptic equations with
singular nonlinearities h(ξ )

uγ on the Heisenberg group Hn .

We first have the following existence theorem of weak solutions.

THEOREM 1.1. (A) If γ � 1 and h ∈ L1(Ω) , then (4) has a weak solution u in

S1
loc(Ω) and u

γ+1
2 ∈ S1

0(Ω) . (B) If 0 < γ < 1 and h ∈ Lm(Ω) with m = 2Q
Q+2+γ(Q−2) ,

then (4) has a weak solution u in S1
0(Ω) .

Next, we will give the uniqueness and symmetry results of the solution. Firstly,
we say that a function u(z,t) is cylindrically symmetric if there exists ξ0 ∈ Hn such
that v(ξ ) = u(ξ0 ◦ ξ ) is a two variables function, i.e., v(z,t) = v(r,t) with r = |z| .
Without loss of generality, we always suppose that ξ0 occurring in the definition is 0.
In addition, we say that a domain Ω ⊂ Hn is a cylinder if there exists a cylindrical
function Φ such that ξ ∈ Ω if and only if Φ(ξ ) < 0. As an example, the Heisenberg
ball Br(ξ0) is a cylinder, see [27].

THEOREM 1.2. Under the same assumptions as in Theorem 1.1, the solution of
problem (4) is unique.

THEOREM 1.3. Under the same assumptions as in Theorem 1.1, let Ω be a
bounded cylinder defined by a cylindrical function Φ . Suppose that h is cylindri-
cally symmetric and u is a weak solution of problem (4). Then u is cylindrically sym-
metric. Further, if we assume that h(r,t) = h(r,−t) and Φ(r,t) = Φ(r,−t) . Then,
u(r,t) = u(r,−t) for any (z,t) ∈ Ω .

The symmetry of the solutions is widely studied in recent decades, many classi-
cal results were obtained by using the method of moving planes, which goes back to
Alexandrov [23] and was first used by Serrin in [24]. Also, the method was developed
and improved by Berestycki and Nirenberg et al. in [25] and [26]. Moreover, in [28],
the method was successfully applied in the Heisenberg group. Especially, by a gen-
eralization of the moving plane method, Birindelli and Prajapat [27] proved a partial
symmetry result of positive solutions of the sub-elliptic equation −ΔHu = f (u) in a
bounded cylinder domain of Hn , with the Dirichlet zero boundary conditions, where f
and u were assumed to be a Lipschitz function and a cylindrical solution, respectively.
But many scholars believe that the assumption on u may be extra. Indeed, this is a
difficult open problem for sub-elliptic equations, see [27, 29, 28, 30]. Here, we want to
emphasize that the nonlinearity h(ξ )

uγ of problem (4) is not Lipschitz continuous in the
u -variable at u = 0. Meanwhile, there is not any condition on u in Theorem 1.3, since
the uniqueness of the solution is given by Theorem 1.2.
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2. Existence of solutions

In this section, we use the Schauder’s fixed point theorem and approximating
method to prove Theorem 1.1. We first study the approximation of (4) by truncating the
singular term h(ξ )

uγ . That is, we first consider the following sub-elliptic equation:{
−ΔHun = hn(ξ )

(un+ 1
n )γ in Ω,

un = 0 on ∂Ω,
(6)

where hn(ξ ) = min{h(ξ ),n} for fixed n ∈ N . For our ease, sometimes we will make
use of the notation hn = hn(ξ ) .

LEMMA 2.1. Problem (6) has a nonnegative weak solution un in S1
0(Ω)∩L∞(Ω) .

Proof. Let v ∈ L2(Ω) , for fixed n ∈ N , we consider:{
−ΔHw = hn(ξ )

(|v|+ 1
n )γ in Ω,

w = 0 on ∂Ω.
(7)

Let us define J : S1
0(Ω) → R , ∀w ∈ S1

0(Ω) ,

J(w) =
1
2

∫
Ω
|∇Hw|2dξ −

∫
Ω

hn(ξ )w
(|v|+ 1

n )γ
dξ ,

then critical points of the functional J are weak solutions of problem (7), and vice-
versa. Moreover, it is easy to show that the functional J is coercive and weakly lower
semi-continuous in S1

0(Ω) . Hence, it follows from [34, Theorem 1.2] that (7) has at
least one weak solution w ∈ S1

0(Ω) . Now we prove the weak solution of (7) is unique.
Assume that w1 and w2 are two weak solutions of (7) in S1

0(Ω) , then we have∫
Ω

∇Hw1∇ϕdξ =
∫

Ω
∇Hw2∇ϕdξ =

∫
Ω

hn(ξ )ϕ
(|v|+ 1

n)γ dξ (8)

for any ϕ ∈ S1
0(Ω) . Let ϕ = w1 −w2 in (8), it follows that∫

Ω
|∇H(w1 −w2)|2dξ = 0.

Therefore we get w1 = w2 . This proves that the weak solution of (7) is unique.
Next, we use the Schauder’s fixed point theorem to prove the existence of solutions

to problem (6). Let w be the unique weak solution of (7) and define T : v → w for any
v ∈ L2(Ω) . From Hölder’s inequality, one has∫

Ω
|∇Hw|2dξ =

∫
Ω

hn(ξ )w
(|v|+ 1

n)γ dξ

� nγ+1
√
|Ω|
(∫

Ω
|w|2dξ

)1/2

. (9)
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It follows from (3) and (9) that

‖w‖S1
0
� B2

√
|Ω|nγ+1. (10)

Let
K = {v ∈ S1

0(Ω) : ‖v‖S1
0
� B2

√
|Ω|nγ+1},

then K is invariant under the action of T , that is, T (K) ⊂ K .
In order to apply the Schauder’s fixed point theorem. We first show the continuity

of T as an operator from S1
0(Ω) to S1

0(Ω) . Let {vk} ⊂ S1
0(Ω) and vk → v in S1

0(Ω) as
k → ∞ , Thus one has

vk → v in LQ∗
(Ω) and vk(ξ ) → v(ξ ) a.e. in Ω as k → ∞.

For convenience, let wk = T (vk) , w = T (v) and wk(ξ ) = wk(ξ )−w(ξ ) . It follows
from (7) and Hölder’s inequality that

∫
Ω
|∇Hwk|2dξ =

∫
Ω

(
hn(ξ )

(|vk|+ 1
n)γ

− hn(ξ )
(|v|+ 1

n )γ

)
wkdξ

�

⎛⎝∫
Ω

∣∣∣∣∣ hn(ξ )
(|vk|+ 1

n )γ
− hn(ξ )

(|v|+ 1
n )γ

∣∣∣∣∣
2Q

Q+2

dξ

⎞⎠
Q+2
2Q

‖wk‖LQ∗ (Ω)

� BQ∗

⎛⎝∫
Ω

∣∣∣∣∣ hn(ξ )
(|vk|+ 1

n )γ
− hn(ξ )

(|v|+ 1
n )γ

∣∣∣∣∣
2Q

Q+2

dξ

⎞⎠
Q+2
2Q

‖wk‖S1
0
. (11)

Notice that ∣∣∣∣∣ hn(ξ )
(|vk|+ 1

n )γ
− hn(ξ )

(|v|+ 1
n)γ

∣∣∣∣∣� hn(ξ )
(|vk|+ 1

n )γ
+

hn(ξ )
(|v|+ 1

n)γ
� 2nγ+1.

Therefore, from (11) and Lebesgue dominated convergence theorem, we have

‖wk‖S1
0
= ‖wk −w‖S1

0
→ 0 as k → ∞. (12)

This proves the continuity of T as an operator from S1
0(Ω) to S1

0(Ω) .
Secondly, we prove that T is a compact operator. Indeed, let {vk} ⊂ S1

0(Ω) be a
bounded sequence. Without loss of generality, we can assume that vk ⇀ v in S1

0(Ω) and
vk(ξ ) → v(ξ ) a.e. in Ω . Let wk = T (vk) , it follows from (10) that there exists C > 0
such that ‖wk‖S1

0
< C . Therefore, up to a subsequence, there exists w ∈ S1

0(Ω) such

that wk ⇀ w in S1
0(Ω) and wk → w a.e. in Ω . By Lebesgue dominated convergence

theorem, one has∫
Ω

∇Hw∇Hϕdξ =
∫

Ω

hn(ξ )ϕ
(|v|+ 1

n )γ
dξ , ∀ϕ ∈ S1

0(Ω).
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This means that w = T (v) . Therefore, Proceeding as in the proof of (12), we have

lim
k→∞

‖wk −w‖S1
0
= lim

k→∞
‖T (vk)−T(v)‖S1

0
= 0.

This proves that T is a compact operator.
Therefore, for fixed n ∈ N , it follows from Schauder’s fixed point theorem that

there exists un ∈ S1
0(Ω) such that un = Tun . That is, un satisfies the following equation{

−ΔHun = hn(ξ )
(|un|+ 1

n )γ in Ω,

un = 0 on ∂Ω.
(13)

By the definition of hn(ξ ) , we have

hn(ξ )
(|un|+ 1

n)γ
� nγ+1.

This means that hn(ξ )
(|un|+ 1

n )γ ∈ L∞(Ω) for n ∈ N . By the subelliptic estimates and embed-

ding of the non-isotropic Sobolev spaces, one gets un ∈ L∞(Ω) , although here ‖un‖∞
may depend on n , see [35, 36, 37]. In addition, we also have −ΔHun � 0 in Ω , since

hn(ξ )
(|un|+ 1

n )γ � 0. Hence, un � 0 in Ω . That is to say that un ∈ S1
0(Ω)∩L∞(Ω) is a non-

negative weak solution of problem (6). �

LEMMA 2.2. For all n∈ N , the solution sequence {un} of (6) satisfies un+1 � un

and un > 0 in Ω . Further, for any ω ⊂⊂ Ω , there exists positive constant cω such that

un(ξ ) � cω a.e. in ω . (14)

Proof. For any γ > 0, by the definition of hn(ξ ) and (6), we have in the distribu-
tional meaning

−ΔH(un−un+1) =
hn(ξ )

(un + 1
n )γ

− hn+1(ξ )
(un+1 + 1

n+1)γ

� hn+1(ξ )

[(
un+1 + 1

n+1

)γ − (un + 1
n+1

)γ(
un+1 + 1

n+1

)γ (
un + 1

n+1

)γ

]
. (15)

Let us choose (un−un+1)+ as a test function in (15) and note that[(
un+1 +

1
n+1

)γ
−
(

un +
1

n+1

)γ]
(un−un+1)+ � 0. (16)

Then we obtain ∫
Ω
|∇H(un−un+1)+|2dξ � 0, (17)
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which implies that un � un+1 in Ω . Besides, it follows from Lemma 2.1 that u1 ∈
S1

0(Ω) and {
−ΔHu1 = h1(ξ )

(u1+1)γ in Ω,

u1 = 0 on ∂Ω.
(18)

Since 0 � h1(ξ )(u1 +1)−γ � 1 and u1 � 0, we can use the Strong Maximum Principle
[38, Lemma 2.7] to get u1 ≡ 0 or u1 > 0 in Ω . Furthermore, it follows from h1(ξ ) 
≡ 0
and (18) that u1 > 0 in Ω . This completes the proof of Lemma 2.2. �

REMARK 2.3. It is easy to see that the solution of (6) is unique. Indeed, assume
that un and vn are two solutions of (6) in S1

0(Ω)∩L∞(Ω) . Then, we have in the distri-
butional meaning

−ΔH(un− vn) = hn(ξ )

[
(vn + 1

n )γ − (un + 1
n)γ

(un + 1
n )γ(vn + 1

n)γ

]
. (19)

Now let us choose (un − vn)+ and (un − vn)+ as test functions in (19), respectively.
Then, proceeding as in the proof of Lemma 2.2, one obtain un = vn .

LEMMA 2.4. Let un be the unique nonnegative solution of problem (6). Then,

(A) If γ � 1 and h ∈ L1(Ω) , then u
γ+1
2

n is uniformly bounded in S1
0(Ω) and un is

uniformly bounded in Ls(Ω) with s = Q(γ+1)
Q−2 . Further, when γ > 1 , un is uniformly

bounded in S1
loc(Ω) .

(B) If 0 < γ < 1 and h ∈ Lm(Ω) with m = 2Q
Q+2+γ(Q−2) , then un is uniformly

bounded in S1
0(Ω) .

Proof. (A) Let us choose uγ
n as a test function in (6), then we have∫

Ω
∇Hun∇Huγ

ndξ =
∫

Ω

hn(ξ )uγ
n

(un + 1
n )γ dξ � ‖h‖1.

Noting that

4γ
(γ +1)2

∫
Ω

∣∣∣∣∇H(u
γ+1
2

n )
∣∣∣∣2 dξ = γ

∫
Ω
|∇Hun|2uγ−1

n dξ =
∫

Ω
∇Hun∇Huγ

ndξ .

Then, we have ∥∥∥∥u γ+1
2

n

∥∥∥∥
S1
0

=
∫

Ω

∣∣∣∣∇H(u
γ+1
2

n )
∣∣∣∣2 dξ � (γ +1)2

4γ
‖h‖1, (20)

which means u
γ+1
2

n is uniformly bounded in S1
0(Ω) . In addition, by (3), one has

‖un‖s = ‖u
γ+1
2

n ‖
2

γ+2

LQ∗ (Ω)
� B

2
γ+2
Q∗ ‖u

γ+1
2

n ‖
2

γ+2

S1
0

.
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From this and (20), we know that u
γ+1
2

n is uniformly bounded in S1
0(Ω) with s = Q(γ+1)

Q−2 .

Next, we prove that un is uniformly bounded in S1
loc(Ω) if γ > 1. In fact, let

ϕ ∈C∞
0 (Ω) and ω = {ξ ∈ Ω : ϕ 
= 0} . Then unϕ2 can be used as a test function in (6).

From (14) and the weighted Young’s inequality, one obtains∫
Ω
|∇Hun|2 ϕ2dξ =

∫
Ω

hn(ξ )unϕ2

(un + 1
n )γ

dξ −2
∫

Ω
ϕun∇Hun∇Hϕdξ

� c1−γ
ω

∫
Ω

hn(ξ )ϕ2dξ +
1
2

∫
Ω
|∇Hun|2ϕ2dξ

+2
∫

Ω
|∇Hϕ |2u2

ndξ . (21)

Therefore, (21) becomes∫
Ω
|∇Hun|2 ϕ2dξ � 2c1−γ

ω

∫
Ω

hn(ξ )ϕ2dξ +4
∫

Ω
|∇Hϕ |2u2

ndξ

� 2c1−γ
ω ‖ϕ‖2

∞‖h‖1 +4‖∇Hϕ‖2
∞

∫
Ω

u2
ndξ

� 2c1−γ
ω ‖ϕ‖2

∞‖h‖1 +4‖∇Hϕ‖2
∞|Ω| s−2

2 ‖un‖2
s . (22)

From this and the uniform boundedness of ‖un‖s , we conclude that un is uniformly
bounded in S1

loc(Ω) .
(B) When 0 < γ < 1, we choose un as a test function in (6), it follows from (3)

that ∫
Ω
|∇Hun|2 dξ =

∫
Ω

hn(ξ )un

(un + 1
n )γ dξ �

∫
Ω

hu1−γ
n dξ � ‖h‖m

(∫
Ω

uQ∗
n

)1/m′

� C‖h‖m

(∫
Ω
|∇Hun|2 dξ

)Q∗/(2m′)
, (23)

where m′ is the conjugate number of m . Note that Q∗
2m′ = 1−γ

2 ∈ (0,1) , it follows from
(23) that un is bounded in S1

0(Ω) . �

Proof of Theorem 1.1. Since we have a priori estimates on un from Lemma 2.4,
we can easily prove the existence of the solutions of (4). Indeed, note that m = 1 if
γ = 1. Then, for 0 < γ � 1, by Lemma 2.4, let un ∈ S1

0(Ω) be the nonnegative weak
solution of (6). Meanwhile, for all n ∈ N , the sequence {un} is uniformly bounded in
S1

0(Ω) . Then, there exists u ∈ S1
0(Ω) such that{

un ⇀ u in S1
0(Ω),

un(ξ ) → u(ξ ) a.e. in Ω.
(24)

On the one hand, it follows from Lemma 2.2 and (24) that u > 0 in Ω and u|Ω = 0.
On the other hand, since un ∈ S1

0(Ω) is the weak solution of problem (6), one has∫
Ω

∇Hun∇Hϕdξ =
∫

Ω

hn(ξ )ϕ
(un + 1

n)γ
dξ , ∀ϕ ∈C∞

0 (Ω). (25)
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Now let ω = {ξ ∈ Ω : ϕ 
= 0} , it follows from Lemma 2.2 that

0 �
∣∣∣∣∣ hn(ξ )ϕ
(un + 1

n )γ

∣∣∣∣∣� ‖ϕ‖∞

cγ
ω

h(ξ ),

Therefore from (25) and Lebesgue dominated convergence theorem, we get∫
Ω

∇Hu∇Hϕdξ =
∫

Ω

hϕ
uγ dξ , ∀ϕ ∈C∞

0 (Ω).

That is, when 0 < γ � 1 and h ∈ L1(Ω) , problem (4) has a solution u in S1
0(Ω) .

For the case of γ > 1, since un is uniformly bounded in S1
loc(Ω) , the proof is

almost identical with the case 0 < γ � 1, we omit it. �

3. Uniqueness and symmetry

In this section, we will prove Theorems 1.2 and 1.3. Or, more specifically, we
first prove a weak comparison principle and then conclude the uniqueness of solution.
Subsequently, we prove that the solution to (4) is cylindrically symmetric.

For fixed k ∈ N , let

fk(s) =
{−min{ 1

sγ ,k} if s > 0,
−k if s � 0.

Moreover, let Fk denote the primitive of fk (i.e. F ′(s) = fk(s)) such that Fk(1) = 0.
Now, we define the functional Ik : S1

0(Ω) → R∪{∞} ,

Ik(ϕ) =
1
2

∫
Ω
|∇Hϕ |2dξ +

∫
Ω

h(ξ )Fk(ϕ)dξ , ∀ϕ ∈ S1
0(Ω).

Let ψ ∈ S1
loc(Ω) be a fixed weak supersolution to the equation ΔHz = h(ξ )F ′

k(z) , i.e.∫
Ω

∇Hψ∇Hφdξ � −
∫

Ω
hF ′

k(ψ)φdξ (26)

for any φ ∈ S1
0(Ω)∩L∞

c (Ω) with φ � 0 almost everywhere in Ω . Let

Kψ = {ϕ ∈ S1
0(Ω) : 0 � ϕ � ψ a.e. in Ω}.

Obviously, Kψ is a closed and convex subset of S1
0(Ω) . And then there exists w ∈ Kψ

such that
Ik(w) = min

ϕ∈Kψ
Ik(ϕ).

Therefore, for any ϕ ∈ w+(S1
0(Ω)∩L∞

c (Ω)) with 0 � ϕ � ψ , we have the following
variational inequality∫

Ω
∇Hw∇H(ϕ −w)dξ � −

∫
Ω

hF ′
k(w)(ϕ −w)dξ . (27)
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In fact, for 0 � λ � 1, it follows from the convexity of Kψ that w+ λ (ϕ −w) ∈ Kψ .
Therefore we get

Ik(w+ λ (ϕ −w)) � Ik(w).

Therefore,

lim
λ→0+

Ik(w+ λ (ϕ −w))− Ik(w)
λ

� 0.

From this and a direct computation, we know that the inequality (27) is true.
In what follows, we prove a weak comparison principle, which is the key of the

proof of Theorem 1.2.

LEMMA 3.1. Let γ > 1 and u ∈ S1
loc(Ω) be such that

∫
Ω

∇Hu∇Hφdξ �
∫

Ω
hu−γφdξ , ∀φ ∈ S1

0(Ω)∩L∞
c (Ω) (28)

with φ > 0 a.e. in Ω . If (u− ε)+ ∈ S1
0(Ω) for any ε > 0 . Then u � ψ a.e. in Ω ,

where ψ is used as in (26).

Proof. For any φ ∈C∞
c (Ω) with φ � 0 a.e. in Ω , we first claim that∫

Ω
∇Hw∇Hφdξ � −

∫
Ω

hF ′
k(w)φdξ , (29)

where w is as above. Indeed, let us define a cut-off function 0 � η � 1 such that

η(t) =
{

1, |t| � 1,
0, |t| � 2.

For k � 1 and t > 0, let

φk = η(
w
k

)φ , φk,t = min{w+ tφk,ψ}.

Obviously, we have w � φk,t � ψ and φk,t ∈ w + (S1
0(Ω)∩ L∞

c (Ω)) by construction.
Now, for the sake of simplicity, let φ̃k,t = φk,t −w− tφk , then φ̃k,t � 0. It follows from
(26) that ∫

Ω
(∇Hψ∇H φ̃k,t +hF ′

k(ψ)φ̃k,t )dξ � 0. (30)

Meanwhile, it follows from (27) that∫
Ω

∇Hw∇H(φk,t −w)dξ �
∫

Ω
hF ′

k(w)(φk,t −w)dξ . (31)
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Note that φ̃k,t = 0 if w+ tφk � ψ . Hence, from (30) and (31), one has∫
Ω

(|∇H(φk,t −w)|2 +h(F ′
k(φk,t )−F ′

k(w))(φk,t −w)
)
dξ

�
∫

Ω

(
∇Hφk,t∇H(φk,t −w)+hF ′

k(φk,t )(φk,t −w)
)
dξ

=
∫

Ω
(∇Hφk,t∇H φ̃k,t +hF ′

k(φk,t )φ̃k,t )dξ + t
∫

Ω

(
∇Hφk,t∇Hφk +hF ′

k(φk,t)φk
)
dξ

=
∫

Ω
(∇Hψ∇H φ̃k,t +hF ′

k(ψ)φ̃k,t )dξ + t
∫

Ω

(
∇Hφk,t∇Hφk +hF ′

k(φk,t )φk
)
dξ

� t
∫

Ω

(
∇Hφk,t∇Hφk +hF ′

k(φk,t)φk
)
dξ . (32)

From this, we get∫
Ω

h(F ′
k(φk,t )−F ′

k(w))(φk,t −w)dξ � t
∫

Ω

(
∇Hφk,t∇Hφk +hF ′

k(φk,t)φk
)
dξ . (33)

By applying φk,t −w � tφk and (33), one has∫
Ω

h|F ′
k(φk,t )−F ′

k(w)|φkdξ � −
∫

Ω

(
∇Hφk,t∇Hφk +hF ′

k(φk,t )φk
)
dξ . (34)

Since φk,t(ξ ) → w(ξ ) a.e. in Ω as t → 0+ , it follows from (34) and Lebesgue domi-
nated convergence theorem that∫

Ω

(
∇Hw∇Hφk +hF ′

k(w)φk
)
dξ � 0. (35)

Further, since φk(ξ ) → φ(ξ ) a.e. in Ω as k → ∞ , we get the inequality (29) from (35)
and Lebesgue dominated convergence theorem, that is, we complete the proof of the
claim.

Now, we use (29) to prove (28). In fact, for ε > 0, we have (u−w−ε)+ ∈ S1
0(Ω) .

Then there exists {ϕn} ⊂C∞
c (Ω) such that

ϕn → (u−w− ε)+ in S1
0(Ω).

Now, let us define the truncation function for fixed l ∈ N+ ,

Tl(s) = max
{− l,min{l,s}}.

Therefore, it follows from (29) that∫
Ω

∇Hw∇HTl((u−w− ε)+)dξ � −
∫

Ω
hF ′

k(w)Tl((u−w− ε)+)dξ . (36)

Let
ϕ̃l,n = Tl(min{(u−w− ε)+,ϕ+

n }),
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then ϕ̃l,n ∈ S1
0(Ω)∩L∞

c (Ω) . Therefore, it follows from (28) that∫
Ω

∇Hu∇H ϕ̃l,ndξ �
∫

Ω

h
uγ ϕ̃l,ndξ . (37)

Let n → ∞ in (37), one gets∫
Ω

∇Hu∇HTl((u−w− ε)+)dξ �
∫

Ω

h
uγ Tl((u−w− ε)+)dξ . (38)

Now let us choose ε such that ε−γ < k . Then from (36), (38) and F ′
k(s) = fk(s) , one

has ∫
Ω
|∇HTl((u−w− ε)+)|2dξ �

∫
Ω

∇H(u−w)∇HTl((u−w− ε)+)dξ

�
∫

Ω
h(u−γ +F ′

k(w))Tl((u−w− ε)+)dξ

�
∫

Ω
h(−F ′

k(u)+F ′
k(w))Tl((u−w− ε)+)dξ

� 0. (39)

It follows that Tl((u−w− ε)+) = 0 and hence one has

u � w+ ε � ψ + ε a.e. in Ω,

which means that u � ψ a.e. in Ω from the arbitrariness of ε . The proof is completed.
�

Proof of Theorem 1.2. Let u and ψ be two solutions of problem (4). When
0 < γ � 1. It follows from Theorem 1.1 that u and ψ belong to S1

0(Ω) and hence
(u−ψ)+ ∈ S1

0(Ω) . Then there exists {ϕn} ⊂C∞
c (Ω) such that

ϕn → (u−ψ)+ in S1
0(Ω).

Now let us define
ϕ̂n = min{(u−ψ)+,ϕ+

n }.
It follows that ϕ̂n ∈ S1

0(Ω) and supp(ϕ̂n) ⊂ Ω . This is to say that ϕ̂n can be used as a
test function. Hence, by the definition of ϕ̂n , one gets∫

Ω
∇H(u−ψ)∇Hϕ̂ndξ =

∫
Ω

hϕ̂n(u−γ −ψ−γ)dξ � 0.

By the Lebesgue dominated convergence theorem, one has∫
Ω
|∇H(u−ψ)+|2ξ � 0.

This means that u � ψ in Ω . Similarly, we can also conclude that ψ � u in Ω . Then,
u = ψ and thus the solution of (4) with 0 < γ � 1 is unique.
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For the case of γ > 1, by Theorem 1.1, we know u
γ+1
2 ∈ S1

0(Ω) . In order to exploit
Lemma 3.1, we will prove that (u−ε)+ and (ψ −ε)+ belong to S1

0(Ω) for any ε > 0.

In fact, let ϕn ∈C∞
c (Ω) and ϕn → u

γ+1
2 in S1

0(Ω) . We define

ϕ̂n = (ϕ
2

γ+1
n − ε)+

Then ϕ̂n is uniformly bounded in S1
0(Ω) and

ϕ̂n → (u− ε)+ in S1
0(Ω),

which means that (u− ε)+ ∈ S1
0(Ω) . Note that both u and ψ satisfy (26) and (28). It

follows from Lemma 3.1 that u � ψ in Ω . In the same way, we can also prove that
(ψ − ε)+ ∈ S1

0(Ω) and thus ψ � u in Ω . So, u = ψ for γ > 1. The proof of Theorem
1.2 is completed. �

Proof of Theorem 1.3. Let u be a solution of (4) and S denote a unitary rotation
in Cn . We define uS (z,t) = u(S z,t) for any (z,t) ∈ Cn ×R . Since ΔH is invariant
w.r.t. S and h is cylindrically symmetric, then we have

−ΔHuS (z,t) = −ΔHu(S z,t) =
h(S z, t)
u(S z, t)γ =

h(z,t)
uS (z,t)γ .

This means that uS is also a solution of (4). By the uniqueness (Theorem 1.2) of the
solution of (4), we obtain u = uS for any unitary rotation S in Cn . This is to say that
the solution u is a function of (|z1|, |z2|, · · ·, |zn|,t) . Therefore (4) becomes⎧⎨⎩−(Δzu+4|z|2∂tt u) = h(ξ )

uγ in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(40)

Now let R denote a real rotation around t -axis in R2n and uR(z,t) = u(Rz,t) . Be-
cause of the fact that the operator −(Δz +4|z|2∂tt ) is also invariant w.r.t. R . Moreover,
proceeding as in the proof of Theorem 1.2, we can also conclude that the solution of
problem (40) is unique. Therefore one gets u(z,t) = u(Rz,t) for any rotation R in
R

2n . This means that u is cylindrically symmetric. Further, if h(r,t) = h(r,−t) and
Φ(r,t) = Φ(r,−t) , then we have u(r,−t) = u(r,t) by the same reason. This completes
the proof of Theorem 1.3. �
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