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WEIGHTED INEQUALITIES FOR THE MULTILINEAR
HILBERT AND CALDERON OPERATORS AND APPLICATIONS

VicTOR GARCIA GARCfA AND PEDRO ORTEGA SALVADOR

(Communicated by R. Oinarov)

Abstract. We characterize the weighted weak and strong type inequalities for the Hilbert and
Calder6n multilinear operators. As applications, we characterize a weighted multilinear Hilbert’s
inequality and extend to the multilinear setting some results on singular integrals due to F. Soria
and G. Weiss.

1. Introduction and results.

The Hilbert operator, also known as Stieltjes transform, is defined for non negative
functions f on (0,) by

_ [0

0 X+t

Hf(x) dt, x € (0,00).

Another classical operator, closely related to .77, is the Calderén operator %,
defined also for non negative functions f on (0,c0) by the sum of the Hardy averaging
operator P and its adjoint Q, i. e.,

¢s0)=pf+ 0 =1 [+ [T

K. Andersen proved in [1] that if p > 1, then the weighted inequality

/w,%”f(x)pw(x)dx < K/wfpw
0 0

holds for all non negative f with a constant K independent of f if and only if the
positive function w verifies the following condition: there exists a constant K > 0 such
that for all b > 0, the inequality

([) (o) <xo )
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holds, where p’ is the conjugate exponent of p and ¢ = w' =7

The same result holds for €, since 1%'f(x) < J#f(x) < € f(x) for all f and
x € (0,00).

More recently, J. Duoandikoetxea, F. J. Martin Reyes and S. Ombrosi have studied
in [8] the same problem with a different perspective. Specifically, they have defined the
maximal operator

f=supt ["I7], xe 0.

b>x

and proved thatif p > 1, then .4 is boundedin L?(u) if and only if u verifies condition
(1.1), which they call A, . Then, they note that

Pf(x) A f(x) <Ef(x)

and an argument of duality shows that ¢ is bounded in L”(u) if and only if u € A .

In this paper we will deal with the m-linear Hilbert and Calder6n operators. The
first one is defined in [5] for m-tuples (f1,f>,...,/m) of non negative functions on
(0,e0) by

B H00LG2) - fu(m)
HUf1ofor- Fn)l2) = /<07w)'" (X+y1+v2+-Fya)m

dyldy2 .. ~dym~

We also define the m-linear Calderén operator as

c(flaf27 afm HPfl Z lePf/
i=1
J#

i.e., as the sum of the m-linear Hardy averaging operator []/_; Pf; and its m adjoints
O(filll=y j4i Pfi), i €{1,2,...,m}.

These operators are related as follows: there are two positive constants K| and K;
independent of fi, f>,..., fi, and x such that

C(flaf27“‘7ﬁn)(x) g KIH(flaf27“‘7ﬁn)(x) < K2C(fl7f27"'7fm)(x)' (12)

Inspired by [8] and [13], we can define a new m-(sub)linear maximal operator A
as follows:

N1 fas oo fn) (x —SUPH</ ),

b>xJ 1

which will help us to characterize the weighted weak and strong type inequalities for
the operators H and C.
Our main results characterize the good weights for the operators A/, H and C.
The first theorem deals with the strong type inequality for the operator N.
THEOREM 1. Let p >0 andlet py,pa,...,pm > 1 with 3" . Let vi,v,
I
.,V be positive measurable functions on (0,00), V= (v{,v2,...,vy) and w= T, v;’ )
The next statements are equivalent:

1117
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(i) The operator N is bounded from LP' (vi) X LP2(v3) X -+ X LPn(v,,) to LP(w).
(ii) The operator N is bounded from LP'(vy) X LP?(v3) X -+ X LPm(vy,) to LP=(w).

(iii) V € Ay, which means that there is K > 0 such that for each b > 0,

€

1
1 b pmo/1 b I
(E/o w> H(E/o q,») I <K, (1.3)

j=1

1-p;
where 6j = v, Pi
In the following Theorem, we deal with the weak type inequality. We admit p; =1

r

for some i and we do not require the weights to verify w = H'}L 1 e
THEOREM 2. Let p >0 and let py,p2,...,pm = 1 with Zj 1p . Let w,vy,
V2.,V be positive measurable functions on (0,e0) and vV = (vl,vz, Y ) The next

statements are equivalent:

(i) The operator N is bounded from LP' (vi) X LP2(vy) X -+ X LP(v,,) to LP=(w).

1
(ii) (w,V) € Ay, which means that (1.3) holds, where (% fé’ Gj) Pi is understood as

(ess inf(g ) v;)~! for pj=1.

The next result characterizes the good weights for the strong and weak type in-
equalities of H and C in the case p; > 1 foreach i and p > 1.

THEOREM 3. Let p > 1 and let p1,pa,...,pm > 1 with 2, lp =
V2, vm be positive measurable functions on (0,00), V= (vi,v2,...,Vp

(- v . The next statements are equivalent:

(i) The Hilbert operator M is bounded from LP'(vy) X LP2(vy) X «+- X LP"(vy,) to
LP(w).

(ii) The Hilbert operator H is bounded from LP!(vy) x LP2(vy) X --- X LPm(vy,) to
LP=(w).

(iii) The Calderon operator C is bounded from LP1(vy) X LP2(vy) X -+ X LPm(vy,) to
LP(w).

(iv) The Calderdn operator C is bounded from LP'(vy) X LP2(vy) X -+ X LPm(vy,) to
LP=(w).

(v) VEAE().

Now, we state the weak type theorem in the case p; > 1 and p > 0. It reads as
follows:
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THEOREM 4. Let p > 0 and let py,p2,...,pm = 1 with Z L = % and some
J

pi> L. Let vi,vy, ..., vy, be positive measurable functions on (0, ) V=1,v2,...,Vm)
P

l"’:f

and w = H;f': 1 v;j . The next statements are equivalent:

(i) The Hilbert operator M is bounded from LP'(vy) X LP2(vy) X «++ X LPm(vy,) to
LP=(w).

(ii) The Calderdn operator C is bounded from LP!(vy) X LP2(vy) X --- X LPm(v,,) to
LP=(w).

(iii) V€ Ay

The previous Theorem does not include the extreme case p; =1 forall i € {1,2,...,m}.
P

We deal with it in Theorem 5, where the relationship w = H;f'zl vj'-)j is not required. The
result is the next one:

. Let w,vi,va,..., vy be positive measurable functions on (0,e0) an
THEOREM 5. Let ,Vm be posit bl 1 0 d
V= (v1,v2,...,Vm). The next statements are equivalent:

(i) The Hilbert operator ‘H is bounded from L' (v{) x L' (v2) x --- x L' (v;,)) to L%’“’(w).

(ii) The Calderén operator C is bounded from L'(vi) x L'(v;) x --- x L' (v,,) to

Li=(w).
(iii) (w,V) € A(1,1,...,1),0, which means that there is a positive constant K such that
1o \" n .
(E/o w) ngl:[less(lor}hf)vj
forall b>0.

These results can be extended to higher dimensions. Specifically, let us consider
the operator N, defined for m-tuples (fi,f2,...,fm) of measurable functions on R”
and x € R" by

M’L(flaf2a 7fm SupH( /|y| b|fj)

b>[x| j=1
and the n-dimensional m-linear Hilbert operator 7, and Calderdn operator C,, defined
by
J101) - fn(ym)
el + i+ ym[)™m

Holfi oo i) = [ dyy ..dyn

and

Colfisfrreeesf)(x HPf, +2an,HPﬁ

j=1 i=1
i#]
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respectively, where P, stands for the n-dimensional Hardy averaging operator P, de-
fined by

1
Pnfx =T
) x| Jiyl<ia
and Q, is its adjoint,
o= [ a4
> [l

Since the operators N, H, and C, are radial, the characterizations of their
weighted inequalities are immediate consequences of Theorems 1, 2, 3, 4 and 5. The
results are the following ones.

THEOREM 6. Let p> 1 andlet p1,p2,...,pm > 1 with Z’,’Ll pi
E J

P
be positive measurable functions on R", V= (vy,va,...,vp) and w = H'}Ll vj’-)’ . The

next statements are equivalent:
(i) The operator N, is bounded from LP' (v{) X LP2(vy) X -+ X LPm(v,,) to LP(w).
(ii) The operator N, is bounded from LP'(vy) x LP2(v2) X -+ X LP" (vy,) to LP=(w).
(iii) The operator C,, is bounded from LP1(vy) X LP2(vy) X -« X LPm(vy,) to LP(w).
(iv) The operator C, is bounded from LP1(vy) X LP2(vy) X - -+ X LPm(vy,) to LP=(w).
(v) The operator H,, is bounded from LP1(vy) X LP2(vy) X -+ X LPm(vy,) to LP(w).
(vi) The operator 'H,, is bounded from LP!(vy) X LP2(vy) X « -+ X LPm(vy,) to LP=(w).
(vii) V € A, which means that there is K > 0 such that for each b > 0,

1

1
1 pomo ] o
— w — Oj <K.
(b" /|x|<b ) ,E(b" /\x\<b J)

THEOREM 7. Let p > 0 and let p1,p2,...,pm = 1 with Z;-"Zl % = % and some
J
pj > 1. Let vi,v2,...,vim be positive measurable functions on R", V= (vi,v2,...,Vm)
P

<

and w = H'}L 1 vj’-)j . The next statements are equivalent:
(i) The operator N, is bounded from LP' (vi) x LP2(vy) X - -+ x LP(vy,) to LP=(w).
(ii) The operator C, is bounded from LP'(v1) X LP2(vy) X --- X LPm(vy,) to LP=(w).
(iii) The operator H,, is bounded from LP'(vy) X LP2(vy) X -+ X LPm(vy,) to LP=(w).
(iv) V€ Ajp.

THEOREM 8. Let w,vy,Va,...,Vy be positive measurable functions on R" and
V= (v1,v2,...,vm). The next statements are equivalent:

:%. Let vi,va,...,vp
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(i) The Hilbert operator H, is bounded from L'(vi) x L'(vy) x --- x L' (vy) to
1
L™ (w).

(ii) The Calderén operator C, is bounded from L'(vi) x L'(v2) x --- x L'(v,,) to
Lin*(w).
(iii) (w,V) € A(1,1,...1),0, which means that there is a positive constant K such that

1 m uL
— w < K| | ess inf v;
(b” /\x\<b ) 1:[1 el<b

J
forall b> 0.

The first application of the above results deals with Hilbert’s inequality. The
boundedness of the Hilbert operator 77 is closely related to the celebrated Hilbert’s
inequality [12], which asserts that if p > 1, then

[ (L) ([)'

It is clear that this inequality holds if and only if

formre(s) [

inZ
P

This relationship remains valid in the weighted case, even in the multillinear set-
ting. As a simple consequence of our previous theorems, we have the following result:

THEOREM 9. Let p > 1 and p1,p2,...,pm > 1 with %:Zi%. Let vi,vy,...,Vim
P

be positive measurable functions on (0,%0), V= (vi,va,...,vm), w=1II; vy

i and ¢ =

wl=F'. Then the weighted multilinear Hilbert's inequality

/ JOAOGD) - fn(m)

O+t (Y+ Y1+t ym)"
holds if and only if V € Aj .

dydy; ...dy, < K||f]|

‘flum,vl "'||fm||Pm7Vm (1.4)

po

We only have to observe that, by duality, (1.4) holds if and only if

1

; N
(7 (), Dttt ) vy )" < KLl Ul

V4Vi4 .+ Vm)

and apply Theorem 3.

The above result extends the weighted multilinear Hilbert’s inequality obtained in
[9], where the authors only worked with power weights.

As a consequence of Theorem 6, it is also immediate to characterize a weighted
n-dimensional multilinear Hilbert’s inequality. It is included in the next result.
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THEOREM 10. Let p > 1 and p1,p2,...,pm > 1 with §=2i,%- Let vi,vo,...,vp
pr

.. . — pPj
be positive measurable functions on R", Vv = (vi,vp,...,vy), w= va,:’ and ¢ =

w!=F' . Then the weighted n-dimensional multilinear Hilbert’s inequality

SO - fon(m)
dydy,...dym, <K /
‘/(Rn)erl (|y|+|y1‘++|ym‘)nm yayi Ym Hf”[?,()'”fl”plﬂfl HﬁnHPm7Vn1

holds if and only if V € Ay .

As a second application, we obtain some weighted inequalities for multilinear
singular integrals. If T is a linear operator bounded on LP(R"), p > 1, for which there
is a constant K > 0 such that

T <K [ SO

R’ [x —y|"

for every f € L'(R") with compact support and every x ¢ supp(f), it is well known
that 7 can be dominated by the sum of a local operator and the n-dimensional Calderén
operator P, + O, . This kind of estimates allows to get weighted L? inequalities for T,
whenever the weights are essentially constant in dyadic crowns and verify the condi-
tions for the Calder6n operator to be bounded in the weighted L? spaces. This result
was proved in [15]. See also [2] and [14] for related results.

We are going to extend this result to the multilinear setting. Specifically, assume
that 7 is a multilinear operator for which there is a positive constant K such that

LAOGO)NARG)] [ fn(m)]
7.f; )(x)‘ gK/Rmn (‘x_yl‘+‘x_y2‘+...+|x_ym|)mn

IT(f1, /2, dyrdy;y...dyy

(1.5)
for each m-tuple (f1, /2, ..., fm) € L'(R") x --- x L' (R") of compactly supported func-
tions and every x ¢ N/ supp(fi). Such an operator T will be called a multilinear
singular integral. It is clear that Calderén-Zygmund multilinear operators, defined in
[11], are multilinear singular integrals, but there are more examples, as, for instance,
the rough bilinear singular integrals defined in [6]. Very recently, Grafakos, He and
Honzik have proved in [10] that these operators map boundedly LP!'(R") x LP2(R")
into LP(R") for 1 < py,py <eoand 1 pl +L

As in the linear case, we can see that a multlhnear singular integral 7' can be dom-
inated by the sum of a local multilinear operator and the multilinear Calder6n operator
C,,. In fact, for fixed x € R" we have

|T(fl7f27~~~>ﬁn)(x)| < ‘L(fl7f27"'7fm)(x)| +Cn(‘fl‘»|f2‘»7‘ﬁn‘)(x)7 (16)

where L is the local part, which will be defined later.
The results are the next ones, where Theorem 11 is the strong type result and
Theorems 12 and 13 are the weak type ones.

i= 111 Ily’ﬁ (Plal’%---al’m)-

/
=12, ,m.

THEOREM 11. Let 1 < p,p1,pa,...,pm <o with

.. . 1-
Let vi,va,. ..,V be positive measurable functions on R" and o; = v;
) ) ) p 1
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i
Let w=TI",v/". Let T be a multilinear singular integral bounded from LP'(R") x
LP2(R") x «-- x LPm(R"™) to LP(R"). Assume that there is a positive constant K such

that the inequality

P

s vt <k, int )" (17
i=1

K2 |y <ok i1 \2k2<y|g2kH!

holds for all integer k. Assume also that (vi,v2,...,vm) € Apo. Then, T is bounded
Srom LPU(vy) X LP2(vy) X « -+ X LPm(vy,) to LP(w).
1

THEOREM 12. Let p >0, 1 < p1,pa,...,pm < oo with Zlm:l[;i:% and pj>1

Sforsome j. Let vi,vy,...,v, be positive measurable functions on R", V= (vi,va,...,vm)
P

and w =TI, v/". Let T be a multilinear singular integral bounded from LF!(R") x
LP2(R") x - - x LPm(R") to L (R™). Assume that (1.7) holds and that V € A . Then,
T is bounded from LP'(vy) X LP2(vy) X -+ x LP"(vy,) to LP=(w).

THEOREM 13. Let vi,va,...,vy be positive measurable functions on R" and
V= (vi,v2,...,Vm). Let T be a multilinear singular integral bounded from L'(R") x

LY(R™) x --- x LY (R") to L%"”(R”). Assume that (1.7) holds and that (w,V) €Ay 1....1),0-
Then, T is bounded from L' (v{) x L' (vy) x --- x L' (vy,) to L%*X’(w).

It is clear that power weights v;(x) = |x|% verify condition (1.7), but there are
more weights satisfying it. In particular, the weights v;(x) = |x|% (log(1 + |x|))? for
suitable ¢; and ;.

It is worth noting that using Theorems 11, 12 and 13 we obtain weighted weak or
strong type inequalities for multilinear singular integrals verifying (1.5) with weights
satisfying (1.7) whenever we previously know that the operator is bounded without
weights. For the particular case of rough bilinear singular integrals, the only works
we know about weighted inequalities are the papers [4] and [7]. Both show results for
1< pi,p2 <eoand p> 5 with = -+ - but working with weights vi,v> which
are separately in the Muckenhoupt classes A, and A, , respectively. The interest of
our results is that our weights verify a joint A condition.

The next sections consist of the proofs of the results. All along the paper, the letter
K stands for a positive constant, not necessarily the same at each occurrence. Moreover,

1

we always understand (1 f7 ;)7 as (ess inf(,)v;)~" for p; = 1. This does not cause
any problem when applying Holder’s inequality.

2. Proof of Theorem 1

Proof. The implication (i) = (if) is clear. Let us prove the other two implications.

(iii) = (i)

We may assume, without loss of generality, that f, f>,... fi, are compactly sup-
ported. First of all, let us note that N{f1, f2, ..., fin) is decreasing. In fact, if x <y, each
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b >y verifies also b > x, which implies N(f1, >, -, fn)(X) = N(f1, fos- s ) ).
Since M(f1,f2;--.,fm) decreases and fi,i € {1,2,...,m}, are compactly supported,
for every k € Z there is by > 0 such that Oy = {x € (0,) : N(f1, foy- -+, fu)(x) >
2K} = (0,by). Then, we have

/OOON(flaf27"'afm)pW: N(fl;fZV"afm)pW

kEZZ‘/{x/zk<Mfl :f2~n~~,fm)(x)<2k+1}

b
= Z/h NUisforeeos fon)PW.

keZ " Pk+1
(2.1)
We will need the following Lemma:

LEMMA 1. Foreach k € Z,
m 1 /hk ) X
— [ f) =2~
g(bk 0 f
Proof. Since by ¢ Oy, we have that N(f1, f>,..., fu)(bx) < 2F. Then for each

C>bk,
R
— (/ ﬁ><2",
M \Jo

which implies,

12 b
— - ) < 2k,
bZ’gUo f)

If we had a strict inequality, as the function

<p(r>=,imﬂ(/0tﬁ)

is continuous, there would be & > 0 such that ¢(c) < 2% for all ¢ € (b — 8,by).
Let xo € (by — &8,b). Then, for each ¢ > xo, @(c) < 2* (it is clear for each ¢ with
X0 < ¢ < by, but also for ¢ verifying ¢ > by: as they are greater than b, we have
also @(c) < 2%). Then, N(fi,fs,...,fm)(x0) < 2F, what is a contradiction, because
X0 € (O,bk) = 0.

Applying Lemma 1, multiplying and dividing by [T, 0;(0,b;)?, where c;(0,b;) =
fé’ “0;, and applying the A;( condition for the weights, we have that the right-hand
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side of (2.1) is less or equal than

by
Z ¢ ke w(x)dx =27y 2kPyy (x)dx
ke bit1 ke brt1

=27 ke%/le b;?p H (/ ) (x)dx (2.2)

w2 1o ) ([M0)"

keZi=1

We will need to prove two more Lemmas:

LEMMA 2. Foreach k € 7,

Proof. Since we have

1 m by 1 b1
ok L / ) ookl (/ )
by i ( 0 /i b’ ll_Il 0 /

- . b
and by < by, by dividing we obtain § > ’l;%;l , which implies b’;}“ < =

R

LEMMA 3. There is K > 0 such that the inequality
by by
/ 0; < K/ Oj
0 by
holds for all k € Z and all i € {1,2...,m}.

Proof. As aconsequence of Lemma 2, we have by — by | > by — ,I{’,—‘E = (1 — ,%) by.
P

Applying this, the Aj condition, Holder’s inequality and also that w = [T/~ v;" , we
obtain

1

() 1) << xoesar=x ([ 1)’
<K</;i.w>;ﬁ</;:m>
() ([ o) () a)

-

-

-
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by by
/ o1 <K o].
0 bit1

The argument for 0y, ..., 0, is the same as above.
Applying Holder’s inequality and Lemma 3, we have that the last term in (2.2) is less

or equal than
)
(3 (e ) ([1a))
i1 \ iz, \ 6i(0,bx) Jo l o

P

(8 ) (L)

P

(2 (G /))

Now, let us consider the maximal operators

No.(h h(t
() =30 — o [ w)loi)

Simplifying,

2.3)

for i€ {1,2,...,m}. Foreach x € (byy1,bi),
1 b f(1) (f)
oi(t)dt < Ng, | = | (x),
Gi(07bk) 0 Gi(l) () O; Gi ( )

i €{1,2,...,m}. Then, applying that the operators N, are bounded in L?(0;), we
have that the last term in (2.3) is less or equal than

(2L (s (5) ) o)

(if) = (i)
m b
Let b € (0,%), fi = X(0)0i> i € {1,2,.. m},%:H(%/O G,') and 0 < o <
1. Then (0,b) C {x € (0,0) : N(f1, fas-- -, f)(x) > aﬂo}i:;nd, by (ii), we have

() <afi(f )"

=
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which means that (vi,v2,...,vm) € App, letting & tend to 1.

3. Proof of Theorem 2.

(i) = (i)

Assume that (w,V) € Aj¢. This means that there is K > 0 such that

1
1o NP1 b \7
— w — o] ' <K 3.1
GL) G L) o
forall b>0. Let A > 0. Since N(f1,/>,...,fn) decreases, there is b > 0 such that
0, = {x € (0,0) : N(f1, /2, fm)(x) > A} = (0,b), where b verifies

HEINOR

Then, by Holder’s inequality and condition (3.1),
b 1 m 1 b p
w = W= — —
b=l (R G L)
I ;
S (/0 W)

() TG L)

P
K o (1 b, N\t K"
() = K g
e | (CYRE Ry (1

This proves the weighted weak type inequality.

(i) = (il

Assume now that A is bounded from L7 (vi) x ... x LPm(v,,) to LP*(w). Let
b>0. Foreach i € {1,...,m} such that p; > 1, let f; = GiX(0,») and for each i such
that p; =1, let f; = x&,, where E; is a measurable subset of (0,b). If x € (0,b), we

- Nt > 11 (5. o) 1T (021

i=1
pi#l pi=1

This means that (0,b) C {x € (O,oo) :N(fl,...,fm)(x) > Ao}, where

.:1§

1

l
A pi=1

Then, by the weak type inequality,
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(1 b N (1 b ﬁﬁ s k]
‘E"> </ W) (‘/ ")’ b7 <K v,
b 0 =1 blo ™ i=1 i=1 o

i.e.,

i
FN
Al

which implies

Huw( L)L (5 [ o) <k T 32
i=1 i
pi= pi#l pi=1

Let € >0, let y; € (0,b) foreach i with p; =1 and let E; = (y; — &,y;). Then, by (3.2),

we have , )
L) GLo) <L)

pi#! pi=1

Letting € — 0T, and applying Lebesgue’s differentiation Theorem, we obtain

G/obW)ilm_[l(ll,/ob ) K]'[vl vi)?

pi#l p
for almost every y; € (0,b), which is equivalent to Aj .
4. Proof of Theorem 3.
Firstly, by (1.2), it suffices to prove the equivalence of (iii), (iv) and (v). Itis
clear that (iii) implies (iv). In order to prove the remainder implications, we will need

the following lemma.

LEMMA 4. There exists a positive constant K such that the inequality

Hsz ) SNfis oo fn) (%) SKC(fis fry oo fn) (%) (4.1)

holds for all non negative functions fi, fa,...,fm and all x € (0,00).
Proof. The left hand side inequality in (4.1) is clear. In order to prove the other

inequality we will work in the case m = 2. The general case follows by induction on
m. Let f, g be positive measurable functions on (0,c0), x € (0,00) and b > x. Then,

GL )G L) =g ([ro ([ ewas)ar) s ([ 10 ([ eas)ar)
v ([0 ([ etwas) )+ 5 ([ 50 ([ st5as) ar)

=I+1+1I+1V.
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It is clear that I < Pf(x)Pg(x). In order to estimate I, we work as follows:

II</xh@ G/(:g(s)ds> dté/:@ G/(:g> dt = Q(f - Pg)(x).

The estimation of /11 is the next one:

III:%/Xf (/g ds)dt—i— / (/g ds)
<Prpete) + g ([ sras) ([ roar)
/b

5) ( /0 f(t)dt) ds

opg)+ [ 5 (L[ ptyar)as < Prwpete) + (e PO

< Pf(x)Pg(x) +

Finally, by Fubini’s theorem, we have

-/ ([ rar)sras <z | ' (f s0ar) ssras
< [8 (§/0f> ds < (g~ Pf)(x).

Thus,

N(f.8)(x) < KPf(x)Pg(x) + Q(g - Pf)(x) + O(f - Pg)(x) < KC(f,8)(x),

what finishes the proof of the Lemma.

(iv) = ()

Assume that (iv) holds. Then, by (4.1), the maximal multilinear operator N is
bounded from L7 (v;) X LP2(vy) X «+- x LPm(vy,) to LP*°(w) and applying Theorem 1,
this implies V€ A

(v) = (iii)

Assume that Vv € A 50- On one hand, by Theorem 1 and (4.1), the multilinear
Hardy averaging operator [T, Pf; is bounded from LP!(vy) X LP2(va) X -+ X LP™ (vy,)

P

to LP(w). On the other hand, the structure of the condition, the fact that w = H;’Ll vj”

and
m
Z
;

1
Pj
forall i € {1,2,...,m} imply that

(VL3 Vie 1, O3 Vik b3 V) € Ay pi 10 i i) 0
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/ ! / /
n g N 7 )
Piel . Pi . _
and o;=v{" v, "o/ v v forallie {1,2,...,m}, where o =w'"P . There-

fore, by Theorem 1 and (4.1), N and Hf,’ﬁ:l Pf; are bounded from

L7V (vy) % - X LPV (visy) X LY (G) X LP# (vigy) X - X LP7(vy)  to LPi(oy)

for all i € {1,2,...,m}. Then, the operators Q(fiII}., ;.;Pfj). i € {1,2,...,m},
which are the m-linear adjoints of H'}; 1 Pfj, are bounded from

LP1(v1) X LP2(vy) X - X LP" () to LP(w)

(see [3]). Thus, the Calder6n operator C is bounded from

LPY(vy) X LP2(vy) X ==« X LP™(vy)  to  LP(w).

5. Proofs of Theorems 4 and 5.

We will prove Theorems 4 and 5 simultaneously. It is clear that (i) and (ii) are
equivalent and also that (ii) = (izi) in both results, because the Calderén operator
dominates N and the weak type boundedness of A/ is equivalent to (iii) (see Theorem
2). Let us see that (iii) implies (i).

Assume that v € A (for Theorem 4) or (w,V) € A; (for Theorem 5). Then, by
Theorem 2, N is bounded from L7 (vy) X ... x LP"(v,,) to LP**(w). This implies that
the multilineal Hardy operator [T, Pf; is also bounded, since [T, Pf; < N. It only
remains to prove that the adjoints of the multilinear Hardy operator are bounded.

For fixed i € {1,2,...,m}, let us see that O(f; "1 Pf;) is bounded. Assume first
that p; = 1. We will use the next condition, which is géstraightforward consequence of
App: there exists K > 0 such that

1

1
1 rb p m 1 1t o
(Z/o w> H(Z/o a,-) T < Kvi(t) (5.1

j=1
#

~

for almost every 7 € (0,b). Let A > 0. As Q(fi [T}, Pf;) decreases, the set
i

0 = (xe (0.): QA [T PF)() > A}
=1
J#i

is an interval (0,b), where
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Then, applying this fact, Holder’s inequality and (5.1), we have

p
_ fi(r)
b= dre= () | 5P G )
J#I
p
U= fie) (N (L
<w | L) L)
i
p
U = fie) (NP (L \T (L N\
<L) - (F )" (G o)
J#i
. p
Km0 v (L[ e\
< /bt p v,(t)jl:Il t()fj v,) dt
i
. p
K| =30 pr(L\”
<l H’(”,Ul(z) 155l
J#i

K < 1=
([ ) [T, < M1‘[||f,u,,,v,

J#I

This finishes the proof of Theorem 5, since in that result p; = 1 for all i. In order to

finish the proof of Theorem 4, we have to consider the case p; # 1. Recall that, in this
P

. . Pj .
case, it will be necessary w = H’,’Ll v j’ . We will need three Lemmas:

=L and some

LEMMA 1. Let p >0 and let py,pa,....pm = 1 with 3 1p 5

P

pi> 1 IfV=(vi,v2,...,vm) € Ao, then w = Hfle v;j €Appo-

We do not prove Lemma 1 since its proof is essentially included in the one of
Theorem 3.6 in [13].

LEMMA 2. Let p>0 and p1,p2,....pm =1 wnh i o L and some pj>1.
P

Let V€ Apg and w = H;f': 1 v;'f . Then, there is A < 1 such that

b 2b
/W<A/ w
0 0

forall b> 0.
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Proof. Applying Lemma 1, we have that w € A, 0, 1. €., there is K > 0 such that
for all b > 0 the inequality

LT o)™ <k 52
bow b Jo = ’

holds, where & = w!~("?)" Let b > 0. By (5.2) and Holder’s inequality, we get

2b 26\ mr—1 2\ MP
( Ji W) ( / c) < K2 — Ko ( / 1)
0 0 b
2 L\ P 2b 2\ M-l
= K2"P (/ wm_f’w_W’> <K</ w) (/ 0) .
b b b

Simplifying, we obtain

b 2b
/WSK/ w.
0 b

This is equivalent to

b 2b b
/ng/ w—K/ w,
0 0 0

b K 2b 2b
wg—/ W:A/ w,
/0 K+1Jo 0

_ K
whereA—K—H<1.

LEMMA 3. Let p >0 and p1,p2,...,pm = 1 with %: '}1:11% and some p; >
J
P

1. Let Ve Apg and w= Hfle v;T’ Then, there is K > 0 such that for each i €
{1,2,...,m} with p; > 1 and each b > 0,
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Proof. We have that

1
1 . Y p;
P < o;(t | A |
Y (i) -)e
0 T AR 7
i#i 1
, L
1 7 Pi
b P i 2k+1ho-.t m 1 t P—, 1
:/W) SO (5 o) e
0 k=0 2kp tPi j=1 tJo p_'
i#i 2

-

VAN
VRS
S—
>
=
N———
ST
~
IM:
~
P4
A
3
=
7N
—
I %
t
>
Q
N——
~
l 3
/N
S—
N
2
£
>
Q
N——
S

4

o 1 NS Skt m Skt1p A
< — w / o; / o] . 5.3
g{) (2kp)mpi (/o ) 0 l_Il 0 ! G-

J
J#i

Now, applying Lemma 2 and condition A, the last term of (5.3) is less than

=

)2

o 1 I 2y \ P 2k+1p m 2kt
2 ,AF(kJrl) / w / O; H / o
(2kb)mpi 0 0 =1 \J0

k=0
J#i

/
i

S

7
i

1
< 1 1\ P |
< (Z S (2++16)™" a7 — K.

Finally, we can complete the proof of the implication (iii) = (i) of Theorem 4.
As in the previous case, we have

p
Jilt) ( /
= fi|dt
/{xe( QUL PR)WSA) / </ ) AP / H (e
174’1 j#t
for some b > 0. Applying Holder’s inequality and Lemma 3, we obtain
p

()[R L)

1

(L) ortom) | [ L)

St
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Pl Pl
b < oi(t) & (1 [ A S LY Pj
<AL, T [on) 7 (5 ] o) a
Hﬁ||v"p' </0 W) /h tPi .l<t/() j) <t ofj Vi

j#i
, 5
" b “G() e (L N1
< P — )
\jl:Ile/”VjJ’j (/0 W) /b 7 E(t /0 GJ) Iid’
o
J#i 1

m
=1

6. Proofs of Theorems 11, 12 and 13.
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Firstly, we will see that if T is a m-linear singular integral, then there are a con-

stant K > 0 and a local m-linear operator L such that the inequality

T(f1s S5 ) O S L1 f2 - f) )+ KCo( il U f2) - 1 Fm) (%)

6.1)

holds for all m-tuples (f1, f>,--.,fm) of measurable functions and all x € R". Without
loss of generality, we will work in the bilinear case, i. e., assuming m = 2.

Let f,g be measurable functions on R” and, following the notation in [15], let, for

T(f,8)(x) = Y, T(f.8)x)xs (x) = L(f.8)(x) + G(f,8) (x),

keZ

where

L(f,8) = Y T(feo:8x0) X

keZ

is the local part and

every integer k, I = {x: 28" < x| < 28}, [ = {x: 282 C x| < 2KF1Y, fro = I
gk0 = &> Jen = f = fro and gr1 = g — gro- Then

(6.2)

G(f.8) = X T(fea-8k0)xn + 2, T(fro 8k xn + 2, T(fur,8k1)xp =1+ 11+ 111

keZ keZ keZ

is the global one.

In order to prove the boundedness of the local part, we will apply condition (1.7)

and the fact that 7' is bounded without weights. We only show the estimation for the
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strong type boundedness, since the weak type one is similar:

LM @ wede = 3 [T Gio-sroll w(x)ax

keZ
<Y, (supw )/ T (fr0,810(x)|Pdx
keZ \x€l;

<K o) ) 72

3 (sg0) (o) ()

<K Pi p2 <K : "
kEZZU 4 ) (/ el V2> 1113, gl

where the last inequality holds by Holder’s inequality.

For the global part G, we will see that the operator G is dominated by the bilinear
Calderé6n operator C,, and this immediately gives that G is bounded by applying Theo-
rems 6, 7 or 8, depending on the case. Let x € I;. Then, by (1.5) and the definitions of
fr,1 and g o, we have

|fi 1) llgro(v2)]
e = 1]+ [ —ya[) 2

_/ / Lfv)llg(v2)] dvid
- . 1 . n yiay2
[ >2k+ 1 Jok-2 gy <okt ([ = y1] + [x —¥2])

2
+/ / fO)llgbn)l dyidys
i <262 Jok=2 gy <okt (Jx = yi| + [x —y2l)

=A|+A;.

1= T ko)) < [ ¢ dyidy,

(6.3)

For the estimation of A; we have to take into account that, since x € Iy and y; ¢ I/,
then |x — y1|*" ~ |x[*" + [y1|*". Therefore

lf ()] (
m< [ lgGm)lay: )an
26t [x =12 \ Sy <]
)] (
K / T / 1g(v2)|dy> ) dy:
260 2 [y 20\ o<y

1
k[ OO sl )an
itk v\l o<y

= KOu(|/|Pulg!)(x)-
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The estimation of A, requires to split the integral in y, and to observe that 4|x| >
ly2]:

A </ / |f()’1)|\28()’2)|dy1dy2
k-2 s | <] [y [ <242 [

+/ / If(yl)llg(yz)ldyldy2
<yl <2kt Sy [<2t-2 ]2

< PFIWP el () + K 'g(”"( a 1<|y2|f(y1)ldy1>dyz

W<yl 2"\ [y2l"

= Bl f1(x)Balg|(x) + K Qu([g|Pul f1) (x)-

The estimation of /] is similar. Finally, for the estimation of 71/, we observe that,
since x € [y and y; ¢ I for i =1,2, then |x —y;| ~ |x|+ |y;| for i =1,2 and, therefore,

11| < K/ [fie 1 )18k1(72)]

oo (x| 1 ] + a2 102 S KHa(:8) ().
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