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WEIGHTED INEQUALITIES FOR THE MULTILINEAR

HILBERT AND CALDERÓN OPERATORS AND APPLICATIONS

VÍCTOR GARCÍA GARCÍA AND PEDRO ORTEGA SALVADOR

(Communicated by R. Oinarov)

Abstract. We characterize the weighted weak and strong type inequalities for the Hilbert and
Calderón multilinear operators. As applications, we characterize a weighted multilinear Hilbert’s
inequality and extend to the multilinear setting some results on singular integrals due to F. Soria
and G. Weiss.

1. Introduction and results.

The Hilbert operator, also known as Stieltjes transform, is defined for non negative
functions f on (0,∞) by

H f (x) =
∫ ∞

0

f (t)
x+ t

dt, x ∈ (0,∞).

Another classical operator, closely related to H , is the Calderón operator C ,
defined also for non negative functions f on (0,∞) by the sum of the Hardy averaging
operator P and its adjoint Q , i. e.,

C f (x) = P f (x)+Qf (x) =
1
x

∫ x

0
f (t)dt +

∫ ∞

x

f (t)
t

dt.

K. Andersen proved in [1] that if p > 1, then the weighted inequality∫ ∞

0
H f (x)pw(x)dx � K

∫ ∞

0
f pw

holds for all non negative f with a constant K independent of f if and only if the
positive function w verifies the following condition: there exists a constant K > 0 such
that for all b > 0, the inequality

(∫ b

0
w

) 1
p
(∫ b

0
σ
) 1

p′
� Kb (1.1)
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holds, where p′ is the conjugate exponent of p and σ = w1−p′ .
The same result holds for C , since 1

2C f (x) � H f (x) � C f (x) for all f and
x ∈ (0,∞) .

More recently, J. Duoandikoetxea, F. J. Martı́n Reyes and S. Ombrosi have studied
in [8] the same problem with a different perspective. Specifically, they have defined the
maximal operator

N f (x) = sup
b>x

1
b

∫ b

0
| f |, x ∈ (0,∞)

and proved that if p> 1, then N is bounded in Lp(u) if and only if u verifies condition
(1.1), which they call Ap,0 . Then, they note that

P f (x) � N f (x) � C f (x)

and an argument of duality shows that C is bounded in Lp(u) if and only if u ∈ Ap,0 .
In this paper we will deal with the m-linear Hilbert and Calderón operators. The

first one is defined in [5] for m-tuples ( f1, f2, . . . , fm) of non negative functions on
(0,∞) by

H( f1, f2, . . . , fm)(x) =
∫

(0,∞)m

f1(y1) f2(y2) · · · fm(ym)
(x+ y1 + y2 + · · ·+ ym)m dy1dy2 . . .dym.

We also define the m-linear Calderón operator as

C( f1, f2, . . . , fm)(x) =
m

∏
i=1

P fi(x)+
m

∑
i=1

Q( fi
m

∏
j=1
j �=i

P f j)(x),

i. e., as the sum of the m-linear Hardy averaging operator ∏m
i=1 P fi and its m adjoints

Q( fi ∏m
j=1, j �=i P f j) , i ∈ {1,2, . . . ,m} .

These operators are related as follows: there are two positive constants K1 and K2

independent of f1, f2, . . . , fm and x such that

C( f1, f2, . . . , fm)(x) � K1H( f1, f2, . . . , fm)(x) � K2C( f1, f2, . . . , fm)(x). (1.2)

Inspired by [8] and [13], we can define a new m-(sub)linear maximal operator N
as follows:

N( f1, f2, . . . , fm)(x) = sup
b>x

m

∏
j=1

(
1
b

∫ b

0
f j

)
,

which will help us to characterize the weighted weak and strong type inequalities for
the operators H and C .

Our main results characterize the good weights for the operators N , H and C .
The first theorem deals with the strong type inequality for the operator N .

THEOREM 1. Let p > 0 and let p1, p2, . . . , pm > 1 with ∑m
j=1

1
p j

= 1
p . Let v1,v2,

. . . ,vm be positive measurable functions on (0,∞) , �v = (v1,v2, . . . ,vm) and w= ∏m
j=1 v

p
p j
j .

The next statements are equivalent:
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(i) The operator N is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(w) .

(ii) The operator N is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(iii) �v ∈ A�p,0 , which means that there is K > 0 such that for each b > 0 ,

(
1
b

∫ b

0
w

) 1
p m

∏
j=1

(
1
b

∫ b

0
σ j

) 1
p′j � K, (1.3)

where σ j = v
1−p′j
j .

In the following Theorem, we deal with the weak type inequality. We admit pi = 1

for some i and we do not require the weights to verify w = ∏m
j=1 v

p
p j
j .

THEOREM 2. Let p > 0 and let p1, p2, . . . , pm � 1 with ∑m
j=1

1
p j

= 1
p . Let w,v1 ,

v2, . . . ,vm be positive measurable functions on (0,∞) and �v = (v1,v2, . . . ,vm) . The next
statements are equivalent:

(i) The operator N is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(ii) (w,�v) ∈ A�p,0 , which means that (1.3) holds, where
(

1
b

∫ b
0 σ j

) 1
p′j is understood as

(ess inf(0,b) v j)−1 for p j = 1 .

The next result characterizes the good weights for the strong and weak type in-
equalities of H and C in the case pi > 1 for each i and p > 1.

THEOREM 3. Let p > 1 and let p1, p2, . . . , pm > 1 with ∑m
j=1

1
p j

= 1
p . Let v1 ,

v2, . . . ,vm be positive measurable functions on (0,∞) , �v = (v1,v2, . . . ,vm) and w =

∏m
j=1 v

p
p j
j . The next statements are equivalent:

(i) The Hilbert operator H is bounded from Lp1(v1)×Lp2(v2)× ·· · × Lpm(vm) to
Lp(w) .

(ii) The Hilbert operator H is bounded from Lp1(v1)×Lp2(v2)× ·· · × Lpm(vm) to
Lp,∞(w) .

(iii) The Calderón operator C is bounded from Lp1(v1)×Lp2(v2)× ·· ·×Lpm(vm) to
Lp(w) .

(iv) The Calderón operator C is bounded from Lp1(v1)×Lp2(v2)× ·· ·×Lpm(vm) to
Lp,∞(w) .

(v) �v ∈ A�p,0 .

Now, we state the weak type theorem in the case pi � 1 and p > 0. It reads as
follows:
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THEOREM 4. Let p > 0 and let p1, p2, . . . , pm � 1 with ∑m
j=1

1
p j

= 1
p and some

pi > 1 . Let v1,v2, . . . ,vm be positive measurable functions on (0,∞) , �v = (v1,v2, . . . ,vm)

and w = ∏m
j=1 v

p
p j
j . The next statements are equivalent:

(i) The Hilbert operator H is bounded from Lp1(v1)×Lp2(v2)× ·· · × Lpm(vm) to
Lp,∞(w) .

(ii) The Calderón operator C is bounded from Lp1(v1)×Lp2(v2)× ·· ·×Lpm(vm) to
Lp,∞(w) .

(iii) �v ∈ A�p,0 .

The previousTheorem does not include the extreme case pi = 1 for all i∈ {1,2, . . . ,m} .

We deal with it in Theorem 5, where the relationship w = ∏m
j=1 v

p
p j
j is not required. The

result is the next one:

THEOREM 5. Let w,v1,v2, . . . ,vm be positive measurable functions on (0,∞) and
�v = (v1,v2, . . . ,vm) . The next statements are equivalent:

(i) The Hilbert operator H is bounded from L1(v1)×L1(v2)×·· ·×L1(vm) to L
1
m ,∞(w) .

(ii) The Calderón operator C is bounded from L1(v1)× L1(v2)× ·· · × L1(vm) to

L
1
m ,∞(w) .

(iii) (w,�v) ∈ A(1,1,...,1),0 , which means that there is a positive constant K such that

(
1
b

∫ b

0
w

)m

� K
m

∏
j=1

ess inf
(0,b)

v j

for all b > 0 .

These results can be extended to higher dimensions. Specifically, let us consider
the operator Nn defined for m-tuples ( f1, f2, . . . , fm) of measurable functions on R

n

and x ∈ R
n by

Nn( f1, f2, . . . , fm)(x) = sup
b>|x|

m

∏
j=1

(
1
bn

∫
|y|<b

| f j|
)

and the n -dimensional m-linear Hilbert operator Hn and Calderón operator Cn defined
by

Hn( f1, f2, . . . , fm)(x) =
∫

Rmn

f1(y1) · · · fm(ym)
(|x|+ |y1|+ · · · |ym|)nm dy1 . . .dym

and

Cn( f1, f2, . . . , fm)(x) =
m

∏
j=1

Pn f j(x)+
m

∑
j=1

Qn( f j

m

∏
i=1
i �= j

Pn fi)(x),
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respectively, where Pn stands for the n -dimensional Hardy averaging operator Pn de-
fined by

Pn f (x) =
1
|x|n

∫
|y|<|x|

f (y)dy

and Qn is its adjoint,

Qn f (x) =
∫
|y|>|x|

f (y)
|y|n dy.

Since the operators Nn , Hn and Cn are radial, the characterizations of their
weighted inequalities are immediate consequences of Theorems 1, 2, 3, 4 and 5. The
results are the following ones.

THEOREM 6. Let p > 1 and let p1, p2, . . . , pm > 1 with ∑m
j=1

1
p j

= 1
p . Let v1,v2, . . . ,vm

be positive measurable functions on R
n , �v = (v1,v2, . . . ,vm) and w = ∏m

j=1 v
p
p j
j . The

next statements are equivalent:

(i) The operator Nn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(w) .

(ii) The operator Nn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(iii) The operator Cn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(w) .

(iv) The operator Cn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(v) The operator Hn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(w) .

(vi) The operator Hn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(vii) �v ∈ A�p,0 , which means that there is K > 0 such that for each b > 0 ,

(
1
bn

∫
|x|<b

w

) 1
p m

∏
j=1

(
1
bn

∫
|x|<b

σ j

) 1
p′j � K.

THEOREM 7. Let p > 0 and let p1, p2, . . . , pm � 1 with ∑m
j=1

1
p j

= 1
p and some

p j > 1 . Let v1,v2, . . . ,vm be positive measurable functions on R
n , �v = (v1,v2, . . . ,vm)

and w = ∏m
j=1 v

p
p j
j . The next statements are equivalent:

(i) The operator Nn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(ii) The operator Cn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(iii) The operator Hn is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

(iv) �v ∈ A�p,0 .

THEOREM 8. Let w,v1,v2, . . . ,vm be positive measurable functions on R
n and

�v = (v1,v2, . . . ,vm) . The next statements are equivalent:
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(i) The Hilbert operator Hn is bounded from L1(v1)× L1(v2) × ·· · × L1(vm) to

L
1
m ,∞(w) .

(ii) The Calderón operator Cn is bounded from L1(v1)× L1(v2)× ·· · × L1(vm) to

L
1
m ,∞(w) .

(iii) (w,�v) ∈ A(1,1,...,1),0 , which means that there is a positive constant K such that(
1
bn

∫
|x|<b

w

)m

� K
m

∏
j=1

ess inf
|x|<b

v j

for all b > 0 .

The first application of the above results deals with Hilbert’s inequality. The
boundedness of the Hilbert operator H is closely related to the celebrated Hilbert’s
inequality [12], which asserts that if p > 1, then

∫ ∞

0

∫ ∞

0

f (x)g(y)
x+ y

dxdy � π
sin π

p

(∫ ∞

0
f p
) 1

p
(∫ ∞

0
gp′
) 1

p′
.

It is clear that this inequality holds if and only if

∫ ∞

0
(H f )p �

(
π

sin π
p

)p ∫ ∞

0
f p.

This relationship remains valid in the weighted case, even in the multillinear set-
ting. As a simple consequence of our previous theorems, we have the following result:

THEOREM 9. Let p > 1 and p1, p2, . . . , pm > 1 with 1
p = ∑i

1
pi

. Let v1,v2, . . . ,vm

be positive measurable functions on (0,∞) , �v = (v1,v2, . . . ,vm) , w = ∏ j v
p
p j
j and σ =

w1−p′ . Then the weighted multilinear Hilbert’s inequality∫
(0,∞)m+1

f (y) f1(y1) . . . fm(ym)
(y+ y1 + . . .+ ym)m dydy1 . . .dym � K‖ f‖p′,σ‖ f1‖p1,v1 . . .‖ fm‖pm,vm (1.4)

holds if and only if �v ∈ A�p,0 .

We only have to observe that, by duality, (1.4) holds if and only if

(∫ ∞

0

(∫
(0,∞)m

f1(y1) . . . fm(ym)
(y+ y1 + . . .+ ym)m dy1 . . .dym

)p

w(y)dy

) 1
p

� K‖ f1‖p1,v1 . . .‖ fm‖pm,vm

and apply Theorem 3.
The above result extends the weighted multilinear Hilbert’s inequality obtained in

[9], where the authors only worked with power weights.
As a consequence of Theorem 6, it is also immediate to characterize a weighted

n -dimensional multilinear Hilbert’s inequality. It is included in the next result.
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THEOREM 10. Let p > 1 and p1, p2, . . . , pm > 1 with 1
p = ∑i

1
pi

. Let v1,v2, . . . ,vm

be positive measurable functions on R
n , �v = (v1,v2, . . . ,vm) , w = ∏ j v

p
p j
j and σ =

w1−p′ . Then the weighted n-dimensional multilinear Hilbert’s inequality∫
(Rn)m+1

f (y) f1(y1) . . . fm(ym)
(|y|+ |y1|+ . . .+ |ym|)nm dydy1 . . .dym � K‖ f‖p′,σ‖ f1‖p1,v1 . . .‖ fm‖pm,vm

holds if and only if �v ∈ A�p,0 .

As a second application, we obtain some weighted inequalities for multilinear
singular integrals. If T is a linear operator bounded on Lp(Rn) , p > 1, for which there
is a constant K > 0 such that

|T f (x)| � K
∫

Rn

| f (y)|
|x− y|n dy

for every f ∈ L1(Rn) with compact support and every x /∈ supp( f ) , it is well known
that T can be dominated by the sum of a local operator and the n -dimensional Calderón
operator Pn +Qn . This kind of estimates allows to get weighted Lp inequalities for T ,
whenever the weights are essentially constant in dyadic crowns and verify the condi-
tions for the Calderón operator to be bounded in the weighted Lp spaces. This result
was proved in [15]. See also [2] and [14] for related results.

We are going to extend this result to the multilinear setting. Specifically, assume
that T is a multilinear operator for which there is a positive constant K such that

|T ( f1, f2, . . . , fm)(x)| � K
∫

Rmn

| f1(y1)|| f2(y2)| · · · | fm(ym)|
(|x− y1|+ |x− y2|+ · · ·+ |x− ym|)mn dy1dy2 . . .dym

(1.5)
for each m-tuple ( f1, f2, . . . , fm)∈ L1(Rn)×·· ·×L1(Rn) of compactly supported func-
tions and every x /∈ ∩m

i=1supp( fi) . Such an operator T will be called a multilinear
singular integral. It is clear that Calderón-Zygmund multilinear operators, defined in
[11], are multilinear singular integrals, but there are more examples, as, for instance,
the rough bilinear singular integrals defined in [6]. Very recently, Grafakos, He and
Honzik have proved in [10] that these operators map boundedly Lp1(Rn)× Lp2(Rn)
into Lp(Rn) for 1 < p1, p2 < ∞ and 1

p = 1
p1

+ 1
p2

.
As in the linear case, we can see that a multilinear singular integral T can be dom-

inated by the sum of a local multilinear operator and the multilinear Calderón operator
Cn . In fact, for fixed x ∈ R

n we have

|T ( f1, f2, . . . , fm)(x)| � |L( f1, f2, . . . , fm)(x)|+Cn(| f1|, | f2|, . . . , | fm|)(x), (1.6)

where L is the local part, which will be defined later.
The results are the next ones, where Theorem 11 is the strong type result and

Theorems 12 and 13 are the weak type ones.

THEOREM 11. Let 1 < p, p1, p2, . . . , pm < ∞ with ∑m
i=1

1
pi

= 1
p , �p = (p1, p2, . . . , pm) .

Let v1,v2, . . . ,vm be positive measurable functions on R
n and σi = v

1−p′i
i , i = 1,2, . . . ,m.
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Let w = ∏m
i=1 v

p
pi
i . Let T be a multilinear singular integral bounded from Lp1(Rn)×

Lp2(Rn)× ·· ·×Lpm(Rn) to Lp(Rn) . Assume that there is a positive constant K such
that the inequality

sup
2k−2<|y|�2k+1

w(y) � K
m

∏
i=1

(
inf

2k−2<|y|�2k+1
vi(y)

) p
pi

(1.7)

holds for all integer k . Assume also that (v1,v2, . . . ,vm) ∈ A�p,0 . Then, T is bounded
from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(w) .

THEOREM 12. Let p > 0 , 1 � p1, p2, . . . , pm < ∞ with ∑m
i=1

1
pi

= 1
p and p j > 1

for some j . Let v1,v2, . . . ,vm be positive measurable functions on R
n , �v= (v1,v2, . . . ,vm)

and w = ∏m
i=1 v

p
pi
i . Let T be a multilinear singular integral bounded from Lp1(Rn)×

Lp2(Rn)×·· ·×Lpm(Rn) to Lp,∞(Rn) . Assume that (1.7) holds and that �v∈ A�p,0 . Then,
T is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) .

THEOREM 13. Let v1,v2, . . . ,vm be positive measurable functions on R
n and

�v = (v1,v2, . . . ,vm) . Let T be a multilinear singular integral bounded from L1(Rn)×
L1(Rn)×·· ·×L1(Rn) to L

1
m ,∞(Rn) . Assume that (1.7) holds and that (w,�v)∈A(1,1,...,1),0 .

Then, T is bounded from L1(v1)×L1(v2)×·· ·×L1(vm) to L
1
m ,∞(w) .

It is clear that power weights vi(x) = |x|αi verify condition (1.7), but there are
more weights satisfying it. In particular, the weights vi(x) = |x|αi(log(1+ |x|))βi for
suitable αi and βi .

It is worth noting that using Theorems 11, 12 and 13 we obtain weighted weak or
strong type inequalities for multilinear singular integrals verifying (1.5) with weights
satisfying (1.7) whenever we previously know that the operator is bounded without
weights. For the particular case of rough bilinear singular integrals, the only works
we know about weighted inequalities are the papers [4] and [7]. Both show results for
1 < p1, p2 < ∞ and p > 1

2 with 1
p = 1

p1
+ 1

p2
, but working with weights v1,v2 which

are separately in the Muckenhoupt classes Ap1 and Ap2 , respectively. The interest of
our results is that our weights verify a joint A�p,0 condition.

The next sections consist of the proofs of the results. All along the paper, the letter
K stands for a positive constant, not necessarily the same at each occurrence. Moreover,

we always understand
(

1
t

∫ t
0 σi
) 1

p′i as (ess inf(0,t) vi)−1 for pi = 1. This does not cause
any problem when applying Hölder’s inequality.

2. Proof of Theorem 1

Proof. The implication (i)⇒ (ii) is clear. Let us prove the other two implications.
(iii) ⇒ (i)
We may assume, without loss of generality, that f1, f2, . . . fm are compactly sup-

ported. First of all, let us note that N( f1, f2, . . . , fm) is decreasing. In fact, if x < y , each
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b > y verifies also b > x , which implies N( f1, f2, . . . , fm)(x) � N( f1, f2, . . . , fm)(y) .
Since N( f1, f2, . . . , fm) decreases and fi, i ∈ {1,2, . . . ,m} , are compactly supported,
for every k ∈ Z there is bk > 0 such that Ok = {x ∈ (0,∞) : N( f1, f2, . . . , fm)(x) >
2k} = (0,bk) . Then, we have

∫ ∞

0
N( f1, f2, . . . , fm)pw = ∑

k∈Z

∫
{x/2k<N( f1, f2,..., fm)(x)�2k+1}

N( f1, f2, . . . , fm)pw

= ∑
k∈Z

∫ bk

bk+1

N( f1, f2, . . . , fm)pw.

(2.1)
We will need the following Lemma:

LEMMA 1. For each k ∈ Z ,

m

∏
i=1

(
1
bk

∫ bk

0
fi

)
= 2k.

Proof. Since bk /∈ Ok , we have that N( f1, f2, . . . , fm)(bk) � 2k . Then for each
c > bk ,

1
cm

m

∏
i=1

(∫ c

0
fi

)
� 2k,

which implies,

1
bm

k

m

∏
i=1

(∫ bk

0
fi

)
� 2k.

If we had a strict inequality, as the function

ϕ(t) =
1
tm

m

∏
i=1

(∫ t

0
fi

)

is continuous, there would be δ > 0 such that ϕ(c) < 2k for all c ∈ (bk − δ ,bk) .
Let x0 ∈ (bk − δ ,bk) . Then, for each c > x0 , ϕ(c) � 2k (it is clear for each c with
x0 < c < bk , but also for c verifying c � bk : as they are greater than bk , we have
also ϕ(c) � 2k ). Then, N( f1, f2, . . . , fm)(x0) � 2k , what is a contradiction, because
x0 ∈ (0,bk) = Ok .

Applying Lemma 1, multiplying and dividing by ∏m
i=1 σi(0,bk)p , where σi(0,bk) =∫ bk

0 σi , and applying the A�p,0 condition for the weights, we have that the right-hand
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side of (2.1) is less or equal than

∑
k∈Z

∫ bk

bk+1

2(k+1)pw(x)dx = 2p ∑
k∈Z

∫ bk

bk+1

2kpw(x)dx

= 2p ∑
k∈Z

∫ bk

bk+1

1
bmp

k

m

∏
i=1

(∫ bk

0
fi

)p

w(x)dx

� K ∑
k∈Z

m

∏
i=1

(
1

σi(0,bk)

∫ bk

0
fi

)p(∫ bk

0
σi

) p
pi

.

(2.2)

We will need to prove two more Lemmas:

LEMMA 2. For each k ∈ Z ,

bk+1

bk
� 1

m
√

2
.

Proof. Since we have

2k =
1
bm

k

m

∏
i=1

(∫ bk

0
fi

)
, 2k+1 =

1
bm

k+1

m

∏
i=1

(∫ bk+1

0
fi

)

and bk+1 < bk , by dividing we obtain 1
2 � bm

k+1
bm
k

, which implies bk+1
bk

� 1
m√2

.

LEMMA 3. There is K > 0 such that the inequality
∫ bk

0
σi � K

∫ bk

bk+1

σi

holds for all k ∈ Z and all i ∈ {1,2 . . . ,m} .

Proof. As a consequence of Lemma 2, we have bk−bk+1 � bk− bk
m√2

=
(
1− 1

m√2

)
bk .

Applying this, the A�p,0 condition, Hölder’s inequality and also that w = ∏m
i=1 v

p
pi
i , we

obtain(∫ bk

0
w

) 1
p m

∏
i=1

(∫ bk

0
σi

) 1
p′i � Kbm

k � K(bk −bk+1)m = K

(∫ bk

bk+1

1

)m

� K

(∫ bk

bk+1

w

) 1
p m

∏
i=1

(∫ bk

bk+1

σi

) 1
p′i

� K

(∫ bk

0
w

) 1
p
(∫ bk

bk+1

σ1

) 1
p′1

m

∏
i=2

(∫ bk

0
σi

) 1
p′i

.
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Simplifying, ∫ bk

0
σ1 � K

∫ bk

bk+1

σ1.

The argument for σ2, . . . ,σm is the same as above.
Applying Hölder’s inequality and Lemma 3, we have that the last term in (2.2) is less
or equal than

K
m

∏
i=1

(
∑
k∈Z

(
1

σi(0,bk)

∫ bk

0
fi

)pi
(∫ bk

0
σi

)) p
pi

� K
m

∏
i=1

(
∑
k∈Z

(
1

σi(0,bk)

∫ bk

0
fi

)pi
(∫ bk

bk+1

σi

)) p
pi

= K
m

∏
i=1

(
∑
k∈Z

∫ bk

bk+1

(
1

σi(0,bk)

∫ bk

0
fi

)pi

σi(x)dx

) p
pi

.

(2.3)

Now, let us consider the maximal operators

Nσi(h)(x) = sup
b>x

1
σi(0,b)

∫ b

0
|h(t)|σi(t)dt,

for i ∈ {1,2, . . . ,m} . For each x ∈ (bk+1,bk) ,

1
σi(0,bk)

∫ bk

0

f (t)
σi(t)

σi(t)dt � Nσi

(
f

σi

)
(x),

i ∈ {1,2, . . . ,m} . Then, applying that the operators Nσi are bounded in Lpi(σi) , we
have that the last term in (2.3) is less or equal than

K
m

∏
i=1

(
∑
k∈Z

∫ bk

bk+1

(
Nσi

(
f

σi

)
(x)
)pi

σi(x)dx

) p
pi

= K
m

∏
i=1

(∫ ∞

0

(
Nσi

(
f

σi

)
(x)
)pi

σi(x)dx

) p
pi

� K
m

∏
i=1

(∫ ∞

0

(
f

σi

)pi

(x)σi(x)dx

) p
pi

= K
m

∏
i=1

‖ fi‖p
pi,vi

.

(ii) ⇒ (iii)

Let b ∈ (0,∞) , fi = χ(0,b)σi , i ∈ {1,2, . . . ,m} , λ0 =
m

∏
i=1

(
1
b

∫ b

0
σi

)
and 0 < α <

1. Then (0,b) ⊂ {x ∈ (0,∞) : N( f1, f2, . . . , fm)(x) > αλ0} and, by (ii) , we have(∫ b

0
w

) 1
p

� K
αλ0

m

∏
i=1

(∫ b

0
σi

) 1
pi

,
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which means that (v1,v2, . . . ,vm) ∈ A�p,0 , letting α tend to 1.

3. Proof of Theorem 2.

(ii) ⇒ (i)
Assume that (w,�v) ∈ A�p,0 . This means that there is K > 0 such that

(
1
b

∫ b

0
w

) 1
p m

∏
i=1

(
1
b

∫ b

0
σi

) 1
p′i � K (3.1)

for all b > 0. Let λ > 0. Since N( f1, f2, . . . , fm) decreases, there is b > 0 such that
Oλ = {x ∈ (0,∞) : N( f1, f2, . . . fm)(x) > λ} = (0,b) , where b verifies

m

∏
i=1

(
1
b

∫ b

0
fi

)
= λ .

Then, by Hölder’s inequality and condition (3.1),∫
Oλ

w =
∫ b

0
w =

1
λ p

(∫ b

0
w

) m

∏
i=1

(
1
b

∫ b

0
fi

)p

� 1
λ p

(∫ b

0
w

) m

∏
i=1

(
1
b

∫ b

0
σi

) p
p′i

m

∏
i=1

(
1
b

∫ b

0
f p
i vi

) p
pi

� K
λ p bp

m

∏
i=1

(
1
b

∫ b

0
f p
i vi

) p
pi

=
K
λ p

m

∏
i=1

‖ fi‖p
pi,vi

.

This proves the weighted weak type inequality.
(i) ⇒ (ii)
Assume now that N is bounded from Lp1(v1)× . . .×Lpm(vm) to Lp,∞(w) . Let

b > 0. For each i ∈ {1, . . . ,m} such that pi > 1, let fi = σiχ(0,b) and for each i such
that pi = 1, let fi = χEi , where Ei is a measurable subset of (0,b) . If x ∈ (0,b) , we
have

N( f1, . . . , fm)(x) �
m

∏
i=1
pi �=1

(
1
b

∫ b

0
σi

) m

∏
i=1
pi=1

(
1
b
|Ei|
)

.

This means that (0,b) ⊂ {x ∈ (0,∞) : N( f1, . . . , fm)(x) > λ0} , where

λ0 =
m

∏
i=1
pi �=1

(
1
b

∫ b

0
σi

) m

∏
i=1
pi=1

(
1
b
|Ei|
)

.

Then, by the weak type inequality,

∫ b

0
w � K

λ p
0

m

∏
i=1
pi �=1

(∫ b

0
σi

) p
pi m

∏
i=1
pi=1

(∫
Ei

vi

)p

,
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i.e.,
m

∏
i=1
pi=1

(
1
b
|Ei|
)p(∫ b

0
w

) m

∏
i=1
pi �=1

(
1
b

∫ b

0
σi

) p
p′i

m

∏
i=1
pi �=1

b
− p

pi � K
m

∏
i=1
pi=1

vi(Ei)p,

which implies

m

∏
i=1
pi=1

|Ei|p
(

1
b

∫ b

0
w

) m

∏
i=1
pi �=1

(
1
b

∫ b

0
σi

) p
p′i � K

m

∏
i=1
pi=1

vi(Ei)p. (3.2)

Let ε > 0, let yi ∈ (0,b) for each i with pi = 1 and let Ei = (yi−ε,yi) . Then, by (3.2),
we have (

1
b

∫ b

0
w

) m

∏
i=1
pi �=1

(
1
b

∫ b

0
σi

) p
p′i � K

m

∏
i=1
pi=1

(
1
ε

∫ yi

yi−ε
vi

)p

.

Letting ε → 0+ , and applying Lebesgue’s differentiation Theorem, we obtain

(
1
b

∫ b

0
w

) m

∏
i=1
pi �=1

(
1
b

∫ b

0
σi

) p
p′i � K

m

∏
i=1
pi=1

vi(yi)p

for almost every yi ∈ (0,b) , which is equivalent to A�p,0 .

4. Proof of Theorem 3.

Firstly, by (1.2), it suffices to prove the equivalence of (iii) , (iv) and (v) . It is
clear that (iii) implies (iv) . In order to prove the remainder implications, we will need
the following lemma.

LEMMA 4. There exists a positive constant K such that the inequality

m

∏
i=1

P fi(x) � N( f1, f2, . . . , fm)(x) � KC( f1, f2, . . . , fm)(x) (4.1)

holds for all non negative functions f1, f2, . . . , fm and all x ∈ (0,∞) .

Proof. The left hand side inequality in (4.1) is clear. In order to prove the other
inequality we will work in the case m = 2. The general case follows by induction on
m . Let f , g be positive measurable functions on (0,∞) , x ∈ (0,∞) and b > x . Then,(

1
b

∫ b

0
f

)(
1
b

∫ b

0
g

)
=

1
b2

(∫ x

0
f (t)

(∫ t

0
g(s)ds

)
dt

)
+

1
b2

(∫ b

x
f (t)

(∫ t

0
g(s)ds

)
dt

)

+
1
b2

(∫ x

0
f (t)

(∫ b

t
g(s)ds

)
dt

)
+

1
b2

(∫ b

x
f (t)

(∫ b

t
g(s)ds

)
dt

)
= I + II + III + IV.
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It is clear that I � P f (x)Pg(x) . In order to estimate II , we work as follows:

II �
∫ b

x

f (t)
t

(
1
t

∫ t

0
g(s)ds

)
dt �

∫ ∞

x

f (t)
t

(
1
t

∫ t

0
g

)
dt = Q( f ·Pg)(x).

The estimation of III is the next one:

III =
1
b2

∫ x

0
f (t)

(∫ x

t
g(s)ds

)
dt +

1
b2

∫ x

0
f (t)

(∫ b

x
g(s)ds

)
dt

� P f (x)Pg(x)+
1
b2

(∫ b

x
g(s)ds

)(∫ x

0
f (t)dt

)

� P f (x)Pg(x)+
1
b2

∫ b

x
g(s)

(∫ s

0
f (t)dt

)
ds

� P f (x)Pg(x)+
∫ b

x

g(s)
s

(
1
s

∫ s

0
f (t)dt

)
ds � P f (x)Pg(x)+Q(g ·P f )(x).

Finally, by Fubini’s theorem, we have

IV =
1
b2

∫ b

x

(∫ s

x
f (t)dt

)
g(s)ds � 1

b2

∫ b

x

(∫ s

0
f (t)dt

)
g(s)ds

�
∫ b

x

g(s)
s

(
1
s

∫ s

0
f

)
ds � Q(g ·P f )(x).

Thus,

N( f ,g)(x) � KP f (x)Pg(x)+Q(g ·P f )(x)+Q( f ·Pg)(x) � KC( f ,g)(x),

what finishes the proof of the Lemma.
(iv) ⇒ (v)
Assume that (iv) holds. Then, by (4.1), the maximal multilinear operator N is

bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp,∞(w) and applying Theorem 1,
this implies �v ∈ A�p,0 .

(v) ⇒ (iii)
Assume that �v ∈ A�p,0 . On one hand, by Theorem 1 and (4.1), the multilinear

Hardy averaging operator ∏m
i=1 P fi is bounded from Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm)

to Lp(w) . On the other hand, the structure of the condition, the fact that w = ∏m
j=1 v

p
p j
j

and
1
p′i

=
1
p′

+
m

∑
j=1
j �=i

1
p j

for all i ∈ {1,2, . . . ,m} imply that

(v1, . . . ,vi−1,σ ,vi+1, . . . ,vm) ∈ A(p1,...,pi−1,p′,pi+1,...,pm),0
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and σi = v
p′i
p1
1 · · ·v

p′i
pi−1
i−1 σ

p′i
p′ v

p′i
pi+1
i+1 · · ·v

p′i
pm
m for all i∈{1,2, . . . ,m} , where σ = w1−p′ . There-

fore, by Theorem 1 and (4.1), N and ∏m
j=1 P f j are bounded from

Lp1(v1)×·· ·×Lpi−1(vi−1)×Lp′(σ)×Lpi+1(vi+1)×·· ·×Lpm(vm) to Lp′i(σi)

for all i ∈ {1,2, . . . ,m} . Then, the operators Q( fi ∏m
j=1, j �=i P f j) , i ∈ {1,2, . . . ,m} ,

which are the m-linear adjoints of ∏m
j=1 P f j , are bounded from

Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(w)

(see [3]). Thus, the Calderón operator C is bounded from

Lp1(v1)×Lp2(v2)×·· ·×Lpm(vm) to Lp(w).

5. Proofs of Theorems 4 and 5.

We will prove Theorems 4 and 5 simultaneously. It is clear that (i) and (ii) are
equivalent and also that (ii) ⇒ (iii) in both results, because the Calderón operator
dominates N and the weak type boundedness of N is equivalent to (iii) (see Theorem
2). Let us see that (iii) implies (i) .

Assume that �v ∈ A�p,0 (for Theorem 4) or (w,�v) ∈ A�p,0 (for Theorem 5). Then, by
Theorem 2, N is bounded from Lp1(v1)× . . .×Lpm(vm) to Lp,∞(w) . This implies that
the multilineal Hardy operator ∏m

i=1 P fi is also bounded, since ∏m
i=1 P fi � N . It only

remains to prove that the adjoints of the multilinear Hardy operator are bounded.
For fixed i∈ {1,2, . . . ,m} , let us see that Q( fi ∏m

j=1
j �=i

P f j) is bounded. Assume first

that pi = 1. We will use the next condition, which is a straightforward consequence of
A�p,0 : there exists K > 0 such that

(
1
b

∫ b

0
w

) 1
p m

∏
j=1
j �=i

(
1
b

∫ b

0
σ j

) 1
p′j � Kvi(t) (5.1)

for almost every t ∈ (0,b) . Let λ > 0. As Q( fi ∏m
j=1
j �=i

P f j) decreases, the set

Oλ = {x ∈ (0,∞) : Q( fi
m

∏
j=1
j �=i

P f j)(x) > λ}

is an interval (0,b) , where

∫ ∞

b

fi(t)
t

m

∏
j=1
j �=i

(
1
t

∫ t

0
f j

)
dt = λ .
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Then, applying this fact, Hölder’s inequality and (5.1), we have

∫
Oλ

w =
∫ b

0
w =

(∫ b

0
w

)
1

λ p

⎛
⎜⎝∫ ∞

b

fi(t)
t

m

∏
j=1
j �=i

(
1
t

∫ t

0
f j

)
dt

⎞
⎟⎠

p

� 1
λ p

⎛
⎜⎝∫ ∞

b

fi(t)
t

(∫ t

0
w

) 1
p m

∏
j=1
j �=i

(
1
t

∫ t

0
f j

)
dt

⎞
⎟⎠

p

� 1
λ p

⎛
⎜⎝∫ ∞

b

fi(t)
t

(∫ t

0
w

) 1
p m

∏
j=1
j �=i

(
1
t

∫ t

0
f
p j
j v j

) 1
p j
(

1
t

∫ t

0
σ j

) 1
p′j dt

⎞
⎟⎠

p

� K
λ p

⎛
⎜⎝∫ ∞

b
t

1
p

fi(t)
t

vi(t)
m

∏
j=1
j �=i

(
1
t

∫ t

0
f
p j
j v j

) 1
p j

dt

⎞
⎟⎠

p

� K
λ p

⎛
⎜⎝∫ ∞

b
t

1
p

fi(t)
t

vi(t)
m

∏
j=1
j �=i

(
1
t

) 1
p j ‖ f j‖p j,v j dt

⎞
⎟⎠

p

� K
λ p

(∫ ∞

b
t

1
p−1−∑ j �=i

1
p j fi(t)vi(t)dt

)p m

∏
j=1
j �=i

‖ f j‖p
p j ,v j

� K
λ p

m

∏
j=1

‖ f j‖p
p j ,v j

.

This finishes the proof of Theorem 5, since in that result pi = 1 for all i . In order to
finish the proof of Theorem 4, we have to consider the case pi �= 1. Recall that, in this

case, it will be necessary w = ∏m
j=1 v

p
p j
j . We will need three Lemmas:

LEMMA 1. Let p > 0 and let p1, p2, . . . , pm � 1 with ∑m
j=1

1
p j

= 1
p and some

p j > 1 . If �v = (v1,v2, . . . ,vm) ∈ A�p,0 , then w = ∏m
j=1 v

p
p j
j ∈ Amp,0 .

We do not prove Lemma 1 since its proof is essentially included in the one of
Theorem 3.6 in [13].

LEMMA 2. Let p > 0 and p1, p2, . . . , pm � 1 with 1
p = ∑m

i=1
1
pi

and some p j > 1 .

Let �v ∈ A�p,0 and w = ∏m
j=1 v

p
p j
j . Then, there is A < 1 such that

∫ b

0
w � A

∫ 2b

0
w

for all b > 0 .
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Proof. Applying Lemma 1, we have that w ∈ Amp,0 , i. e., there is K > 0 such that
for all b > 0 the inequality

(
1
b

∫ b

0
w

) 1
mp
(

1
b

∫ b

0
σ
) 1

(mp)′
� K (5.2)

holds, where σ = w1−(mp)′ . Let b > 0. By (5.2) and Hölder’s inequality, we get

(∫ 2b

0
w

)(∫ 2b

0
σ
)mp−1

� K2mpbmp = K2mp
(∫ 2b

b
1

)mp

= K2mp
(∫ 2b

b
w

1
mp w− 1

mp

)mp

� K

(∫ 2b

b
w

)(∫ 2b

b
σ
)mp−1

.

Simplifying, we obtain

∫ b

0
w � K

∫ 2b

b
w.

This is equivalent to

∫ b

0
w � K

∫ 2b

0
w−K

∫ b

0
w,

i. e.,

∫ b

0
w � K

K +1

∫ 2b

0
w = A

∫ 2b

0
w,

where A = K
K+1 < 1.

LEMMA 3. Let p > 0 and p1, p2, . . . , pm � 1 with 1
p = ∑m

j=1
1
p j

and some p j >

1 . Let �v ∈ A�p,0 and w = ∏m
j=1 v

p
p j
j . Then, there is K > 0 such that for each i ∈

{1,2, . . . ,m} with pi > 1 and each b > 0 ,

(∫ b

0
w

) 1
p

⎛
⎜⎝∫ ∞

b

σi(t)
t p′i

m

∏
j=1
j �=i

⎛
⎝(1

t

∫ t

0
σ j

) p′i
p′j 1

t
p′i
p j

⎞
⎠dt

⎞
⎟⎠

1
p′i

� K.
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Proof. We have that

(∫ b

0
w

) 1
p

⎛
⎜⎝∫ ∞

b

σi(t)
t p′i

m

∏
j=1
j �=i

⎛
⎝(1

t

∫ t

0
σ j

) p′i
p′j 1

t
p′i
p j

⎞
⎠dt

⎞
⎟⎠

1
p′i

=
(∫ b

0
w

) 1
p

⎛
⎜⎝ ∞

∑
k=0

∫ 2k+1b

2kb

σi(t)
t p′i

m

∏
j=1
j �=i

⎛
⎝(1

t

∫ t

0
σ j

) p′i
p′j 1

t
p′i
p j

⎞
⎠dt

⎞
⎟⎠

1
p′i

�
(∫ b

0
w

) 1
p

⎛
⎜⎝ ∞

∑
k=0

1

(2kb)mp′i

(∫ 2k+1b

2kb
σi

)
m

∏
j=1
j �=i

(∫ 2k+1b

0
σ j

) p′i
p′j

⎞
⎟⎠

1
p′i

�

⎛
⎜⎝ ∞

∑
k=0

1

(2kb)mp′i

(∫ b

0
w

) p′i
p
(∫ 2k+1b

0
σi

)
m

∏
j=1
j �=i

(∫ 2k+1b

0
σ j

) p′i
p′j

⎞
⎟⎠

1
p′i

. (5.3)

Now, applying Lemma 2 and condition A�p,0 , the last term of (5.3) is less than

⎛
⎜⎝ ∞

∑
k=0

1

(2kb)mp′i
A

p′i
p (k+1)

(∫ 2k+1b

0
w

) p′i
p
(∫ 2k+1b

0
σi

)
m

∏
j=1
j �=i

(∫ 2k+1b

0
σ j

) p′i
p′j

⎞
⎟⎠

1
p′i

�
(

∞

∑
k=0

1

(2kb)mp′i

(
2k+1b

)mp′i
A

p′i
p (k+1)

) 1
p′i

= K.

Finally, we can complete the proof of the implication (iii) ⇒ (i) of Theorem 4.
As in the previous case, we have

∫
{x∈(0,∞)/Q( fi ∏m

j=1
j �=i

P f j)(x)>λ}
w =

∫ b

0
w =

(∫ b

0
w

)
1

λ p

⎛
⎜⎝∫ ∞

b

fi(t)
t

m

∏
j=1
j �=i

(
1
t

∫ t

0
f j

)
dt

⎞
⎟⎠

p

for some b > 0. Applying Hölder’s inequality and Lemma 3, we obtain

(∫ b

0
w

)⎛⎜⎝∫ ∞

b

fi(t)
t

m

∏
j=1
j �=i

(
1
t

∫ t

0
f j

)
dt

⎞
⎟⎠

p

�
(∫ b

0
w

)(∫ ∞

b
fi(t)pivi(t)dt

) p
pi

⎛
⎜⎝∫ ∞

b

σi(t)
t p′i

m

∏
j=1
j �=i

(
1
t

∫ t

0
f j

)p′i
dt

⎞
⎟⎠

p
p′i
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� ‖ fi‖p
vi,pi

(∫ b

0
w

)⎛⎜⎝∫ ∞

b

σi(t)
t p′i

m

∏
j=1
j �=i

(
1
t

∫ t

0
σ j

) p′i
p′j
(

1
t

∫ t

0
f
p j
j v j

) p′i
p j

dt

⎞
⎟⎠

p
p′i

�
m

∏
j=1

‖ f j‖p
v j ,p j

(∫ b

0
w

)⎛⎜⎝∫ ∞

b

σi(t)
t p′i

m

∏
j=1
j �=i

(
1
t

∫ t

0
σ j

) p′i
p′j 1

t
p′i
p j

dt

⎞
⎟⎠

p
p′i

� K
m

∏
j=1

‖ f j‖p
v j ,p j

.

6. Proofs of Theorems 11, 12 and 13.

Firstly, we will see that if T is a m-linear singular integral, then there are a con-
stant K > 0 and a local m-linear operator L such that the inequality

|T ( f1, f2, . . . , fm)(x)| � |L( f1, f2, . . . , fm)(x)|+KCn(| f1|, | f2|, . . . , | fm|)(x) (6.1)

holds for all m-tuples ( f1, f2, . . . , fm) of measurable functions and all x ∈ R
n . Without

loss of generality, we will work in the bilinear case, i. e., assuming m = 2.

Let f ,g be measurable functions on R
n and, following the notation in [15], let, for

every integer k , Ik = {x : 2k−1 � |x| < 2k} , I∗k = {x : 2k−2 � |x| < 2k+1} , fk,0 = f χI∗k ,
gk,0 = gχI∗k , fk,1 = f − fk,0 and gk,1 = g−gk,0 . Then

T ( f ,g)(x) = ∑
k∈Z

T ( f ,g)(x)χIk (x) = L( f ,g)(x)+G( f ,g)(x),

where

L( f ,g) = ∑
k∈Z

T ( fk,0,gk,0)χIk (6.2)

is the local part and

G( f ,g) = ∑
k∈Z

T ( fk,1,gk,0)χIk + ∑
k∈Z

T ( fk,0,gk,1)χIk + ∑
k∈Z

T ( fk,1,gk,1)χIk = I + II + III

is the global one.

In order to prove the boundedness of the local part, we will apply condition (1.7)
and the fact that T is bounded without weights. We only show the estimation for the
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strong type boundedness, since the weak type one is similar:

∫
Rn

|L( f ,g)(x)|pw(x)dx = ∑
k∈Z

∫
Ik
|T ( fk,0,gk,0(x)|pw(x)dx

� ∑
k∈Z

(
sup
x∈I∗k

w(x)

)∫
Ik
|T ( fk,0,gk,0(x)|pdx

� K ∑
k∈Z

(
sup
x∈I∗k

w(x)

)(∫
I∗k
| f |p1

) p
p1
(∫

I∗k
|g|p2

) p
p2

� K ∑
k∈Z

(∫
I∗k
| f |p1v1

) p
p1
(∫

I∗k
|g|p2v2

) p
p2 � K‖ f‖p

p1,v1
‖g‖p

p2,v2
,

where the last inequality holds by Hölder’s inequality.
For the global part G , we will see that the operator G is dominated by the bilinear

Calderón operator Cn and this immediately gives that G is bounded by applying Theo-
rems 6, 7 or 8, depending on the case. Let x ∈ Ik . Then, by (1.5) and the definitions of
fk,1 and gk,0 , we have

|I| = |T ( fk,1,gk,0)(x)| �
∫

R2n

| fk,1(y1)||gk,0(y2)|
(|x− y1|+ |x− y2|)2n dy1dy2

=
∫
|y1|>2k+1

∫
2k−2�|y2|<2k+1

| f (y1)||g(y2)|
(|x− y1|+ |x− y2|)2n dy1dy2

+
∫
|y1|<2k−2

∫
2k−2�|y2|<2k+1

| f (y1)||g(y2)|
(|x− y1|+ |x− y2|)2n dy1dy2

= A1 +A2.

(6.3)

For the estimation of A1 we have to take into account that, since x∈ Ik and y1 /∈ I∗k ,
then |x− y1|2n ∼ |x|2n + |y1|2n . Therefore

A1 �
∫
|y1|>2k+1

| f (y1)|
|x− y1|2n

(∫
|y2|<|y1|

|g(y2)|dy2

)
dy1

� K
∫
|y1|>2k+1

| f (y1)|
|x|2n + |y1|2n

(∫
|y2|<|y1|

|g(y2)|dy2

)
dy1

� K
∫
|y1|>|x|

| f (y1)|
|y1|n

(
1

|y1|n
∫
|y2|<|y1|

|g(y2)|dy2

)
dy1

= KQn(| f |Pn|g|)(x).
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The estimation of A2 requires to split the integral in y2 and to observe that 4|x| >
|y2| :

A2 �
∫

2k−2�|y2|<|x|

∫
|y1|<2k−2

| f (y1)||g(y2)|
|x|2n dy1dy2

+
∫
|x|�|y2|<2k+1

∫
|y1|<2k−2

| f (y1)||g(y2)|
|x|2n dy1dy2

� Pn| f |(x)Pn|g|(x)+K
∫
|x|�|y2|

|g(y2)|
|y2|n

(
1

|y2|n
∫
|y1|<|y2|

| f (y1)|dy1

)
dy2

= Pn| f |(x)Pn|g|(x)+KQn(|g|Pn| f |)(x).

The estimation of II is similar. Finally, for the estimation of III , we observe that,
since x ∈ Ik and yi /∈ I∗k for i = 1,2, then |x−yi| ∼ |x|+ |yi| for i = 1,2 and, therefore,

|III| � K
∫

R2n

| fk,1(y1)||gk,1(y2)|
(|x|+ |y1|+ |y2|)2n dy1dy2 � KHn( f ,g)(x).
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