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APPROXIMATION OF QUADRATIC LIE ∗–DERIVATIONS

ON ρ –COMPLETE CONVEX MODULAR ALGEBRAS

HARK-MAHN KIM, JIN-SEOK PARK AND HWAN-YONG SHIN ∗

(Communicated by M. Aslam Noor)

Abstract. In this paper, we investigate stable approximation of almost quadratic Lie ∗ -derivations
associated with approximate quadratic mappings on ρ -complete convex modular algebras χρ
by using Δ2 -condition via convex modular ρ.

1. Introduction

In 1940, S.M. Ulam gave a wide ranging talk before the mathematics club of the
University of Wisconsin in which he discussed a number of important unsolved prob-
lems. Among those was the the question concerning the stability of group homomor-
phisms [18]. Let G be a group and let G′ be a metric group with the metric d(·, ·) .
Given ε > 0, does there exist a δ > 0 such that if a mapping f : G → G′ satisfies the
inequality

d( f (xy), f (x) f (y)) < δ

for all x,y ∈ G , then there exists a homomorphism F : G → G′ with d( f (x),F(x)) < ε
for all x ∈ G? D.H. Hyers [6] has solved the problem of Ulam for the case of additive
mappings in 1941. The result was generalized by T.Aoki [1] in 1950, by Th.M. Rassias
[15] in 1978, by J.M. Rassias [14] in 1992, and by P. Gǎvruta [5] in 1994. Over the
past few decades, many mathematicians have published the generalized Hyers–Ulam
stability of functional equations [2, 3, 4, 11, 17, 21].

Now, we recall some basic definitions and remarks of modular spaces with modu-
lar functions, which are primitive notions corresponding to norms or metrics, as in the
followings [8, 9, 19].

DEFINITION 1. Let χ be a linear space.

(1) A function ρ : χ → [0,∞] is called a modular if for arbitrary x,y ∈ χ ,

(m1) ρ(x) = 0 if and only if x = 0,
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(m2) ρ(αx) = ρ(x) for every scalar α with |α| = 1,

(m3) ρ(αx+βy)� ρ(x)+ρ(y) for any scalars α , β , where α +β = 1 and α,β � 0,

(2) alternatively, if (m3) is replaced by

(m3)’ ρ(αx + βy) � αρ(x)+ β ρ(y) for every scalars α , β , where α + β = 1 and
α,β � 0,

acting on the real linear space χ , then we say that ρ is a convex modular. Now, we
define to extend the inequality (m3)’ to the following inequality

(m3)” ρ(αx+ βy) � |α|ρ(x)+ |β |ρ(y) for every scalars α,β ∈ C , where |α|+ |β | =
1,

acting on the complex linear space χ . Then, we remark a modular ρ defines a corre-
sponding modular space, i.e., the linear space χρ given by

χρ = {x ∈ χ : ρ(λx) → 0 as λ → 0}.
Let ρ be a modular on χρ . Then we remark that ρ(tx) is an increasing function in
t � 0 for each fixed x ∈ χ , that is, ρ(ax) � ρ(bx) whenever 0 � a < b . In addition,
if ρ is a convex modular on χ , then ρ(αx) � αρ(x) for all x ∈ χ and for all α with
0 � α � 1. Moreover, we see that ρ(αx) � |α|ρ(x) for all x ∈ χ and all α with
|α| � 1.

REMARK 1. (1) In general, we note that ρ
(

∑n
i=1 αixi

)
� ∑n

i=1 αiρ(xi) for all xi ∈
χ and αi � 0 (i = 1, · · · ,n) whenever 0 < α := ∑n

i=1 αi � 1 [9]. (2) Consequently, we
lead to ρ

(
∑n

i=1 αixi
)
� ∑n

i=1 |αi|ρ(xi) for all xi ∈ χ and all αi ∈ C whenever 0 < α :=
∑n

i=1 |αi| � 1.

DEFINITION 2. Let χρ be a modular space and let {xn} be a sequence in χρ .
Then,

(1) {xn} is ρ -convergent to x ∈ χρ and write xn
ρ−→ x if ρ(xn− x) → 0 as n → ∞ .

(2) {xn} is called ρ -Cauchy in χρ if ρ(xn− xm) → 0 as n,m → ∞ .

(3) A subset K of χρ is called ρ -complete if and only if any ρ -Cauchy sequence is
ρ -convergent to an element in K .

It is said that the modular ρ has the Fatou property if and only if ρ(x)� liminfn→∞ ρ(xn)
whenever the sequence {xn} is ρ -convergent to x . A modular function ρ is said to
satisfy the Δ2 -condition if there exists κ > 0 such that ρ(2x) � κρ(x) for all x ∈ χρ .

The concept of modular spaces was first introduced by Nakano [13], and then
by Musielak and Orlicz [12]. Concerning the stability theory in modular spaces, G.
Sadeghi [16] has established generalizedHyers–Ulam stability via the fixed point method
of a generalized Jensen functional equation f (rx+sy) = rg(x)+sh(y) in convex modu-
lar spaces with the Fatou property satisfying the Δ2 -condition with 0 < κ � 2. In [19],
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the authors have presented the generalized Hyers–Ulam stability of quadratic functional
equations via the extensive studies of fixed point theory in the framework of modular
spaces whose modular is convex, lower semicontinuous but does not satisfy any rel-
atives of Δ2 -condition (see also [7, 10]). Recently, the stability problems of various
functional equations in modular spaces have been intensively investigated by many au-
thors [8, 9, 10].

Now, we introduce the concept of convex modular ∗ -algebras. It is said that χρ
is called a convex modular ∗ -algebra if the fundamental space X is a ∗ -algebra with
convex modular ρ subject to ρ(ab) � ρ(a)ρ(b) and ρ(c∗) = ρ(c) for all a,b,c ∈ X .
A subset K of a convex modular algebra χρ is called ρ -complete if and only if any
ρ -Cauchy sequence in K is ρ -convergent to an element in K .

Throughout the paper, χρ will be a ρ -complete convex modular ∗ -algebra and
the symbol [a,b] will denote the commutator ab−ba. We say that a linear mapping f
is called a Lie ∗ -derivation if f ([x,y]) = [ f (x),y]+ [x, f (y)] and f (z∗) = f (z)∗ for all
vectors x,y,z , where [a,b] = ab− ba. In a similar way, we say that a quadratic map-
ping f is quadratic homogeneous if f (λx) = λ 2 f (x) for all vectors x and all scalars
λ , and a quadratic homogeneous mapping f is called a quadratic Lie ∗ -derivation if
f ([x,y]) = [ f (x),y2]+ [x2, f (y)] and f (z∗) = f (z)∗ for all vectors x,y,z . Concerning
the stability theory of approximate quadratic Lie ∗ -derivations in ρ -complete con-
vex modular algebras, we first investigate generalized Hyers–Ulam stability via direct
method of the equation

f (2x− y)+ f (x+ y) = f (x− y)+4 f (x)+ f (y) (1)

in ρ -complete convex modular algebras without using both Fatou property and Δ2 -
condition, and then alternatively present generalized Hyers–Ulam stability of the equa-
tion (1) via direct method using necessarily Δ2 -condition but not using the Fatou prop-
erty in ρ -complete convex modular algebras.

2. Approximate quadratic Lie ∗ -derivations

We recall that the classical functional equation

f (x+ y)+ f (x− y) = 2 f (x)+2 f (y) (2)

is called the quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. First of all, we remark that the
equation (1) is equivalent to the original quadratic functional equation (2), and so every
solution of equation (1) is a quadratic mapping. For notational convenience, we denote
the quadratic difference operator QEλ

f of quadratic equation (1) and QDf of quadratic
derivation, respectively, as follows:

QEλ
f (x,y) := f (2λx−λy)+ f (λx+ λy)

−λ 2 f (x− y)−4λ 2 f (x)−λ 2 f (y),
QDf (x,y) := f ([x,y])− [ f (x),y2]− [x2, f (y)]



124 H.-M. KIM, J.-S. PARK AND H.-Y. SHIN

for all x,y in a linear space X and λ ∈ Λ := {λ ∈ C : |λ | = 1}, which act as perturb-
ing terms of quadratic Lie ∗ -derivations. In the following, we present a generalized
Hyers–Ulam stability of the equation (1) via direct method associated with approximate
quadratic Lie ∗ -derivations in ρ -complete convex modular algebras without using both
Fatou property and Δ2 -condition.

THEOREM 1. Suppose that a mapping f : χρ → χρ with f (0) = 0 satisfies

ρ(QEλ
f (x,y)+ f (z∗)− f (z)∗) � φ1(x,y,z), (3)

ρ(QDf (x,y)) � φ2(x,y) (4)

and φ1 : χ3
ρ → [0,∞) and φ2 : χ2

ρ → [0,∞) are mappings such that

Φ(x,y,z) :=
∞

∑
j=0

φ1(2 jx,2 jy, ,2 jz)
22 j < ∞, lim

n→∞

φ2(2nx,2ny)
42n = 0 (5)

for all x,y,z ∈ χρ and λ ∈ Λ. If for each x ∈ χρ the mapping r → f (rx) from R to
χρ is continuous, then there exists a unique quadratic Lie ∗ -derivation F1 : χρ → χρ
which satisfies the equation (1) and

ρ( f (x)−F1(x)) � 1
4

Φ(x,x,0) (6)

for all x ∈ χρ .

Proof. Putting y := x and z := 0 in (3), we obtain

ρ(QE1
f (x,x)) = ρ( f (2x)−4 f (x)) � φ1(x,x,0), (7)

which yields

ρ
(

f (x)− f (2x)
4

)
� 1

4
ρ( f (2x)−4 f (x)) � 1

4
φ1(x,x,0)

for all x ∈ χρ . Since ∑n−1
j=0

1
4 j+1 � 1, we prove the following functional inequality

ρ
(

f (x)− f (2nx)
22n

)
= ρ

[n−1

∑
j=0

( f (2 jx)
22 j − f (2 j+1x)

22( j+1)

)]
(8)

= ρ
[n−1

∑
j=0

1

22( j+1)

(
4 f (2 jx)− f (2 j+1x)

)]

�
n−1

∑
j=0

1

22( j+1) ρ
(
4 f (2 jx)− f (2 j+1x)

)

� 1
4

n−1

∑
j=0

φ1(2 jx,2 jx,0)
22 j
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for all x ∈ χρ by using the property of convex modular ρ .
Now, replacing x by 2mx in (8), we have

ρ
( f (2mx)

22m − f (2m+nx)
22(m+n)

)
� 1

4

m+n−1

∑
j=m

φ1(2 jx,2 jx,0)
22 j

which converges to zero as m → ∞ by the assumption (5). Thus the above inequality
implies that the sequence { f (2nx)

22n } is ρ -Cauchy for all x ∈ χρ and so it is convergent
in χρ since the space χρ is ρ -complete. Thus, we may define a mapping F1 : χρ → χρ
as

F1(x) := ρ − lim
n→∞

f (2nx)
22n ⇐⇒ lim

n→∞
ρ
( f (2nx)

22n −F1(x)
)

= 0,

for all x ∈ χρ .
Now, we proclaim F1 is a quadratic mapping satisfying the equation (1) and the

approximation (6). In fact, if we put (x,y,z) := (2nx,2ny,0) in (3), and then divide the
resulting inequality by 22n, one obtains

ρ
(QEλ

f (2nx,2ny)

22n

)
�

ρ(QEλ
f (2nx,2ny))

22n � φ1(2nx,2ny,0)
22n ,

which implies

ρ
(QEλ

f (2nx,2ny)

22n

)
�

ρ(QEλ
f (2nx,2ny))

22n

� φ1(2nx,2ny,0)
22n

→ 0

for all x,y ∈ χρ and all λ ∈ Λ. Thus, noting 6|λ 2|+3
9 � 1 we figure out

ρ(
1
9
QEλ

F1
(x,y))

= ρ
(1

9
QEλ

F1
(x,y)− QEλ

f (2nx,2ny)

9 ·22n +
QEλ

f (2nx,2ny)

9 ·22n

)

� 1
9

ρ
(
F1
(
2λx−λy

)− f
(
2n(2λx−λy)

)
22n

)
+

1
9

ρ
(
F1(λx+ λy)− f

(
2n(λx+ λy)

)
22n

)

+
λ 2

9
ρ
(
F1
(
x− y

)− f
(
2n(x− y)

)
22n

)
+

4λ 2

9
ρ
(
F1(x)− f (2nx)

22n

)

+
λ 2

9
ρ
(
F1(y)− f (2ny)

22n

)
+

1
9

ρ
(QEλ

f

(
2nx,2ny

)
22n

)
for all x,y ∈ χρ and all positive integers n by Remark 1. Taking the limit as n → ∞ ,
one obtains ρ( 1

9QEλ
F1

(x,y)) = 0, and so

QEλ
F1

(x,y) = 0
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for all x,y∈ χρ and all λ ∈ Λ. Hence F1 satisfies the equation (1) and so it is quadratic.

On the other hand, since ∑n
i=0

1
22(i+1) + 1

22 � 1 for all n ∈ N , it follows from (7)
and Remark 1 that

ρ( f (x)−F1(x))

= ρ

(
n

∑
i=0

1

22(i+1)

(
22 f (2ix)− f (2i+1x)

)
+

f (2n+1x)
22(n+1) − F1(2x)

22

)

�
n

∑
i=0

1

22(i+1) ρ
(
QEλ

f (2ix,2ix)
)

+
1
22 ρ

( f (2n+1x)
22n −F1(2x)

)

�
n

∑
i=0

1

22(i+1) φ1(2ix,2ix,0)+
1
22 ρ

( f (2n ·2x)
22n −F1(2x)

)
,

without applying Fatou property of the modular ρ for all x ∈ χρ and all n ∈ N, from
which we obtain the approximation (6) of f by the quadratic mapping F1 by taking
n → ∞ in the last inequality.

Next, we claim that F1 is a quadratic Lie ∗ -derivation. By (9), we have QEλ
F1

(x,x)=
0 which yields F1(2λx) = 4λ 2F1(x) for all x ∈ χρ and λ ∈ Λ . From the assumption
that for each x ∈ χρ the mapping r → f (rx) from R to χρ is continuous, it follows
that F1(rx) = r2F1(x) for all x ∈ χρ and r ∈ R by the same argument as in the paper
[15]. Thus, for any nonzero λ ∈ C

F1(λx) = F1

(
2

λ
|λ |

|λ |
2

x

)
= 4

(
λ
|λ |
)2

F1

( |λ |
2

x

)

= 4

(
λ
|λ |
)2( |λ |

2

)2

F1(x) = λ 2F1(x)

for all x ∈ χρ and λ ∈ C , which concludes that F1 is quadratic homogeneous. In
addition, in view of the inequality in (4) and the second condition in (5), we arrive at

ρ(
1
4
QDF1(x,y))

= ρ
(1

4
QDF1(x,y)−

QDf (2nx,2ny)
4 ·42n +

QDf (2nx,2ny)
4 ·42n

)

� 1
4

ρ
(
F1
(
[x,y]

)− f
(
22n[x,y]

)
42n

)
+

1
4

ρ
( [x2, f (2ny)]

4n − [x2,F1(y)]
)

+
1
4

ρ
( [ f (2nx),y2]

4n − [F1(x),y2]
)

+
1

4 ·42n ρ
(
QDf

(
2nx,2ny

))

for all x,y ∈ χρ , which tends to zero as n tends to ∞. Therefore, one obtains
ρ( 1

4QDF1(x,y)) = 0, and so F1 is a quadratic Lie derivation. In addition, we get the
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following inequality

ρ
(1

3

(
F1(z∗)−F1(z)∗

))
� 1

3
ρ
(
F1(z∗)− f (2nz∗)

4n

)
+

1
3

ρ
( f (2nz)

4n

∗
−F1(z)∗

)
+

1
3

ρ
( f (2nz∗)

4n − f (2nz)
4n

∗)
� 1

3
ρ
(
F1(z∗)− f (2nz∗)

4n

)
+

1
3

ρ
( f (2nz)

4n

∗
−F1(z)∗

)
+

φ1(0,0,2nz)
3 ·4n

for all vector z . Taking n → ∞ , one concludes F1 is a Lie ∗ -derivation.
Finally, applying the same argument as in the proof of Theorem [9], we prove the

uniqueness of F1 satisfying the approximation (6) near f . Therefore, one concludes
that the mapping F1 is a unique quadratic Lie derivation near f satisfying the approxi-
mation (6) in the modular algebra χρ .

As a corollary of Theorem 1, we obtain the following stability result of approxi-
mate quadratic Lie ∗ -derivations on complete normed algebras χ , which may be con-
sidered as χρ equipped with norm ‖ · ‖ = ρ(·).

COROLLARY 1. Let χρ be a complete normed ∗ -algebra. For given nonnegative
real numbers θi,ϑi together with ri < 2(i = 1,2,3) and a,b with a+ b < 2, suppose
that a mapping f : χρ → χρ with f (0) = 0 satisfies

‖QEλ
f (x,y)+ f (z∗)− f (z)∗‖ � θ1‖x‖r1 + θ2‖y‖r2 + θ3(‖x‖a‖y‖b +‖z‖r3),

‖QDf (x,y)‖ � ϑ1‖x‖2r1 + ϑ2‖y‖2r2 + ϑ3‖x‖2a‖y‖2b

for all x,y,z ∈ χρ and all λ ∈ Λ. If for each x ∈ χρ the mapping r → f (rx) from R to
χρ is continuous, then there exists a unique quadratic Lie ∗ -derivation F1 : χρ → χρ
such that

‖ f (x)−F1(x)‖ � θ1‖x‖r1

22−2r1
+

θ2‖x‖r2

22−2r2
+

θ3‖x‖a+b

22−2a+b

for all x ∈ χρ .

As a corollary, we obtain a stability result by strictly quadratical contractive condi-
tions of control functions for perturbing terms QEλ

f ,QDf of quadratic Lie ∗ -derivations.

COROLLARY 2. Suppose there exist two functions φ1 : χ3
ρ → [0,∞) and φ2 : χ2

ρ →
[0,∞) and two constant li with 0 < li < 1 ( i = 1,2) for which a mapping f : χρ → χρ
with f (0) = 0 satisfies

ρ(QEλ
f (x,y)+ f (z∗)− f (z)∗) � φ1(x,y,z), φ1(2x,2y,2z) � 4l1φ1(x,y,z),

ρ(QDf (x,y)) � φ2(x,y), φ2(2x,2y) � 16l2φ2(x,y)
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for all x,y,z ∈ χρ and all λ ∈ Λ. If for each x ∈ χρ the mapping r → f (rx) from R to
χρ is continuous, then there exists a unique quadratic Lie ∗ -derivation F1 : χρ → χρ
which satisfies the equation (1) and

ρ( f (x)−F1(x)) � 1
4(1− l1)

φ1(x,x,0)

for all x ∈ χρ .

Proof. In view of strict quadratical contractive conditions for control functions φ1

and φ2, one leads to φ1(2nx,2ny,2nz)�(4l1)nφ1(x,y,z) and φ2(2nx,2ny)�(16l2)nφ2(x,y)
for all x,y,z ∈ χρ and all λ ∈ Λ. Hence, applying Theorem 1 to the theorem, we obtain
the required approximation.

We recall that if the modular ρ satisfies the Δ2 -condition, then κ � 1 for nontriv-
ial modular ρ , and κ � 2 for nontrivial convex modular ρ . See references [8, 9, 16,
19]. Now, we are going to investigate alternatively generalized Hyers–Ulam stability
of the equation (1) associated with approximate quadratic Lie ∗ -derivations via direct
method using necessarily Δ2 -condition but not using the Fatou property in ρ -complete
convex modular algebras.

THEOREM 2. Let χρ be a ρ-complete convex modular ∗-algebra with Δ2-condition.
Suppose there exist two functions ϕ1 : χ3

ρ → [0,∞) and ϕ2 : χ2
ρ → [0,∞) for which a

mapping f : χρ → χρ satisfies

ρ(QEλ
f (x,y)+ f (z∗)− f (z)∗) � ϕ1(x,y,z), (9)

∞

∑
j=1

κ3 j

2 j ϕ1(
x
2 j ,

y
2 j ,

z
2 j ) := Ψ(x,y,z) < ∞,

ρ(QDf (x,y)) � ϕ2(x,y), (10)

lim
n→∞

κ4nϕ2(2−nx,2−ny) = 0

for all x,y,z ∈ χρ and all λ ∈ Λ. If for each x ∈ χρ the mapping r → f (rx) from R to
χρ is continuous, then there exists a unique quadratic Lie ∗ -derivation F2 : χρ → χρ
satisfies the equation (1) and

ρ( f (x)−F2(x)) � 1
2κ

Ψ(x,x,0) (11)

for all x ∈ χρ .

Proof. First, note that ∑∞
j=1

κ3 j

2 j ϕ1(0,0,0) = Ψ(0,0,0) < ∞ and ρ(QE1
f (0,0)) �

ϕ1(0,0,0) lead to ϕ1(0,0,0) = 0, QE1
f (0,0) = 0 and so f (0) = 0. Thus, it follows

from (7) that

ρ( f (x)−4 f (
x
2
)) � ϕ1(

x
2
,
x
2
,0)
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for all x ∈ χρ . Thus, one obtains the following inequality by the convexity of the
modular ρ and Δ2 -condition

ρ( f (x)−42 f (
x
22 )) � 1

2
ρ
(
2 f (x)−2 ·4 f (

x
2
)
)

+
1
22 ρ

(
22 ·4 f (

x
2
)−22 ·42 f (

x
22 )
)

� κ
2

ϕ1

( x
2
,
x
2
,0
)

+
κ4

22 ϕ1

( x
22 ,

x
22 ,0

)
for all x ∈ χρ . Then using the repeating process for any n � 2, we prove the following
functional inequality

ρ( f (x)−4n f (
x
2n )) � 1

κ2

n

∑
j=1

κ3 j

2 j ϕ( x
2 j ,

x
2 j ,0

)
(12)

for all x ∈ χρ . In fact, it is true for j = 2. Assume that the inequality (12) holds true
for n . Thus, using the convexity of the modular ρ , we deduce

ρ( f (x)−4n+1 f (
x

2n+1 ))

= ρ
(1

2

{
2 f (x)−2 ·4 f (

x
2
)
}

+
1
2

{
2 ·4 f (

x
2
)−2 ·4n+1 f (

x
2n+1 )

})
� κ

2
ρ
(

f (x)−4 f (
x
2
)
)

+
κ3

2
ρ
(

f (
x
2
)−4n f (

x
2n+1 )

)
� κ

2
ϕ1

( x
2
,
x
2
,0
)

+
κ3

2
· 1

κ2

n

∑
j=1

κ3 j

2 j ϕ1

( x
2 j+1 ,

x
2 j+1 ,0

)

=
κ
2

ϕ1

( x
2
,
x
2
,0
)

+
1

κ2

n

∑
j=1

κ3( j+1)

2 j+1 ϕ1

( x
2 j+1 ,

x
2 j+1 ,0

)

=
1

κ2

n+1

∑
j=1

κ3 j

2 j ϕ1

( x
2 j ,

x
2 j ,0

)
,

which proves (12) for n+1. Now, replacing x by 2−mx in (12), we have

ρ
(
22m f (

x
2m )−22(m+n) f (

x
2m+n )

)
� κ2mρ

(
f (

x
2m )−22n f (

x
2m+n )

)
� κ2m

κ2

n

∑
j=1

κ3 j

2 j ϕ1

( x
2 j+m ,

x
2 j+m ,0

)

� κ2m

κ2

n

∑
j=1

κ3 j

2 j ϕ1

( x
2 j+m ,

x
2 j+m ,0

)
· κm

2m

=
1

κ2

n

∑
j=1

κ3( j+m)

2 j+m ϕ1

( x
2 j+m ,

x
2 j+m ,0

)

=
1

κ2

m+n

∑
j=m+1

κ3 j

2 j ϕ1

( x
2 j ,

x
2 j ,0

)
,
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which converges to zero as m→∞ by the assumption (10). Thus, the sequence {4n f ( x
2n )}

is ρ -Cauchy for all x ∈ χρ and so it is ρ -convergent in χρ since the space χρ is ρ -
complete. Thus, we may define a mapping F2 : χρ → χρ as

F2(x) := ρ − lim
n→∞

4n f (
x
2n ) ⇐⇒ lim

n→∞
ρ
(
4n f (

x
2n )−F2(x)

)
= 0,

for all x ∈ χρ .

Now, we prove the mapping F2 satisfies the equation (1). Letting z := 0 and
setting (x,y) := (2−nx,2−ny) in (9), and then multiplying the resulting inequality by
4n, we get

ρ(22nQEλ
f (2−nx,2−ny)) � κ2nϕ1(2−nx,2−ny,0)

� κ2nϕ1(2−nx,2−ny,0) · κn

2n

=
κ3n

2n ϕ1(2−nx,2−ny,0),

which tends to zero as n → ∞ for all x,y ∈ χρ . Thus, it follows from Remark 1 that

ρ(
1
9
QEλ

F2
(x,y))

= ρ
(1

9
QEλ

F2
(x,y)− 1

9
22nQEλ

f (
x
2n ,

y
2n )+

1
9
22nQEλ

f (
x
2n ,

y
2n )
)

� 1
9

ρ
(
F2(2λx−λy)−22n f (

2λx−λy
2n )

)
+

1
9

ρ
(
F2(λx+ λy)−22n f (

λx+ λy
2n )

)
+

λ 2

9
ρ
(
F2(x− y)−22n f (

x− y
2n )

)
+

4λ 2

9
ρ
(
F2(x)−22n f (

x
2n )
)

+
λ 2

9
ρ
(
F2(y)−22n f (

y
2n )
)

+
1
9

ρ
(
22nQEλ

f (
x
2n ,

y
2n )
)

for all x,y ∈ χρ and all positive integers n . Taking the limit as n → ∞ , one obtains

QEλ
F2

(x,y) = 0

for all x,y∈ χρ and all λ ∈Λ. Hence F2 satisfies the equation (1), and so it is quadratic.

Now, we prove that F2 is a quadratic Lie ∗ -derivation. It is easy to see that the
mapping F2 is quadratic homogeneous by the same reasoning as in Theorem 1. From
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the last inequality in (10) and the last condition in (9), it follows that

ρ
(1

4
QDF2(x,y)

)
= ρ

(1
4
QDF2(x,y)−42n QDf (2−nx,2−ny)

4
+42n QDf (2−nx,2−ny)

4

)
� 1

4
ρ
(
F2([x,y])−42n f (2−2n[x,y])

)
+

1
4

ρ
(
[x2,4n f (2−ny)]− [x2,F2(y)]

)
+

1
4

ρ
(
[4n f (2−nx),y2]− [F2(x),y2]

)
+

1
4

ρ
(
42nQDf (2−nx,2−ny)

)
� 1

4
ρ
(
F2([x,y])−42n f (2−2n[x,y])

)
+

1
4

ρ
(
[x2,4n f (2−ny)−F2(y)]

)
+

1
4

ρ
(
[4n f (2−nx)−F2(x),y2]

)
+

κ4n

4
ϕ2

(
2−nx,2−ny

)
for all x,y∈ χρ , from which QDF2(x,y) = 0 by taking n→ ∞, and so F2 is a quadratic
Lie derivation. In addition, it follows from the definition of F2 that the following in-
equality

ρ
(1

3

(
F2(z∗)−F2(z)∗

))
� 1

3
ρ
(
F2(z∗)−4n f

( z∗

2n

))
+

1
3

ρ
(
4n f
( z

2n

)∗ −F2(z)∗
)

+
1
3

ρ
(
4n f
( z∗

2n

)
−4n f

( z
2n

)∗)
� 1

3
ρ
(
F2(z∗)−4n f

( z∗

2n

))
+

1
3

ρ
(
4n f
( z

2n

)∗ −F2(z)∗
)

+
κ2n

3
ϕ1

(
0,0,

z
2n

)
· κn

2n

holds for all vectors z , which goes to zero as n → ∞ . Hence, one concludes F2 is a
quadratic Lie ∗ -derivation.

On the other hand, one can see the following inequality

ρ( f (x)−F2(x)) = ρ
(1

2

{
2 f (x)−2 ·4n f (

x
2n )
}

+
1
2

{
2 ·4n f (

x
2n )−2F2(x)

})
� κ

2
ρ
(

f (x)−4n f (
x
2n )
)

+
κ
2

ρ
(
4n f (

x
2n )−F2(x)

)
� κ

2
· 1

κ2

n

∑
j=1

κ3 j

2 j ϕ1(
x
2 j ,

x
2 j ,0)+

κ
2

ρ
(
4n f (

x
2n )−F2(x)

)

� 1
2κ

∞

∑
j=1

κ3 j

2 j ϕ1(
x
2 j ,

x
2 j ,0) =

1
2κ

Ψ(x,x,0),

by Δ2 -condition without using the Fatou property for all positive integers n , which
yields the approximation (11) by taking n → ∞ .

Finally, applying the same argument as in the proof of Theorem [9], we prove the
uniqueness of F2 satisfying the approximation (11) near f . Hence, the mapping F2 is
a unique quadratic Lie ∗ -derivation satisfying the estimation (11) near f .
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REMARK 2. In Theorem 2, if χρ is a Banach ∗ -algebra with norm ‖·‖ := ρ , and
so ρ(2x) = 2ρ(x), κ := 2, then we see from (9) and (10) that there exists a unique
quadratic Lie ∗ -derivation F2 : χρ → χρ , defined as F2(x) = limn→∞ 22n f ( x

2n ), x ∈ χρ ,
which satisfies the equation (1) and

ρ( f (x)−F2(x)) � 1
4

∞

∑
j=1

22 jϕ1(
x
2 j ,

x
2 j ,0)

for all x ∈ χρ .

As a corollary of Theorem 2, we obtain the following stability result of the equa-
tion (1) associated with quadratic Lie ∗ -derivations, which generalizes stability result
in normed ∗ -algebras.

COROLLARY 3. Let χρ be a complete normed ∗ -algebra. For given nonnegative
real numbers θi,ϑi together with 2 < ri (i = 1,2,3) and a,b with 2 < a+b, suppose
a mapping f : χρ → χρ satisfies

‖QEλ
f (x,y)+ f (z∗)− f (z)∗‖ � θ1‖x‖r1 + θ2‖y‖r2 + θ3(‖x‖a‖y‖b +‖z‖r3),

‖QDf (x,y)‖ � ϑ1‖x‖2r1 + ϑ2‖y‖2r2 + ϑ3‖x‖2a‖y‖2b

for all x,y,z ∈ χρ and all λ ∈ Λ. If for each x ∈ χρ the mapping r → f (rx) from R to
χρ is continuous, then there exists a unique quadratic Lie ∗ -derivation F2 : χρ → χρ
such that

ρ( f (x)−F2(x)) � θ1‖x‖r1

2r1 −22 +
θ2‖x‖r2

2r2 −22 +
θ3‖x‖a+b

2a+b−22

for all x ∈ χρ .

COROLLARY 4. Let χρ be a ρ -complete convex modular ∗ -algebra with Δ2 -
condition. Suppose there exist two functions ϕ1 : χ3

ρ → [0,∞) and ϕ2 : χ2
ρ → [0,∞) and

two constant li with 0 < l1 < 8
κ3 and 0 < l2 < 16

κ4 for which a mapping f : χρ → χρ
satisfies

ρ(QEλ
f (x,y)+ f (z∗)− f (z)∗) � ϕ1(x,y,z), ϕ1(

x
2
,
y
2
,
z
2
) � l1

4
ϕ1(x,y,z),

ρ(QDf (x,y)) � ϕ2(x,y), ϕ2(
x
2
,
y
2
) � l2

16
ϕ2(x,y)

for all x,y,z ∈ χρ and all λ ∈ Λ. If for each x ∈ χρ the mapping r → f (rx) from R to
χρ is continuous, then there exists a unique quadratic Lie ∗ -derivation F2 : χρ → χρ
satisfies the equation (1) and

ρ( f (x)−F2(x)) � κ2l1
2(8−κ3l1)

ϕ1(x,x,0)

for all x ∈ χρ .
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