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AN IMPROVED RESULT OF A WEIGHTED TRIGONOMETRIC

INEQUALITY IN ACUTE TRIANGLES WITH APPLICATIONS

JIAN LIU

(Communicated by J. Pečarić)

Abstract. An improved inequality of a weighted trigonometric inequality in acute triangles is
established by using the simplest arithmetic-geometric mean inequality, which also is an im-
provement of the well known Wolstenholme inequality for non-obtuse triangles. Its two equiv-
alent weighted inequalities for the strengthened versions of the Erdös-Mordell inequality and
Barrow’s inequality are obtained. Some applications are given by new results and five relevant
interesting conjectures are also put forward.

1. Introduction

For any triangle ABC and real numbers x,y,z we have the following well known
Wolstenholme inequality

x2 + y2 + z2 � 2(yzcosA+ zxcosB+ xycosC), (1)

where A,B,C denote the angles of the triangle ABC . Equality holds if and only if
x : y : z = sinA : sinB : sinC .

Inequality (1) has already appeared in Wolstenholme’s book [17] in 1867. A num-
ber of triangle inequalities can be derived from this inequality. In the seventh chapter of
my recent monograph [5], the author specially discussed applications of the Wolsten-
holm inequality (1).

In 1994, the author established the following similar inequality for the acute trian-
gle ABC in a Chinese paper [6]:

x2 + y2 + z2 � 4(yzcosBcosC+ zxcosCcosA+ xycosAcosB), (2)

with equality if and only if the acute ABC is equilateral and x = y = z .
In fact, there are several equivalent forms of inequality (2). By the substitution

x → xcosA etc., we see that it is equivalent to

x2 cos2 A+ y2 cos2 B+ z2 cos2C

� 4(yzcos2 Bcos2C+ zxcos2Ccos2 A+ xycos2 Acos2 B), (3)
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which gives a weighted generalization of the following Oppenheim’s non-obtuse trian-
gle inequality (see [14] and [11, pp.31-32]):

cos2 A+ cos2 B+ cos2C � 4
(
cos2 Bcos2C+ cos2Ccos2 A+ cos2 Acos2 B

)
. (4)

By the transformations A → (π −A)/2 etc., we know again that inequality (2) is
equivalent to

x2 + y2 + z2 � 4

(
yzsin

B
2

sin
C
2

+ zxsin
C
2

sin
A
2

+ xysin
A
2

sin
B
2

)
, (5)

where the triangle ABC is arbitrary. Clearly, inequality (5) also is equivalent to

x2

sin2 A
2

+
y2

sin2 B
2

+
z2

sin2 C
2

� 4(yz+ zx+ xy). (6)

Furthermore, it is easy to show that inequality (6) is equivalent to the following alge-
braic inequality (see [5, Corollary 2.19]):

x2 v+w
u

+ y2 w+u
v

+ z2 u+ v
w

� 4

(
yz

u
v+w

+ zx
v

w+u
+ xy

w
u+ v

)
, (7)

where u,v,w are arbitrary positive numbers. Equality holds if and only x = y = z and
u = v = w .

In [5], the author gives some applications of (6) and (7). For example, we used
inequality (6) to deduce the following weighted trigonometric inequality (see [5, Corol-
lary 17.15]):

x2
(

cos
B
2

cos
C
2

)2

+ y2
(

cos
C
2

cos
A
2

)2

+ z2
(

cos
A
2

cos
B
2

)2

� yz(sinBsinC)2 + zx(sinC sinA)2 + xy(sinAsinB)2 , (8)

and the weighted geometric inequality (see [5, Corollary 2.18]):

x2R2R3 + y2R3R1 + z2R1R2 � 4(yzw2w3 + zxw3w1 + xyw1w2), (9)

where R1,R2,R3 denote the distances from a point P inside triangle ABC to the ver-
tices A,B,C of ABC and w1,w2,w3 denote the lengths of the internal bisectors of
∠BPC,∠CPA,∠APB , respectively.

In addition, the author obtains various generalizations and strengthened versions
of inequality (2) in the monograph [5]. Owing to the limitation of space, we do not
introduce related results here.

In this paper, we give an improvement of inequality (2) (which also is an improve-
ment of the Wolstenholme inequality (1) for non-obtuse triangles) and prove its two
equivalent propositions. Some applications of our new results are also given.
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2. Main result and its proof

The acute triangle inequality (2) can be improved and extended to non-obtuse
triangles as follows:

THEOREM 1. For the non-obtuse triangle ABC and arbitrary real numbers x,y,z,
the following inequality holds:

x2 + y2 + z2 � (zcosB+ ycosC)2 +(xcosC+ zcosA)2 +(ycosA+ xcosB)2, (10)

If ABC is an acute triangle, then the equality in (10) holds if and only if x : y : z = sinA :
sinB : sinC; If ABC is a right triangle with A = π/2 , then the equality in (10) holds if
and only if y = z and B = C = π/4 .

Since (zcosB + ycosC)2 � 4yzcosBcosC , thus inequality (10) obviously is an
improvement of inequality (2). In fact, inequality (10) also is an improvement of the
Wolstenholme inequality (1) for the non-obtuse triangle ABC (see Remark 2 below).

Clearly, inequality (10) is equivalent to(
1− cos2 B− cos2C

)
x2 +

(
1− cos2C− cos2 A

)
y2 +

(
1− cos2 A− cos2 B

)
z2

� 2(yzcosBcosC+ zxcosCcosA+ xycosAcosB), (11)

and equivalent to

x2 cos2 A+ y2 cos2 B+ z2 cos2C

� (y+ z)2 cos2 Bcos2C+(z+ x)2 cos2Ccos2 A+(x+ y)2 cos2 Acos2 B, (12)

which clearly is stronger than (3). Equality in (12) holds if and only if xcotA = ycotB =
zcotC .

Next, we give a straightforward proof of Theorem 1.

Proof. We divide our arguments into the following two cases.
Case 1. �ABC is a right triangle with A = π/2.
In this case, inequality (10) becomes

x2 + y2 + z2 � (zcosB+ ycosC)2 + x2(cos2C+ cos2 B), (13)

which is required to prove. By Cauchy inequality, we have

(zcosB+ ycosC)2 � (y2 + z2)(cos2 B+ cos2C). (14)

Since A = π/2, we have cos2 B+ cos2C = 1. Thus, (13) follows from (14). In view of
the equality condition of Cauchy inequality and A = π/2,we easily further know that
the equality in (13) holds if and only if y = z and B = C = π/4.

Case 2. �ABC is an acute triangle.
Firstly,we shall prove that for any triangle ABC and real numbers x,y,z holds:

(
zsin

B
2

+ ysin
C
2

)2

+
(

xsin
C
2

+ zsin
A
2

)2

+
(

ysin
A
2

+ xsin
B
2

)2

� x2 + y2 + z2, (15)
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with equality if and only if x : y : z = cos
A
2

: cos
B
2

: cos
C
2

.

In the sequel, we let a,b,c denote the sides BC,CA,AB of �ABC respectively,
and let s = (a+b+ c)/2. By the half-angle formula

sin
A
2

=

√
(s−b)(s− c)

bc
, (16)

we have

sin
B
2

sin
C
2

=
s−a

a

√
(s−b)(s− c)

bc
. (17)

Thus, we use the simplest arithmetic-geometric inequality to obtain that

2yzsin
B
2

sin
C
2

� s−a
a

(
z2 s−b

c
+ y2 s− c

b

)
(18)

with equality if and only if

z2 s−b
c

= y2 s− c
b

. (19)

Let Q0 be the value of the left hand of (15), by (18) and formula (16), we have

Q = x2
(

sin2 B
2

+ sin2 C
2

)
+ y2

(
sin2 C

2
+ sin2 A

2

)
+ z2

(
sin2 A

2
+ sin2 B

2

)

+2

(
yzsin

B
2

sin
C
2

+ zxsin
C
2

sin
A
2

+ xysin
A
2

sin
B
2

)

=
s−a

a

(
s− c

c
+

s−b
b

)
x2 +

s−b
b

(
s−a

a
+

s− c
c

)
y2

+
s− c

c

(
s−b

b
+

s−a
a

)
z2 +

s−a
a

(
z2 s−b

c
+ y2 s− c

b

)

+
s−b

b

(
x2 s− c

a
+ z2 s−a

c

)
+

s− c
c

(
y2 s−a

b
+ x2 s−b

a

)
.

Also, it is easy to verify the following identity

s−a
a

(
s− c

c
+

s−b
b

)
+

(s−b)(s− c)
a

(
1
b

+
1
c

)
= 1, (20)

and two analogous identities, so we have

Q � x2 + y2 + z2

and inequality (15) is proved.
Clearly, the equality of (15) holds if and only if

z2 s−b
c

= y2 s− c
b

, x2 s− c
a

= z2 s−a
c

, y2 s−a
b

= x2 s−b
a

,
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i.e.,x : y : z =
√

a(s−a) :
√

b(s−b) :
√

c(s− c) . Again, by the following half-angle
formula

cos
A
2

=

√
s(s−a)

bc
, (21)

we see that

√
a(s−a) :

√
b(s−b) :

√
c(s− c) = cos

A
2

: cos
B
2

: cos
C
2

.

Thus, we further conclude that the equality in (15) holds if only if x : y : z = cos
A
2

:

cos
B
2

: cos
C
2

.

When the triangle ABC is an acute triangle, we can use the substitutions A →
π − 2A ,B → π − 2B,C → π − 2C in (15), and then inequality (10) follows. Also, by
the equality condition of (15), we know that the equality of (10) holds if and only if
x : y : z = sinA : sinB : sinC .

Combining the arguments of the two cases above, we finish the proof of Theorem
1.

REMARK 1. For general ternary quadratic inequality,we have the following con-
clusion (see [7, Lemma 4]): Let p1, p2, p3,q1,q2,q3 be real numbers such that p1 > 0,
p2 > 0, p3 > 0, 4p2p3−q2

1 > 0, 4p3p1−q2
2 > 0, 4p1p2−q2

3 > 0 and

D0 ≡ 4p1p2p3− (q1q2q3 + p1q
2
1 + p2q

2
2 + p3q

2
3) � 0. (22)

Then the following inequality

p1x
2 + p2y

2 + p3z
2 � q1yz+q2zx+q3xy (23)

holds for all real numbers x,y,z . If x,y,z �= 0, then the equality in (23) holds if and
only if

(2p1q1 +q2q3)x = (2p2q2 +q3q1)y = (2p3q3 +q1q2)z. (24)

Here, we point out that Theorem 1 can also be proved by using the above conclusion
(omit here).

REMARK 2. In fact, inequality (10) can be extended to the following

x2 + y2 + z2

� (zcosB+ ycosC)2 +(xcosC+ zcosA)2 +(ycosA+ xcosB)2

� 2(yzcosA+ zxcosB+ xycosC), (25)

which gives a refinement of the Wolstenholme inequality (1) for the acute triangle. The
second inequality in (25) actually holds for all triangles and can also be proved by using
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the conclusion given in Remark 1. Clearly, inequality chain (25) is equivalent to

x2 + y2 + z2

�
(

zsin
B
2

+ ysin
C
2

)2

+
(

xsin
C
2

+ zsin
A
2

)2

+
(

ysin
A
2

+ xsin
B
2

)2

� 2

(
yzsin

A
2

+ zxsin
B
2

+ xysin
C
2

)
, (26)

which holds for any triangle ABC .

3. Two equivalent weighted geometric inequalities

In this section, we shall prove two weighted geometric inequalities, which are
equivalent with the result of Theorem 1. In what follows, we shall continue to use the
previous symbols.

The famous Erdös-Mordell inequality states that

R1 +R2 +R3 � 2(r1 + r2 + r3). (27)

(Some recent results about this inequality can be found in [2], [8-10], [12] and [13]).
And, we know that D.F.Barrow obtains the following improvement of (27):

R1 +R2 +R3 � 2(w1 +w2 +w3). (28)

In fact, it is well known that these two inequalities can be generalized to the case with
weights (see [11]):

x2R1 + y2R2 + z2R3 � 2(yzr1 + zxr2 + xyr3) (29)

and
x2R1 + y2R2 + z2R3 � 2(yzw1 + zxw2 + xyw3) (30)

respectively, where x,y,z are arbitrary real numbers. Both equalities in (29) and (30)
hold if and only if x : y : z = sinA : sinB : sinC and P is the circumcenter of the triangle
ABC .

In [5], the author has proved that the Wolstenholme inequality (1) is equivalent to
inequalities (29) and (30). In this section, we shall apply inequality (10) to establish two
weighted inequalities involving the sharpened versions of the Erdös-Mordell inequality
and Barrow’s inequality, which are both equivalent with inequality (10).

The following sharped version of the Erdös-Mordell inequality

(r2 + r3)2

R1
+

(r3 + r1)2

R2
+

(r1 + r2)2

R3
� R1 +R2 +R3 (31)

is established by the author in [8]. Recently, when the author tried to prove the follow-
ing sharpness of (31), i.e.

(w2 +w3)2

R1
+

(w3 +w1)2

R2
+

(w1 +w2)2

R3
� R1 +R2 +R3, (32)
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the main result of this paper, i.e., inequality (10) was found. And, we obtained the
weighted generalizations of (31) and (32), which are both equivalent with (10), as fol-
lows:

THEOREM 2. Let P be an interior point P of any triangle ABC (P may lie on the
boundary except the vertices of ABC), then for any real numbers x,y,z the following
inequality holds:

(zr2 + yr3)2

R1
+

(xr3 + zr1)2

R2
+

(yr1 + xr2)2

R3
� x2R1 + y2R2 + z2R3, (33)

If ABC is an acute triangle, then the equality in (33) holds if and only if P is the
circumcenter of ABC and x : y : z = sinA : sinB : sinC; If ABC is a right triangle with
A = π/2 , then the equality in (33) holds if and only if y = z,B =C = π/4 and P is the
midpoint of BC.

THEOREM 3. Let P be an interior point P of any triangle ABC (P may lie on the
boundary except the vertices of ABC), then for any real numbers x,y,z the following
inequality holds:

(zw2 + yw3)2

R1
+

(xw3 + zw1)2

R2
+

(yw1 + xw2)2

R3
� x2R1 + y2R2 + z2R3, (34)

If ABC is an acute triangle, then the equality in (34) holds if and only if P is the
circumcenter of ABC and x : y : z = sinA : sinB : sinC; If ABC is a right triangle with
A = π/2 , then the equality in (34) holds if and only if y = z, B =C = π/4 and P is the
midpoint of BC.

Now, we give the proof of Theorem 3 (we shall show that Theorem 2 follows from
Theorem 3 easily).

Proof. In triangle ABC , we know that the lengths of bisector wa of ∠BAC is given
by

wa =
2bc
b+ c

cos
A
2

. (35)

Since b+ c � 2
√

bc , we have

wa �
√

bccos
A
2

, (36)

with equality if and only if b = c .
Applying inequality (36) to �BPC , we know that for any interior point P of

triangle ABC holds:

w1 �
√

R2R3 cos
α
2

, (37)

where α = ∠BPC . Equality holds if and only if R2 = R3 . Similarly, we have

w2 �
√

R3R1 cos
β
2

, w3 �
√

R1R2 cos
γ
2
, (38)
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where β = ∠CPA and γ = ∠APB . Therefore, in the case x,y,z > 0, to prove (34) we
need to prove that

(
z
√

R3 cos
β
2

+ y
√

R2 cos
γ
2

)2

+
(
x
√

R1 cos
γ
2

+ z
√

R3 cos
α
2

)2

+
(

y
√

R2 cos
α
2

+ x
√

R1 cos
β
2

)2

� x2R1 + y2R2 + z2R3. (39)

Note that α/2,β/2,γ/2 can be viewed angles of a non-obtuse triangle, thus we
may put A = α/2,B = β/2,C = γ/2 in inequality (10) and make the substitutions
x → x

√
R1,y → y

√
R2,z → z

√
R3 at the same time. We therefore know that inequality

(39) and then (34) hold for positive real numbers x,y,z .
To show inequality (34) holds for any real numbers x,y,z , we first prove the fol-

lowing inequality:

R1 � w2
2

R2
+

w2
3

R3
. (40)

By (38), we only need to prove that

cos2 β
2

+ cos2
γ
2

� 1. (41)

Since α/2,β/2,γ/2 can be regarded as angles of a non-obtuse triangle. Thus, if we
can show that the following inequality

cos2 B+ cos2C � 1 (42)

holds for the non-obtuse triangle ABC , then (41) is proved. Clearly, to prove (42) we
only need to show that sinB � cosC . Since

sinB− cosC = sinB− sin
(π

2
−C

)

= 2cos
1
2

(
B−C+

1
2

π
)

sin
1
2

(
B+C− 1

2
π
)

= 2sin

(
1
2

π −A

)
cos

(
π
4

+
B−C

2

)

and B−C < π/2, we conclude that sinB � cosC holds for the non-obtuse triangle
ABC . Thus, inequality (40) is proved (equality in (40) holds if and only if A = π/2,B =
C = π/4 and P is the midpoint of BC ).

Now, we notice that the following simple conclusion (which is easily shown): If
p1, p2, p3,q1,q2,q3 � 0 and the ternary quadratic inequality (23) holds for positive real
numbers x,y,z , then (23) holds for all real numbers x,y,z . Since (34) has been proved
for x,y,z > 0, thus by inequality (40) we can further conclude that inequality (34) holds
for all real numbers x,y,z .

Finally, according to the equality condition of (10) we easily confirm that of in-
equality (34). The proof of Theorem 3 is completed.
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REMARK 3. Since r1 � w1,r2 � w2,r3 � w3, we conclude easily that Theorem 2
can be obtained by Theorem 3.

REMARK 4. If we let triangle ABC be a non-obtuse triangle and let P be its cir-
cumcenter, then R1 = R2 = R3 = R,r1 = w1 = RcosA,r2 = w2 = RcosB,r3 = w3 =
RcosC (R being the circumradius of ABC ). In this case ,inequality (10) follows from
inequality (33) and (34). So, Theorem 2 and 3 are actually both equivalent with Theo-
rem 1.

REMARK 5. By inequality (34) of Theorem 3, it is easy to obtain the previous
inequality (9). Indeed, since (zw2 + yw3)2 � 4yzw2w3 , it follows from (34) that

x2R1 + y2R2 + z2R3 � 4

(
yz

w2w3

R1
+ zx

w3w1

R2
+ xy

w1w2

R3

)
.

Replacing x → x
√

R2R3/R1 etc. in the above inequality, we obtain (9) at once.

4. Some applications Theorem 1 and Theorem 2

In this section, we give some applications of Theorem 1 and Theorem 2.
Clearly, by Theorem 1 we have the following beautiful trigonometric inequality:

COROLLARY 1. In the non-obtuse triangle ABC, the following inequality holds:

(cosB+ cosC)2 +(cosC+ cosA)2 +(cosA+ cosB)2 � 3. (43)

From this inequality, we can derive the following Walker’s non-obtuse triangle
inequality [16]:

s2 � 2R2 +8Rr+3r2, (44)

where R and r denote the circumradius and inradius of �ABC , respectively.
Form the equivalent form (11) of inequality (10), it is easy to get

sin2 B− cos2C
cos2 A

x2 +
sin2C− cos2 A

cos2 B
y2 +

sin2 A− cos2 B
cos2C

z2 � 2(yz+ zx+ xy). (45)

In addition, by (2) we have the following equivalent inequality:

x2

cos2 A
+

y2

cos2 B
+

z2

cos2C
� 4(yz+ zx+ xy). (46)

Adding (45) and (46) gives

COROLLARY 2. For the acute triangle ABC and real numbers x,y,z, the follow-
ing inequality holds:

sin2 B+ sin2C
cos2 A

x2 +
sin2C+ sin2 A

cos2 B
y2 +

sin2 A+ sin2 B
cos2C

z2 � 6(yz+ zx+ xy). (47)
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Noting that in the acute triangle ABC holds (see [5, p. 351]):

2cos2
A
2

� sin2 B+ sin2C, (48)

we get the following inequality from (47).

COROLLARY 3. For the acute triangle ABC and real numbers x,y,z, the follow-
ing inequality holds:

cos2
A
2

cos2 A
x2 +

cos2
B
2

cos2 B
y2 +

cos2 C
2

cos2C
z2 � 3(yz+ zx+ xy). (49)

For a point P in the plane of any triangle ABC , we have the following Hayashi
inequality (see [4]):

R2R3

bc
+

R3R1

ca
+

R1R2

ab
� 1. (50)

Thus, putting x = R1/a in (49) etc., we get

COROLLARY 4. For a point P in the plane of the acute triangle ABC, the follow-
ing inequality holds:

sin2 B+ sin2C

sin2 2A
R2

1 +
sin2C+ sin2 A

sin2 2B
R2

2 +
sin2 A+ sin2 B

sin2 2C
R2

3 � 12R2. (51)

By inequalities (48) and (51), we easily obtain

COROLLARY 5. For a point P in the plane of the acute triangle ABC, the follow-
ing inequality holds:

R2
1

cos2 Asin2 A
2

+
R2

2

cos2 Bsin2 B
2

+
R2

3

cos2C sin2 C
2

� 48R2. (52)

Let P be the incenter of �ABC , then

r1 = r2 = r3 = R1 sin
A
2

= R2 sin
B
2

= R3 sin
C
2

= r.

Thus, by Theorem 2 we have

COROLLARY 6. For any triangle ABC and real numbers x,y,z, the following in-
equality holds:

x2

sin
A
2

+
y2

sin
B
2

+
z2

sin
C
2

� (y+ z)2 sin
A
2

+(z+ x)2 sin
B
2

+(x+ y)2 sin
C
2

. (53)
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REMARK 6. Inspired by inequality (53) and the known inequality:

sin
A
2

� a
b+ c

, (54)

the author finds that the previous inequality (7) can be improved to the following

x2 v+w
u

+ y2 w+u
v

+ z2 u+ v
w

� u
v+w

(y+ z)2 +
v

w+u
(z+ x)2 +

w
u+ v

(x+ y)2, (55)

with equality if and only if x : y : z = u : v : w . This inequality can also be proved by
using the conclusion given in Remark 1 (we omit here).

For an interior point P of any triangle ABC , we have the following well known
inequality (see [1, inequality 12.20]):

2R1 sin
A
2

� r2 + r3, (56)

thus by (53) we have

R1

r2 + r3
x2 +

R2

r3 + r1
y2 +

R3

r1 + r2
z2

� r2 + r3

4R1
(y+ z)2 +

r3 + r1

4R2
(z+ x)2 +

r1 + r2

4R3
(x+ y)2. (57)

Since (y+ z)2 � 4yz , then

R1

r2 + r3
x2 +

R2

r3 + r1
y2 +

R3

r1 + r2
z2 � yz

r2 + r3

R1
+ zx

r3 + r1

R2
+ xy

r1 + r2

R3
. (58)

By replacing x → x
√

R2R3/R1 etc., we get

COROLLARY 7. For an interior point P of any triangle ABC and real numbers
x,y,z, the following inequality holds:

R2R3

r2 + r3
x2 +

R3R1

r3 + r1
y2 +

R1R2

r1 + r2
z2 � yz(r2 + r3)+ zx(r3 + r1)+ xy(r1 + r2). (59)

In particular, for x = y = z = 1, we have

R2R3

r2 + r3
+

R3R1

r3 + r1
+

R1R2

r1 + r2
� 2(r1 + r2 + r3), (60)

which is given in [5,Corollary 4.59].
Putting x = ra,y = rb,z = rc (ra being the corresponding radius of described circle

of ABC , etc.) in (59) and then noting that rbrc = s(s−a) and

(s−a)(r2 + r3)+ (s−b)(r3 + r1)+ (s− c)(r1 + r2)
= ar1 +br2 + cr3

= 2rs,

we obtain
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COROLLARY 8. For an interior point P of any triangle ABC, the following in-
equality holds:

R2R3

r2 + r3
r2
a +

R3R1

r3 + r1
r2
b +

R1R2

r1 + r2
r2
c � 2rs2. (61)

Next, we shall apply the weighted trigonometric inequality (53) to derive a geo-
metric inequality. Firstly, we establish the following inequality:

a2 sin
A
2

+b2 sin
B
2

+ c2 sin
C
2

� 1
2
(a2 +b2 + c2). (62)

Using the Law of Cosines, we easily verify the following identity:

a2(cosB+ cosC)+b2(cosC+ cosA)+ c2(cosA+ cosB)− (a2 +b2 + c2)

=
(b+ c−a)(b− c)2

2a
+

(c+a−b)(c−a)2

2b
+

(a+b− c)(a−b)2

2c
, (63)

which shows that

a2(cosB+ cosC)+b2(cosC+ cosA)+ c2(cosA+ cosB) � (a2 +b2 + c2). (64)

Since cosB+ cosC � 2sin
A
2

, inequality (62) follows from (64) immediately.

By the previous formula (21) and inequality (36), one easily can obtain that

4w2
a � (b+ c)2−a2. (65)

Applying this inequality to �BPC , we know that the following inequality

(R2 +R3)2 � a2 +4w2
1 (66)

holds for any interior point P of the triangle ABC and its two analogues are valid.
Putting x = R1,y = R2,z = R3 in (53) and then using (66) and (62), we get

COROLLARY 9. For an interior point P of any triangle ABC, the following in-
equality holds:

R2
1

sin
A
2

+
R2

2

sin
B
2

+
R2

3

sin
C
2

−4

(
w2

1 sin
A
2

+w2
2 sin

B
2

+w2
3 sin

C
2

)
� 1

2
(a2 +b2 +c2). (67)

5. Open problems

In [5],[8],[9],and [10], the author presents some conjectures for the Erdös-Mordell
inequality (27). Here, we give the following two conjectures as open problems again.

CONJECTURE 1. For an interior point P of any triangle ABC, the following in-
equality holds:

R1 +R2 +R3

r1 + r2 + r3
� 4R(ma +mb +mc)

a2 +b2 + c2 , (68)

where ma,mb,mc are the medians of ABC.
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CONJECTURE 2. For an interior point P of any triangle ABC, the following in-
equality holds:

R1 +R2 +R3

r1 + r2 + r3
� 1

2

(
a2

mbmc
+

b2

mcma
+

c2

mamb

)
. (69)

It is easily proved that both values of the right hands of (68) and (69) are not less
than 2 (but can not be compared with each other), thus inequalities (68) and (69) are
sharpened versions of the Erdös-Mordell inequality.

For the previous geometric inequality (32), we present the following generalized
conjecture with one parameter:

CONJECTURE 3. For an interior point P of any triangle ABC and positive num-
ber k , the following inequality holds:

(kw1 +w2 +w3)2

R1 + kw1
+

(kw2 +w3 +w1)2

R2 + kw2
+

(kw3 +w1 +w2)2

R3 + kw3
� k+2

2
(R1 +R2 +R3).

(70)

Considering generalizations of Theorem 3 for polygons, we put forward the fol-
lowing conjecture:

CONJECTURE 4. Let P be an interior point of the convex polygon A1A2 · · ·An (n >
3 ), and let PAi = Ri(i = 1,2, · · · ,n) . Denote by w1,w2, · · ·wn the lengths of the bisector
of ∠AiPAi+1 ( i = 1,2, . . . ,n,An+1 = A1) . Then

n

∑
i=1

Ri �
1
4

sec2 π
n

n

∑
i=1

(wi +wi+1)2

Ri
. (71)

If the above inequality holds true, then using Cauchy inequality one can easily
obtain the well known result:

n

∑
i=1

Ri � sec
π
n

n

∑
i=1

wi, (72)

which is first proved by N.Ozeki in [15].
Finally, for the previous inequality (43), we give the following general conjecture

with double exponents:

CONJECTURE 5. If m � 1 and n � 1 , then the following inequality:

am(cosB+ cosC)n +bm(cosC+ cosA)n + cm(cosA+ cosB)n � am +bm + cm (73)

holds for any triangle ABC. If n > 0 � m and n+m � 1 , then (73) holds reversely; If
n > 0 � m and n+m � 2 , then (73) holds reversely for the non-obtuse triangle ABC.

In the case when m = 0 and n = 2, the above conjecture becomes Corollary 1.
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