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MONOTONICITY PROPERTIES ON k–DIGAMMA

FUNCTION AND ITS RELATED INEQUALITIES

EMRAH YILDIRIM

(Communicated by G. Nemes)

Abstract. In this work, we give some monotonicity properties of k -analogues of digamma and
polygamma functions and then we obtain some inequalities related to these functions. At last,
we give harmonic mean inequality for k -digamma function for all positive real values of k and
x .

1. Introduction

The gamma function, which is introduced by Euler, is defined by

Γ(x) =
∫ ∞

0
tx−1e−t dt

for x > 0. Gautschi [8] obtained a very interesting mean inequality for the function. He
showed that the harmonic mean inequality

1 � 2Γ(x)Γ(1/x)
Γ(x)+ Γ(1/x)

(1)

is valid for all positive real values of x . Even though the function is used by many
different branches, since its first derivative increases dramatically, logarithms of the
function is also interested by many researchers. Such as in [28], the Binet’s first formula
for lnΓ(x) states that

lnΓ(x) =
(
x− 1

2

)
lnx− x+ ln

√
2π +

∫ ∞

0

(1
2
− 1

t
+

1
et −1

)e−xt

t
dt (2)

for x > 0. The logarithmic derivative of gamma function is called digamma (or psi)
function and its integral representation is given by

ψ(x) =
∫ ∞

0

(
e−t

t
− e−tx

1− et

)
dt (3)

Mathematics subject classification (2010): 26A48, 33B15, 26D07.
Keywords and phrases: k -polygamma function, k -digamma function, inequality, k -Binet’s first for-

mula for lnΓk(x) .

c© � � , Zagreb
Paper JMI-14-12

161

http://dx.doi.org/10.7153/jmi-2020-14-12


162 E. YILDIRIM

for x > 0. In [16], authors used the equation (2) to obtain completely monotonic prop-
erties of functions involving the digamma and polygamma functions. As a corollary,
they found the following double sided inequalities

1
2x

− 1
12x2 < ψ(x+1)− lnx <

1
2x

(4)

1
2x2 −

1
6x3 <

1
x
−ψ ′(x+1) <

1
2x2 −

1
6x3 +

1
30x5 (5)

for x > 0. In [2], Alzer and Jameson presented some inequalities and concavity prop-
erties of the functions involving the digamma function and proved that the harmonic
mean inequality for digamma function

− γ � 2ψ(x)ψ(1/x)
ψ(x)+ ψ(1/x)

(6)

holds true for all positive real numbers x , where γ = lim
n→∞

(1 + . . . +
1
n
− logn) . The

sign of equality holds if and only if x = 1. We refer the interested readers to [17, 18, 4,
6, 9, 19, 10, 11, 20, 5] and references therein for more information about gamma and
digamma functions.

During last decade, Dı́az and Pariguan in [7] introduced k -generalized Pochham-
mer symbol as follows:

DEFINITION 1. [7] Let x ∈ C , k ∈ R and n ∈ N
+ , the Pochhammer k -symbol is

given by

(x)n,k = x(x+ k)(x+2k) . . .(x+(n−1)k).

By using the definition, they defined k -gamma function Γk as the following limit ex-
pression.

DEFINITION 2. [7] For k > 0, the k -gamma function Γk is given by

Γk(x) = lim
n→∞

n!kn(nk)
n
k −1

(x)n,k
, x ∈ C\ kZ

−.

Also in the paper, they obtained integral and infinite product representations of the
function by

Γk(x) =
∫ ∞

0
tx−1e−

tk
k dt

1
Γk(x)

= xk−
x
k e

x
k γ

∞

∏
n=1

((
1+

x
nk

)
e−

x
nk

)
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for x ∈ C , Re(x) > 0. They proved the k -generalization of Bohr-Mollerup Theorem,
Stirling formula and some properties on k -gamma function such as

Γk(x+ k) = xΓk(x) (7)

(x)n,k =
Γk(x+nk)

Γk(x)
(8)

Γk(k) = 1 (9)

Γk(x) is logarithmically convex for x ∈ R (10)

Γk(x) = k
x
k−1Γ

(
x
k

)
. (11)

They also defined k -zeta function as follows:

DEFINITION 3. [7] The k -zeta function is given by

ζk(x,s) =
∞

∑
n=0

1
(x+nk)s (12)

for k, x > 0 and s > 1.

In [14], Krasniqi obtained series representation of k -digamma (or k -psi, generalized
digamma) function as

ψk(x) =
lnk− γ

k
− 1

x
+

∞

∑
n=1

x
nk(x+nk)

(13)

for x, k > 0 and showed that the function ψ ′
k(x) is strictly completely monotonic on

(0,∞) . In [25], authors gave several integral representations of k -digamma function
such as

ψk(x) =
lnk
k

+
1
k

∫ ∞

0

(
e−t

t
− e−

x
k t

1− e−t

)
dt (14)

for x > 0. Applying logarithmic derivative of the equation (11) leads us to the recur-
rence formula for k -digamma function by

ψk(x+ k) =
1
x

+ ψk(x) (15)

and for first and second derivatives of the equation (15), we get

ψ ′
k(x+ k) = ψ ′

k(x)−
1
x2 (16)

ψ ′′
k (x+ k) = ψ ′′

k (x)+
2
x3 (17)

respectively for x, k > 0.
In [13], Kokologiannaki showed the following monotonicity property for k -zeta

function.
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THEOREM 1. [13] The k -zeta function ζk(x,s) decrease with respect to s for
x > 1 and k > 0 , n > 0 , s > 1 .

Yin et. al. in [26] showed the following completely monotonicity properties of func-
tions related to k -digamma and k -polygamma functions.

THEOREM 2. [26] For k > 0 , the function x2ψ ′
k(x) is strictly increasing on (0,∞) .

THEOREM 3. [26] For k > 0 , the function ψ ′
k(

1
x ) is strictly concave on (0,∞) .

It is worth to mention that theorems 2 and 3 tend to the classical ones in [12]. Also
authors obtained concavity of the function related to k -digamma function.

THEOREM 4. [26] For k � 1
3√3

, the function λk(x) = ψk(x) + ψk( 1
x ) is strictly

concave on (0,∞) .

Thus authors in [26] gave the following inequalities for k -digamma function.

THEOREM 5. [26] The following inequalities

ψk(x)+ ψk

(1
x

)
�

2lnk+2ψ( 1
k )

k
, x > 0, k � 1

3
√

3
(18)

ψk(1+ x)ψk(1− x) � ln2 k+ γ2−2(γ +1) lnk
k2 , 0 < x < 1,

1
3
√

3
� k � 1 (19)

ψk(x)ψk

(1
x

)
� ln2 k+ γ2−2(γ +1) lnk

k2 , 0 < x,
1
3
√

3
� k � 1 (20)

hold true.

Hence they obtained harmonic mean inequality for k -digamma function as follows:

COROLLARY 1. [26] For x ∈ (0,∞) and 1
3√3

� k � 1 , we have

2ψk(x)ψk( 1
x )

ψk(x)+ ψk( 1
x )

� ln2 k+ γ2−2(γ +1) lnk

k[lnk+ ψ( 1
k )]

. (21)

One can find more information about k -special functions and its related topic in [1, 3,
15, 21, 22, 23, 24, 25, 26, 27, 29] and references therein.
In this paper, we shall show a k -generalization of Binet’s formula (2). Then we shall ob-
tain some monotonic properties of functions related to k -digamma and k -polygamma
functions. As a corollary, we shall find double sided inequalities for k -digamma and
k -polygamma functions and by the aim of these results, we shall lastly obtain mean in-
equalities for k -digamma functions which are slightly generalizations of some results
obtained in [26]. We want to note that all results in this work are valid for all positive
real values of k .
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2. Main Results

Before we obtain main results, we need the following properties.

LEMMA 1. For x > 0 and any non-negative integer n, the integral

1
xn+1 =

1
kn+1n!

∫ ∞

0
tne−

xt
k dt

holds true.

Proof. The result can be proven by using mathematical induction and integration
by parts. �

Thus we can give a k -generalization of Binet’s first formula (2).

LEMMA 2. For x > 0 , the equalities

lnΓk(x) =
(x

k
− 1

2

)
lnx− 1

2
lnk− x

k
+ ln

√
2π +

∫ ∞

0

(1
2
− 1

t
+

1
et −1

)e−
xt
k

t
dt (22)

and

ψk(x) =
lnx
k

− 1
x

+
1
k

∫ ∞

0

(1
t
− 1

et −1

)
e−

xt
k dt (23)

are valid.

Proof. For the proof of equation (22), let us take x + k instead of x in equation
(14). So we have

ψk(x+ k) =
lnk
k

+
1
k

∫ ∞

0

(
e−t

t
− e−

x
k t

et −1

)
dt.

By using the following integrals

1
2x

=
1
2k

∫ ∞

0
e−

x
k tdt and ln

x
k

=
∫ ∞

0

e−t − e−
x
k t

t
dt,

we get

ψk(x+ k) =
lnx
k

+
1
2x

− 1
k

∫ ∞

0

(
1
2
− 1

t
+

1
et −1

)
e−

x
k tdt.

The integrand is continuous as t → 0 and since the term 1
2 − 1

t + 1
et−1 is bounded as

t → ∞ , the integral converges uniformly for x > 0. Integrating from k to x and using
the relation (7) yields

lnΓk(x+ k)− lnΓk(2k) =
1
k
(x lnx− x)− 1

k
(k lnk− k)+

1
2

lnx− 1
2

lnk

+
∫ ∞

0

(
1
2
− 1

t
+

1
et −1

)
e−

x
k t − e−t

t
dt
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lnΓk(x) =
(

x
k
− 1

2

)
lnx− x

k
− 1

2
lnk+1+

∫ ∞

0

(
1
2
− 1

t
+

1
et −1

)
e−

x
k t

t
dt

−
∫ ∞

0

(
1
2
− 1

t
+

1
et −1

)
e−t

t
dt.

Taking x = k
2 in the last equation leads us that

lnΓk(k/2) = −1
2
− 1

2
lnk+1+

∫ ∞

0

(
1
2
− 1

t
+

1
et −1

)
e−

t
2

t
dt

−
∫ ∞

0

(
1
2
− 1

t
+

1
et −1

)
e−t

t
dt

1
2
(lnπ − lnk) =

1
2
− 1

2
lnk+ J− I

where J and I denote the integrals on the right side of the equation, respectively. Since

J =
1
2

+
1
2

ln
1
2

and I = 1− ln
√

2π (see [28, pp. 248-250]), the proof is completed.

We want to note that using the relation between k -gamma and gamma functions

(11) and replacing x by
x
k

at the equation (2) lead us

lnΓk(x) =
(x

k
−1
)

lnk+
(x

k
− 1

2

)
ln

x
k
− x

k
+ ln

√
2π +

∫ ∞

0

(1
2
− 1

t
+

1
et −1

)e−
xt
k

t
dt

as desired. One can obtain equation (23) by differentiating the equation (22). �
Now we are ready to obtain monotonicity properties of functions involving k -digamma
and k -polygamma functions for all x, k > 0.

THEOREM 6. The following functions

ψk(x)− lnx
k

+
1
2x

+
k

12x2 , (24)

lnx
k

− 1
2x

−ψk(x), (25)

ψ ′
k(x)−

1
kx

− 1
2x2 −

k
6x3 +

k3

30x5 , (26)

1
kx

+
1

2x2 +
k

6x3 −ψ ′
k(x) (27)

are strictly completely monotonic for x > 0 .

Proof. By using the equation (23) and Lemma 1, the first function can be defined
by

f1(x) = ψk(x)− lnx
k

+
1
2x

+
k

12x2

=
1
k

∫ ∞

0

(1
t
− 1

et −1
− 1

2
+

t
12

)
e−

xt
k dt
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for all positive real values of x and k . Then we get

f1(x) =
1
k

∫ ∞

0

(t2−6t +12)et − (t2 +6t +12)
12t(et −1)

e−
xt
k dt.

Let us denote the nominator as d1 . Then we get that d1(t) = (t2 − 6t + 12)et − (t2 +
6t +12) > 0 and d1(0) = 0. Hence we obtain that (−1)n f (n)

1 (x) > 0 as desired.
Now let us define the function f2 by

f2(x) = ψk(x)− lnx
k

+
1
2x

for x > 0. Then we obtain

f2(x) =
1
k

∫ ∞

0

(1
t
− 1

et −1
− 1

2

)
e−

xt
k dt

=
1
k

∫ ∞

0

(2− t)et − (t +2)
2t(et −1)

e−
xt
k dt.

Let us denote the nominator as d2 . So we find that d2(t) = (2− t)et − (t +2) < 0 and

d2(0) = 0 for all t > 0. Hence, (−1)n+1 f (n)
2 (x) > 0 as desired.

Differentiating the equation (23) leads that

ψ ′
k(x) =

1
kx

+
1
x2 +

1
k2

∫ ∞

0

(
t

et −1
−1

)
e−

xt
k dt (28)

Then by using the equation (28) and Lemma 1, we can define the function by

f3(x) =
1
kx

+
1

2x2 +
k

6x3 −ψ ′
k(x)

=
k

6x3 −
1

2x2 −
1
k2

∫ ∞

0

(
t

et −1
−1

)
e−

xt
k dt

=
k

k32!6

∫ ∞

0
t2e−

xt
k dt− 1

2k2

∫ ∞

0
te−

xt
k dt − 1

k2

∫ ∞

0

( t
et −1

−1
)
e−

xt
k dt

=
1
k2

∫ ∞

0

( t2

12
− t

2
− t

et −1
+1
)
e−

xt
k dt

=
1
k2

∫ ∞

0

(12−6t + t2)et − (t2 +6t +12)
12(et −1)

e−
xt
k dt.

Since nominator of the function is same as the function f1 , we get (−1)n f (n)
3 (x) > 0

for non-negative integer values of n .
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At last, let us define the function f4 by

f4(x) = ψ ′
k(x)−

1
kx

− 1
2x2 −

k
6x3 +

k3

30x5

=
1
k2

∫ ∞

0

(
t
2
− t2

12
+

t4

720
+

t
et −1

−1

)
e−

xt
k dt

=
1
k2

∫ ∞

0

(t4−60t2 +360t−720)et − (t4−60t2−360t−720)
720(et −1)

e−
xt
k dt.

Since it is easy to see that (t4−60t2 +360t−720)et − (t4−60t2−360t−720) > 0 for

all t > 0. Thus (−1)n f (n)
4 (x) < 0 in (0,∞) for any non-negative integer n . �

As an immediate consequence of the theorem, we obtain the following double sided
inequalities on k -digamma and k -polygamma functions.

COROLLARY 2. The following inequalities

lnx
k

− 1
2x

− k
12x2 < ψk(x) <

lnx
k

− 1
2x

, (29)

1
kx

+
1

2x2 +
k

6x3 −
k3

30x5 < ψ ′
k(x) <

1
kx

+
1

2x2 +
k

6x3 (30)

and

− 1
kx2 − 1

x3 −
k

2x4 < ψ ′′
k (x) < − 1

kx2 −
1
x3 (31)

are valid for x > 0 .

We want to note that the inequalities (29) and (30) tend to the inequalities (4) and (5)
obtained in [16, Corollary 1] respectively as k→ 1 and Theorem 6 is a k -generalization
of classical one in [16, Theorem 1]
The following results will help us to obtain harmonic mean inequalities for k -digamma
function.

THEOREM 7. The function

Pk(x) = ψk(x)+ ψk

(1
x

)
is strictly concave for all k, x > 0 .

Proof. By differentiation, we get

P′
k(x) = ψ ′

k(x)−
1
x2 ψ ′

k

(1
x

)
and

P′′
k (x) = ψ ′′

k (x)+
2
x3 ψ ′

k(
(1

x

)
+

1
x4 ψ ′′

k

(1
x

)
x4P′′

k (x) = ψ ′′
k

(1
x

)
+2xψ ′

k

(1
x

)
+ x4ψ ′′

k (x).
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Applying the recurrence formulas (16) and (17) and inequalities (30) and (31) lead us
that

x4P′′(x) = −2x3 + ψ ′′
k

(1
x

)
+2x

(
x2 + ψ ′

k

(1
x

+ k
))

+ x4ψ ′′
k (x)

< −2x3 +

(
− 1

k
(
k+ 1

x

)2 −
1(

k+ 1
x3

)
)

+2x

(
x2 +

1

k
(
k+ 1

x

) +
1

2(k+1/x)2 +
k

6(k+1/x)3

)
+ x4

(
− 1

kx2 − 1
x3

)

= −2x3− x2

k(kx+1)2 −
x3

(kx+1)3 +2x3 +
2x2

k(kx+1)
+

kx3

(kx+1)2 +
kx4

3(kx+1)3

−x2

k
− x

< − x
3(kx+1)3 (3k3x3 +3k2x4 −3k2x3 +9k2x2 +2kx3−3kx2 +9kx+3x2 +3).

Since the last term on the right side of the inequality is a polynomial, by using asso-
ciative property, it is not difficult to obtain that if k > 0 and 0 < x � 3, then we get
3k3x3 +3k2x4 +3k2x2(3− x)+2kx3 +3kx(3− x)+3x2 +3 � 0 and also if k > 0 and
x > 3, then we get 3k3x3 + 3k2x3(x− 1)+ 9k2x2 + 2kx2(x− 3

2) + 9kx + 3x2 + 3 > 0.
This completes the proof. �

COROLLARY 3. The inequality

ψk(x)+ ψk

(1
x

)
< 2ψk(1) (32)

holds true for x > 0 and x �= 1 .

Proof. Using the concavity of the function Pk(x) from Theorem 7 leads us to

P′
k(x) = ψ ′

k(x)−
1
x2 ψ ′

k

(1
x

)
=⇒ P′(1) = 0.

So we obtain that P′
k(x) > P′

k(1) , for 0 < x < 1 and P′
k(x) < P′

k(1) for x > 1. Hence we
get that Pk(x) < Pk(1) = 2ψk(1) for x > 0 and x �= 1 as desired. �
We want to remark that since k > 0 and ψk(x) =

lnk
k

+
1
k

ψ
(x

k

)
, we have Pk(1) =

2
k

(
lnk + ψ

(1
k

))
and Pk(1) < 0 for all k > 0. This fact can also easily be seen from

the right side of the inequality (29) by taking x = 1.

LEMMA 3. The k -digamma function can be presented by power expansion as

ψk(1+ x) = ψk(1)+
∞

∑
n=2

(−1)nζk(1,n)xn−1 (33)
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for |x| < 1 .

LEMMA 4. The inequality

ψk(1+ y)ψk(1− y) < ψ2
k (1) (34)

is valid for y ∈ (0,1) .

Proof. Since ψk is completely monotonic function on (0,∞) for all k > 0, we
can find a point x0 = x0(k) such that ψk(x0) = 0 and from the inequalities (29), we
see that the point x0 is always greater than 1. As an immediate consequence, we have
ψk(1− y) < 0 for all k > 0 and y ∈ (0,1) . Since x0 depends on k and 1 < 1+ y < 2,
we must find an interval for k where ψk(x0) = 0 for 1 < x0 < 2. By using the right
side of the inequalities (29), we get 0 < k � 2,36. So we have to investigate two cases:
Case 1: If k > 2,36, then we have ψk(1− y) < 0 and ψk(1+ y) < 0 for y ∈ (0,1)
since x0 > 2.
Case 2: If 0 < k � 2,36, then we get the following two other cases:
Case i: If y ∈ (x0 −1,1) , then we have ψk(1− y) < 0 < ψk(1+ y) . Hence we obtain
as desired.
Case ii. If y ∈ (0,x0−1) , then we have ψk(1− y) < 0 and ψk(1+ y) < 0.
Now, we obtain the result for Case 1 and Case ii simultaneously. By using Lemma 3,
we get

0 < −ψk(1− y) � −ψk(1)− ζk(1,2)y+ ζk(1,3)y2

and
0 � −ψk(1+ y) � −ψk(1)+ ζk(1,2)y+2ζk(1,3)y2.

Hence we find the following inequality

ψk(1− y)ψk(1− y) � ψ2
k (1)+ (−ζ 2

k (1,2)−3ψk(1)ζk(1,3))y2

− ζk(1,2)ζk(1,3)y3 +2ζk(1,3)2y4.

Using the relations

ζk(1,2) = ψ ′
k(1) and ζk(1,3) = −1

2
ψ ′′

k (1)

yield

ψk(1− y)ψk(1− y) � ψ2
k (1)+

(
−ψ ′

k(1)2 +
3
2

ψk(1)ψ ′′
k (1)

)
y2

+
1
2

ψ ′
k(1)ψ ′′

k (1)y3 +
1
2

ψ ′′
k (1)2y4.

From Theorem 6 and Corollary 2, we also have

−1
2
− k

12
< ψk(1) < −1

2
1
k

+
1
2

< ψ ′
k(1) <

1
k

+
1
2

+
k
6

−1
k
−1− k

2
< ψ ′′

k (1) < −1
k
−1.
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Hence we get

−ψ ′
k(1)2 +

3
2

ψk(1)ψ ′′
k (1) < 0,

1
2

ψ ′
k(1)ψ ′′

k (1) < 0,
1
2

ψ ′′
k (1) > 0

and by using the facts that y ∈ (0,1) and previous inequalities on k -digamma and k -
polygamma functions at x = 1, we rewrite the inequality as

ψk(1− y)ψk(1− y) � ψ2
k (1)+ (−ψ ′

k(1)2 +
3
2

ψk(1)ψ ′′
k (1))y2

+
1
2

ψ ′
k(1)ψ ′′

k (1)y3 +
1
2

ψ ′′
k (1)2y4

� ψ2
k (1)+

[
−ψ ′

k(1)2 +
3
2

ψk(1)ψ ′′
k (1)+

1
2

ψ ′
k(1)ψ ′′

k (1)+
1
2

ψ ′′
k (1)2

]
y3

� ψ2
k (1)+

[
−
(

1
k

+
1
2

+
k
6

)2

+
3
2

(
−1

2

)(
−1

k
−1

)

+
1
2

(
1
k

+
1
2

+
k
6

)(
−1

k
−1

)
+

1
2

(
1+

1
k

)2
]
y4.

Since −(1/k+1/2+ k/6)2+3/2(−1/2)(−1/k−1)+1/2(1/k+1/2+ k/6)(−1/k−
1) + 1/2(1+ 1/k)2 = −(k4 + 9k3 − 12k2 + 36)/36k2 < 0 for k > 0, we get desired
result. �

THEOREM 8. The inequality

ψk(x)ψk

(
1
x

)
� ψ2

k (1) (35)

is valid for all positive real values of x .

Proof.

Case 1. If x � x0 , then we obtain ψk

(
1
x

)
< 0 � ψk(x) . Hence we obtain as desired.

Case 2. If 1< x < x0 , then let us take x = 1+y . Thus
1
x

>
1

1− y
and since k -digamma

function is completely monotonic on (0,∞) , we get ψk(1− y) < ψk

(
1
x

)
< 0. Using

this fact and Lemma 4 lead us to

ψk(x)ψk(1/x) = ψk(1+ y)ψk(1/x) < ψk(1+ y)ψk(1− y) � ψ2
k (1)

as desired.
Case 3. If x ∈ (0,1) , then we can take z = 1/x and use the method above. �
At last, for all real values of x and k , we can give harmonic mean inequality for k -
digamma function.
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THEOREM 9. The inequality

ψk(1) � 2ψk(x)ψk(1/x)
ψk(x)+ ψk(1/x)

(36)

holds true for x, k > 0 .

Proof. By using the inequalities (32) and (35), we get

2ψk(x)ψk(1/x) < 2ψ2
k (1)

2ψk(x)ψk(1/x)
ψk(x)+ ψk(1/x)

>
2ψ2

k (1)
ψk(x)+ ψk(1/x)

2ψk(x)ψk(1/x)
ψk(x)+ ψk(1/x)

>
2ψ2

k (1)
2ψk(1)

= ψk(1)

for all real values of x �= 1 and k . The sign of equality holds when x = 1. �
At last we want to note that Theorem 7, inequalities (32), (33), (35) and (36) are exten-
sions of the results in [26].
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