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MONOTONICITY PROPERTIES ON k-DIGAMMA
FUNCTION AND ITS RELATED INEQUALITIES

EMRAH YILDIRIM

(Communicated by G. Nemes)

Abstract. In this work, we give some monotonicity properties of k-analogues of digamma and
polygamma functions and then we obtain some inequalities related to these functions. At last,
we give harmonic mean inequality for k-digamma function for all positive real values of k and
X.

1. Introduction

The gamma function, which is introduced by Euler, is defined by

F(x):/ e dr
0

for x > 0. Gautschi [8] obtained a very interesting mean inequality for the function. He
showed that the harmonic mean inequality

_ 2TW(1/%)

S T(x)+T(1/x) 0

is valid for all positive real values of x. Even though the function is used by many
different branches, since its first derivative increases dramatically, logarithms of the
function is also interested by many researchers. Such as in [28], the Binet’s first formula
for InT"(x) states that

—Xxt

1 <l 1 1 e
lnF(x)—(x—§>1nx—x+1n\/27t+/0 (5—;+et_l>7dt )

for x > 0. The logarithmic derivative of gamma function is called digamma (or psi)
function and its integral representation is given by

v = [ | S ) 3)
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for x > 0. In [16], authors used the equation (2) to obtain completely monotonic prop-
erties of functions involving the digamma and polygamma functions. As a corollary,
they found the following double sided inequalities

1 1 1
Z—sz<l[/(x+l)—lnx<§ 4)
' T T 11

< ) P 5
2x2 6x3 < X Y+l < 2x2 6x3 30 )

for x > 0. In [2], Alzer and Jameson presented some inequalities and concavity prop-
erties of the functions involving the digamma function and proved that the harmonic
mean inequality for digamma function

2y(x)y(1/%)

Vi) + w(l/x) ©

A

1
holds true for all positive real numbers x, where y = lim (1 +... 4+ — —logn). The
Nn—oo n

sign of equality holds if and only if x = 1. We refer the interested readers to [17, 18, 4,
6,9, 19, 10, 11, 20, 5] and references therein for more information about gamma and
digamma functions.

During last decade, Diaz and Pariguan in [7] introduced k-generalized Pochham-
mer symbol as follows:

DEFINITION 1. [7]Let x € C, k € R and n € NT, the Pochhammer k-symbol is
given by

(nk =x(x+k)(x+2k)...(x+ (n—1)k).

By using the definition, they defined k-gamma function I'; as the following limit ex-
pression.

DEFINITION 2. [7] For k > 0, the k-gamma function I'; is given by

K" (k) !

Te(x) = lim KOO cvkz.

n—o0 (x) nk

Also in the paper, they obtained integral and infinite product representations of the
function by
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for x € C, Re(x) > 0. They proved the k-generalization of Bohr-Mollerup Theorem,
Stirling formula and some properties on k-gamma function such as

Ty (x+ k) = xTx(x) (7)
o Fk(x + nk)

() pe = T (3

T(k) =1 )

T';(x) is logarithmically convex for x € R (10)

Te(x) :k%‘lr<%>. (11)

They also defined k-zeta function as follows:

DEFINITION 3. [7] The k-zeta function is given by

-3 ®

for k,x >0 and s > 1.

In [14], Krasniqi obtained series representation of k-digamma (or k-psi, generalized
digamma) function as

oo

_Ink—vy 1 X
Vi) = k X * z’l nk(x + nk) (13)

n=

for x, k > 0 and showed that the function ;(x) is strictly completely monotonic on
(0,00). In [25], authors gave several integral representations of k-digamma function

such as
Ink 1 [=fe? e it
=4 S 14
i) =+ [ (t 1_e—r>d’ (14)

for x > 0. Applying logarithmic derivative of the equation (11) leads us to the recur-
rence formula for k-digamma function by

1
Vilr +k) = —+ () (15)
and for first and second derivatives of the equation (15), we get
1
Vil k) = wi(o) - (16)
2
W k) = Y )+ 5 (17)

respectively for x, k > 0.
In [13], Kokologiannaki showed the following monotonicity property for k-zeta
function.
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THEOREM 1. [13] The k-zeta function Ci(x,s) decrease with respect to s for
x>1land k>0,n>0,s>1.

Yin et. al. in [26] showed the following completely monotonicity properties of func-
tions related to k-digamma and k-polygamma functions.

THEOREM 2. [26] For k> 0, the function x>y, (x) is strictly increasing on (0,).

THEOREM 3. [26] For k > 0, the function (L) is strictly concave on (0,0).

It is worth to mention that theorems 2 and 3 tend to the classical ones in [12]. Also
authors obtained concavity of the function related to k-digamma function.

|’—

THEOREM 4. [26] For k >

concave on (0,).

, the function A (x) = Wi (x) + wi(L) is strictly

B

3

Thus authors in [26] gave the following inequalities for k-digamma function.

THEOREM 5. [26] The following inequalities

1\ _ 2Ink-+2y(3) 1
g — T K2 >
l[/k(x)+l//k<x> < o w0k o (18)
In’k+ 9% —2(y+1)Ink 1
Vi(L+ )y (1 —x) < 2 : 0<x<17%<k<1 (19)
1\ _ I k+9>—2(y+1)Ink 1
)< — <k<
viwe(5) < E . 0<xE<k<L Q)

hold true.

Hence they obtained harmonic mean inequality for k-digamma function as follows:

COROLLARY 1. [26] For x € (0,0) and %ﬁ <k<1, we have

29 Wi(y)  InPk+ 97— 2(y+ 1) Ink
@) +w(2) T klink+ ()]

21

One can find more information about k-special functions and its related topic in [1, 3,
15,21,22,23,24, 25,26, 27, 29] and references therein.

In this paper, we shall show a k-generalization of Binet’s formula (2). Then we shall ob-
tain some monotonic properties of functions related to k-digamma and k-polygamma
functions. As a corollary, we shall find double sided inequalities for k-digamma and
k-polygamma functions and by the aim of these results, we shall lastly obtain mean in-
equalities for k-digamma functions which are slightly generalizations of some results
obtained in [26]. We want to note that all results in this work are valid for all positive
real values of k.
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2. Main Results
Before we obtain main results, we need the following properties.
LEMMA 1. For x > 0 and any non-negative integer n, the integral

1 1 ° g3t
o kn+1n!/0 Lt

holds true.

Proof. The result can be proven by using mathematical induction and integration
by parts. O
Thus we can give a k-generalization of Binet’s first formula (2).

LEMMA 2. For x > 0, the equalities

InTy(x) = (%—§>lnx——lnk——+ln\/2n+/ ! 1)—d¢ (22)
and
lnx ,x,/
Wil) = 25— / Lar 23)
are valid.

Proof. For the proof of equation (22), let us take x + k instead of x in equation

(14). So we have
Ink 1 [=f(e! ¥
K=-—f [ (4 dr.
Yilx+K) k+k/o (z et—1>

By using the following integrals

1 L[~ s x <ol —e k!
= —xldt d InZ= —dt
% 2k/o ¢ ané g /0 P ’

we get

Inx 1 1 ~(1 1 1 x
k - — - “Hdr.
VR =2t % (2 t+e’—l>e
The integrand is continuous as t — 0 and since the term é
t — oo, the integral converges uniformly for x > 0. Integrating from k to x and using
the relation (7) yields

1 1 1 1
InTy(x+k) —InT%(2k) = #xlnx—x) - E(klnk— k)+ Elnx— 3 Ink

+/°° 1 1+ 1 e—%f—e—fdt
0 2t -1 t
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x 1 x 1 <1 1 1 \e#

InT =(-—=]lnx—=—=Ink+1 —— dt
n T (x) (k 2) nx— o — S lnk+ —|—/O (2 t+ef—l> .

(1 1 1 e’
— ———+—|—dt.
/o (2 t * el — 1) t
Taking x = § in the last equation leads us that

11 = (1 1 1 -3

t e—1

(1 1 1 e!
YA (L
/o (2 t+ef—1>t
1 1 1
E(lnﬂ:—lnk)zi—ilnk-l-l—l

where J and I denote the integrals on the right side of the equation, respectively. Since

1 1. 1
J= 3 + 7 In 7 and I =1 —1InVv27 (see [28, pp. 248-250]), the proof is completed.
We want to note that using the relation between k-gamma and gamma functions

(11) and replacing x by % at the equation (2) lead us

Xt
1 =11 1 %
lan(x):(%—1>lnk+(%—§>ln%—%+ln\/2n+/0 (Aol ety

as desired. One can obtain equation (23) by differentiating the equation (22). [

Now we are ready to obtain monotonicity properties of functions involving k-digamma
and k-polygamma functions for all x, k > 0.

THEOREM 6. The following functions
Inx 1 k

e . 24
Wi () X + o + o2 (24)
Inx 1
T Vi (x), (25)

1 1 k IS
/ —— o —_— [

V)~ 5" 22 Tl T30 (26)
1 1 k
E‘Fﬁ‘Fﬁ—%ﬁ(x) 27

are strictly completely monotonic for x > 0.

Proof. By using the equation (23) and Lemma 1, the first function can be defined
by
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for all positive real values of x and k. Then we get

—6t+12)e — (12 +6t+12) _x
/ e kdt.
Tk 12t(e' — 1)

Let us denote the nominator as d;. Then we get that d; (1) = (> — 61 + 12)¢' — (1> +

6¢+12) > 0 and d;(0) = 0. Hence we obtain that (—1)”f1(">(x) > 0 as desired.
Now let us define the function f, by

Inx 1

f2(x) = wi(x) — % T

for x > 0. Then we obtain

A= [ (F- oty g)e

Let us denote the nominator as d». So we find that &> () = (2—1)e’ — (t+2) < 0 and

d>(0) =0 for all > 0. Hence, (—l)”“fz(n)(x) > 0 as desired.
Differentiating the equation (23) leads that

1 1 1 /= t xt
() = — + — 4+ — ———1|e *dr 28
Wk(x) kx+x2+k2/o (e’—l )e ( )

Then by using the equation (28) and Lemma 1, we can define the function by

k 1 1 ©° t Xt
K T e ta
6x3  2x2 k2/o (e’ -1 )e
/ 2 “dt——/ te__dt——/oo <L—l>e‘x?tdt
k32'6 o \ef—1

/ (’2—5— +1)efar
b \ 22T e

1 /e — — (1% Xt
_ _/ (12—6t+1%)e — (¢ +6t+12)e_?dt.
k2 Jo 12(e' — 1)

Since nominator of the function is same as the function f|, we get (—1)" f3(") (x)>0
for non-negative integer values of n.
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At last, let us define the function f1 by

, 11 k N K
kx  2x2 0 6x3  30x°

1L =ft & t 2
— — —1)e kdt

12 /o (2 720 ) ¢
1 /N (t* — 6012 + 360t — 720)e’ — (+* — 601> — 360t — 720) "
k2o 720(e’ — 1) '

Since it is easy to see that (* —60¢% + 360t —720)e’ — (¢* — 60¢> — 360t —720) > 0 for
all # > 0. Thus (—1)"fi")(x) < 0 in (0,0) for any non-negative integer n. [

As an immediate consequence of the theorem, we obtain the following double sided
inequalities on k-digamma and k-polygamma functions.

COROLLARY 2. The following inequalities

Inx 1 k Inx 1
T n e MW 29)
1 1 k IS 1 1 k

LN < L. 30
e Ten 30w <MW <gtiates (30)

and
(3D

are valid for x > 0.

We want to note that the inequalities (29) and (30) tend to the inequalities (4) and (5)
obtained in [16, Corollary 1] respectively as k — 1 and Theorem 6 is a k-generalization
of classical one in [16, Theorem 1]

The following results will help us to obtain harmonic mean inequalities for k-digamma
function.

THEOREM 7. The function
1
R0 = valx) + va )
is strictly concave for all k,x > 0.
Proof. By differentiation, we get
B = i)~ 5 vi ()
k k 2V}
and
2 1 1 1
/! /! / /!
B = v+ Svi(5) + 5w (5)

A0 = (1) + 20 () + ).
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Applying the recurrence formulas (16) and (17) and inequalities (30) and (31) lead us
that

1 1
P (x) = =2 + w,i’(;) +2x <x2 + Wé()_c —|—k>> +x*y) (x)
1 1

o (‘k@ﬁ)z ! (m%))

+2x [ 2%+ ! + ! + k +xt LI
k(k—i—l) 2(k+1/x)?  6(k+1/x)3 kx2 X3

= 2y © LA D S - S .

T Tkt 102 G 1?7 Tkt D) (et D2 3(ket 13
x2

~ s

< (B3I 4 3K — 330 + 92 + 2k — 3k + Okx+ 32+ 3).
3(kx+1)3

Since the last term on the right side of the inequality is a polynomial, by using asso-
ciative property, it is not difficult to obtain that if k¥ > 0 and 0 < x < 3, then we get
333 4 3k2x* 4 3k%%% (3 — x) + 2kx + 3kx(3 —x) +3x> +3 > 0 and also if k >0 and
x> 3, then we get 3k°x® + 3k (x — 1) + 9k%x? + 2kx?(x — 3) + 9kx +3x> +3 > 0.
This completes the proof. [l

COROLLARY 3. The inequality
1
vl v ) <2w(1) (32)
holds true for x >0 and x # 1.

Proof. Using the concavity of the function Py (x) from Theorem 7 leads us to

Pl) = i)~ 5w () = P (1) =0,

So we obtain that P[(x) > P/(1), for 0 <x < 1 and Pj(x) < P/(1) for x > 1. Hence we
get that Pr(x) < Pe(1) =2y (1) for x > 0 and x # 1 as desired. O

Ink 1
We want to remark that since k > 0 and y(x) = HT + EW(%) , we have P(1) =
2 1
z <lnk—|— y/(%» and P,(1) <O for all k> 0. This fact can also easily be seen from

the right side of the inequality (29) by taking x = 1.

LEMMA 3. The k-digamma function can be presented by power expansion as

oo

Vi(1+x) = yi(1) + 22(—1>"ck(1,n>x"*1 (33)
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Sfor |x| < 1.

LEMMA 4. The inequality

Y1 +2)ye(1—y) < i (1) (34)
is valid for y € (0,1).

Proof. Since ;. is completely monotonic function on (0,c) for all £ > 0, we
can find a point xp = xo(k) such that y(xp) = 0 and from the inequalities (29), we
see that the point xq is always greater than 1. As an immediate consequence, we have
Yir(1 —y) <0 forall k>0 and ye (0,1). Since xo dependson k and 1 < 1+y<2,
we must find an interval for £ where y(xo) =0 for 1 < xp < 2. By using the right
side of the inequalities (29), we get 0 < k < 2,36. So we have to investigate two cases:
Case 1: If k > 2,36, then we have (1 —y) <0 and y;(1+y) <0 for y € (0,1)
since xg > 2.

Case 2: If 0 < k < 2,36, then we get the following two other cases:
Casei: If y € (xg—1,1), then we have y(1—y) <0 < y,(1+y). Hence we obtain
as desired.
Case ii. If y € (0,x9 — 1), then we have (1 —y) <0 and y(1+y) <O0.
Now, we obtain the result for Case 1 and Case ii simultaneously. By using Lemma 3,
we get

0< —yi(l—y) < —yi(1) = G(1,2)y+ G (1,3)y?
and

0 < —wi(1+y) < —yi(1)+ G(1,2)y+28(1,3)y.

Hence we find the following inequality
Yie(1 =)yl —y) W (1) + (=G (1,2) = 3ya(1)G(1.3))y?
= Gl(1,2)G(1,3)y° +28:(1,3)%*.
Using the relations
1
G(1,2) = wi (1) and - G(1,3) = —w(1)
yield
3
we(1 =)yl —y) <y (1) + (— wi(1)? + Ewk(l)wli’(l)>y2
1 1
VOV + S (D3,

From Theorem 6 and Corollary 2, we also have

1k |
5 W) <—3

1 , 1k
i DNe -4+t
pty<wl)<gptitg
|

iy <1
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Hence we get

3 1 1
WP+ S (1) <0, Sw (DY (1) <0, Sw(1)>0

and by using the facts that y € (0,1) and previous inequalities on k-digamma and k-
polygamma functions at x = 1, we rewrite the inequality as

W1 =1 —y) < yP(1) + (—y(1)* + %wk(l)w;i’(l))f

1 1
oM () + Sw (1%
3 1 1

<w)+ |- 12(1>2+Ewk(l)wli’(l)+§w;£(1)lmi’(1)+§w2’(1>2]y3

11 k\* 3/ 1 1
<yi()+ _<§+§+g) +5<—§> (—%—1>

LY (LI L Y e Ty

2\k276)\ &k 2\ k)|

Since —(1/k-+1/2+k/6)>+3/2(—1/2)(=1/k—1)+1/2(1/k+1/2+k/6)(—1/k —
1)+ 1/2(1 4 1/k)? = —(k* +9%° — 12k* 4 36) /36k*> < 0 for k > 0, we get desired
result. [

THEOREM 8. The inequality

1
w(@w(;) <y (35)
is valid for all positive real values of x.

Proof.

1
Case 1. If x > x¢, then we obtain (—) < 0 < yi(x). Hence we obtain as desired.
X

1
Case2. If 1 <x<xp,thenletustake x=1+y. Thus — > T and since k-digamma
x _

1
function is completely monotonic on (0,e°), we get yi(1 —y) < (—) < 0. Using
x

this fact and Lemma 4 lead us to

Vi () Wi (1/%) = Wi (L 4+ y)wie(1/x) < wie(1+y)we(1—y) < wi (1)

as desired.

Case 3. If x € (0,1), then we can take z = 1/x and use the method above. [J

At last, for all real values of x and k, we can give harmonic mean inequality for k-
digamma function.
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THEOREM 9. The inequality
2y (x) wie(1/x)
N ————= 36
W) S 3 o+ w1/ (0

holds true for x, k > 0.

Proof. By using the inequalities (32) and (35), we get

2y (0)yi(1/x) < 292 (1)
2y () wie(1/x) 2y (1)
V() + Wi (1/x) — wi(x) + yie(1/x)
2y () wie(1/x) - 2y (1)
Wi (x) + wi(1/x) ~ 2y(1)
= yi(1)

for all real values of x # 1 and k. The sign of equality holds when x=1. O
At last we want to note that Theorem 7, inequalities (32), (33), (35) and (36) are exten-
sions of the results in [26].
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