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A NEW FAMILY OF WEIGHTED OPERATOR MEANS INCLUDING

THE WEIGHTED HERON, LOGARITHMIC AND HEINZ MEANS
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(Communicated by J. I. Fujii)

Abstract. The weighted power and Heron means are well known as generalizations of the weighted
arithmetic, geometric and harmonic ones, and also some researchers investigate weighted means
except them. Recently, Pal, Singh, Moslehian and Aujla introduced the weighted logarithmic
mean of two positive numbers or operators.

In this paper, we propose the notion of a transpose symmetric path of weighted M -means
for a symmetric operator mean M , and we introduce a new family of operator means including
the weighted logarithmic mean by Pal et al.. This family newly produces the weighted Heinz
mean. Moreover we obtain some relations among the weighted Heron, logarithmic and Heinz
means.

1. Introduction

The means are researched and used in many branches. As fundamental ones, the
arithmetic, geometric and harmonic means are defined by a+b

2 ,
√

ab and 2ab
a+b for two

positive real numbers a and b , respectively. It is also well known that these means
have their weighted versions as follows: For t ∈ [0,1] ,

At(a,b) = (1− t)a+ tb (arithmetic mean),

Gt(a,b) = a1−tbt (geometric mean),

Ht(a,b) = {(1− t)a−1 + tb−1}−1 (harmonic mean).

If the weight parameter t is equal to 1
2 , then the weighted means coincide with the orig-

inal (non-weighted) ones, and then we abbreviate the weight t as A(a,b) = A 1
2
(a,b) .

It is well known that the inequalities Ht(a,b) � Gt(a,b) � At(a,b) always hold.
As one-parameter generalizations including the weighted arithmetic, geometric

and harmonic means, the following are known. For t ∈ [0,1] and q ∈ R ,

Pt,[q](a,b) =

{
{(1− t)aq + tbq} 1

q if q �= 0,

a1−tbt if q = 0,
(power mean),

Kt,[q](a,b) = (1−q)a1−tbt +q{(1− t)a+ tb} (Heron mean).
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In this paper, we denote the power mean by Pt,[q](a,b) to distinguish the parameter q
determining the mean from the weight parameter t , and also we use the notation for
the non-weighted power mean that P[q](a,b) = P1

2 ,[q](a,b) . We remark that the other

means with parameters also obey these rules. The weighted power mean Pt,[q](a,b)
and the weighted Heron mean Kt,[q](a,b) are monotone increasing on q ∈ R , and also
At(a,b) = Pt,[1](a,b) = Kt,[1](a,b) , Gt(a,b) = Pt,[0](a,b) = Kt,[0](a,b) and Ht(a,b) =
Pt,[−1](a,b) hold.

It is also known that the non-weighted arithmetic, geometric and harmonic means
have many kinds of generalizations besides the power and Heron means. For example,
for q ∈ R ,

J[q](a,b) =
q

q+1
aq+1−bq+1

aq−bq (q �= 0,−1) (power difference mean),

HZ[q](a,b) =
aqb1−q +a1−qbq

2
(Heinz mean),

We note that J[0](a,b) and J[−1](a,b) can be defined as the limit, and also J[q](a,b)
is monotone increasing on q ∈ R . On the Heinz mean, HZ[q](a,b) is increasing for
q � 1

2 and decreasing for q � 1
2 . Moreover, the power difference mean J[q](a,b) also

includes the logarithmic mean LM(a,b) = a−b
loga−logb as LM(a,b) = J[0](a,b) . We re-

mark that many researchers investigate estimations of a parameterized mean by another
parameterized one, for example [6, 7, 17, 18].

It seems that there are not familiar weighted means except the power and Heron
means. Some researchers discussed the weighted logarithmic mean in their own way
in [9, 10, 13, 14]. Recently, based on the Hermite-Hadamard inequality for convex
functions, Pal, Singh, Moslehian and Aujla [10] introduced the weighted logarithmic
mean LMt(a,b) for t ∈ [0,1] by

LMt(a,b) =
1

loga− logb

{
1− t

t
a1−t(at −bt)+

t
1− t

bt(a1−t −b1−t)
}

,

and also they showed that the inequalities

Ht(a,b) � Gt(a,b) � LMt (a,b) � Kt,[ 1
2 ](a,b) � At(a,b) (1.1)

always hold.
We can extend above discussion for bounded linear operators on a Hilbert space

H . An operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all
x ∈ H , and also an operator T is said to be strictly positive (denoted by T > 0)
if T is positive and invertible. We denote the set of positive operators by B+(H ) .
A real-valued function f defined on J ⊂ R is said to be operator monotone if A �
B implies f (A) � f (B) for selfadjoint operators A and B whose spectra σ(A),σ(B)⊂
J , where A � B means B−A � 0.

Kubo and Ando [8] constructed the general theory of operator means. In [8], they
obtained that there exists a one-to-one correspondence between an operator mean M
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and an operator monotone function f � 0 on [0,∞) with f (1) = 1 via f (x)I = M(I,xI)
as follows:

M(A,B) = A
1
2 f (A

−1
2 BA

−1
2 )A

1
2 (1.2)

if A > 0 and B � 0. We remark that f is called the representing function of M , and
also it is permitted to consider binary operations given by (1.2) even if f is a general
real-valued function. By (1.2), we can introduce the following weighted operator means
for two strictly positive operators A and B . For example, for t ∈ [0,1] ,

At(A,B) = (1− t)A+ tB (arithmetic mean),

Gt(A,B) = A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 (geometric mean),

Ht(A,B) = {(1− t)A−1 + tB−1}−1 (harmonic mean),

Pt,[q](A,B) =

{
A

1
2 {(1− t)I+ t(A

−1
2 BA

−1
2 )q} 1

q A
1
2 if 0 < |q| � 1,

A
1
2 (A

−1
2 BA

−1
2 )tA

1
2 if q = 0,

(power mean).

We remark that their representing functions are At(1,x) , Gt(1,x) (denoted by At(x) ,
Gt(x)) and so on. Similarly, we can introduce the operator mean M corresponding
to the representing function M(1,x) (denoted by M(x)) by the numerical mean M
if M(1,x) is operator monotone. Refer to [12] for more details on operator means.
Here we also remark that the power difference mean J[q](A,B) is an operator mean if
−2 � q � 1 (see [3, 4, 5]).

In this paper, we discuss a new family of operator means. Firstly, from the view-
point of the representing functions of operator means, we propose the notion of a trans-
pose symmetric path of weighted M-means. Secondly, we introduce a new family of
operator means including the weighted logarithmic mean by Pal et al. and the weighted
Heron mean. This family newly produces the weighted Heinz mean, and we get some
relations among the weighted Heron, logarithmic and Heinz means. Thirdly, we obtain
the results on estimations of the weighted logarithmic mean via the power difference
mean.

2. A transpose symmetric path of weighted M-means

In this section, we discuss the definition of weighted means. Throughout this
paper, a function M : [0,∞)× [0,∞)→ [0,∞) is called a (numerical) mean if M satisfies
the following four properties.

(i) M(a,b) is monotone increasing in both a and b (monotonicity),

(ii) M(αa,αb) = αM(a,b) for all α > 0 (homogeneity),

(iii) M(a,b) is continuous in a and b (continuity),

(iv) M(a,a) = a for all a (normalization).
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We remark that (i) and (iv) imply min{a,b} � M(a,b) � max{a,b} . We can easily
verify that the means introduced in the previous section satisfy the above (i)–(iv). A
mean M is said to be symmetric if M(a,b) = M(b,a) (symmetry) holds. The weighted
means in Section 1 are not symmetric except the case t = 1

2 , but they have the prop-
erty that Mt(a,b) = M1−t(b,a) (transpose symmetry) holds for all t ∈ [0,1] instead of
symmetry. Transpose symmetry is called conjugate symmetry in [13].

Kubo and Ando [8] discussed an axiomatic approach to operator means. A bi-
nary operation M : B+(H )×B+(H ) → B+(H ) is called an operator mean if the
following conditions are satisfied:

(i) A � C and B � D imply M(A,B) � M(C,D) (monotonicity),

(ii) T ∗M(A,B)T � M(T ∗AT,T ∗BT ) for every operator T (transformer inequality),

(iii) An ↓ A and Bn ↓ B imply M(An,Bn) ↓ M(A,B) (upper semicontinuity),

(iv) M(I, I) = I (normalization),

where An ↓ A means that A1 � A2 � · · · and An → A in the strong operator topology
as n → ∞ . We remark that (ii) leads T ∗M(A,B)T = M(T ∗AT,T ∗BT ) (transformer
equality) if T is invertible, and the transformer equality ensures that M(αA,αB) =
αM(A,B) (homogeneity) holds for all α > 0. It is also obtained in [8] that there
exists a one-to-one correspondence between an operator mean M and its representing
function f as (1.2). For two operator means M and N , M � N (resp. M = N)
means that M(A,B) � N(A,B) (resp. M(A,B) = N(A,B)) for all A,B > 0. We define
symmetry and transpose symmetry for operator means similarly to the numerical case.
For an operator mean M and its representing function f , the operator mean whose
representing function is x f (x−1) is called transpose of M , and we denote it by M◦ .
We easily obtain that M◦(A,B) = M(B,A) for A,B > 0, and also an operator mean M
is symmetric if and only if M = M◦ if and only if f (x) = x f (x−1) for all x > 0.

From this argument, we can discuss numerical means and operator means simul-
taneously via the representing function, so we write definitions and theorems in terms
of operator means from now on. We remark that we have to pay attention to operator
monotonicity when we treat operator means.

Next, we discuss what is the natural definition of “weighted” means. We can
consider plural weighted means from one symmetric mean. In fact, the weighted loga-
rithmic mean is defined by several ways in [9, 10, 13, 14]. Moreover, in [1, 2, 11, 16],
they discussed the algorithms to make weighted operator means from a given operator
mean. In [16], Udagawa, Yamazaki and Yanagida introduced the α -weighted operator
mean as an expression of weight parameters (see also [11]).

DEFINITION 2.1 ([16]) The operator mean M is said to be α -weighted if f ′(1) = α ,
where f (x) is the representing function of M .

The weighted means introduced in Section 1, At(a,b) , Pt,[q](a,b) and so on, are
all t -weighted. We can easily obtain 0 � α � 1 in Definition 2.1 since min{1,x} �
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f (x) � max{1,x} holds for all x > 0. Every symmetric mean is 1
2 -weighted, but the

converse does not hold in general by the operator mean whose representing function is

f (x) =
2
3
x

2
3 +

1
3
x

1
6 .

Here we assume that M is a symmetric 1
2 -weighted mean, and we consider a

path of t -weighted means Mt(A,B) for t ∈ [0,1] from A (0-weighted mean) to B (1-
weighted mean) such that M 1

2
(A,B) = M(A,B) . Raı̈ssouli and Sándor [14] introduced

the notion of the weighted M -mean for a one-parameter family of numerical weighted
means {Mt}t∈[0,1] . Here, as a refinement of their definition considering Definition 2.1,
we introduce the notion of a transpose symmetric path of weighted M-means.

DEFINITION 2.2 Let M be a symmetric operator mean and A,B > 0 . If the following
conditions hold, then Mt is said to be a weighted M-mean, and a one-parameter
family {Mt}t∈[0,1] is said to be a transpose symmetric path of weighted M-means.

(i) Mt is an operator mean for all fixed t ∈ [0,1] .

(ii) M0(A,B) = A, M 1
2
(A,B) = M(A,B) and M1(A,B) = B.

(iii) Mt(A,B) = M1−t(B,A) for all t ∈ [0,1] (transpose symmetry).

(iv) Mt is t -weighted for all fixed t ∈ [0,1] .

In Definition 2.2, (iii) holds if and only if Mt = M◦
1−t if and only if ft(x) =

x f1−t(x−1) for all x > 0, where ft(x) is the representing function of Mt . We note that
(iii) ensures symmetry of M 1

2
. The families of weighted means introduced in Section

1, {At}t∈[0,1] , {Pt,[q]}t∈[0,1] and so on, are all transpose symmetric paths of weighted
means. We remark that the weight parameter t in {Mt}t∈[0,1] does not always equal
f ′t (1) even if (i)–(iii) hold in Definition 2.2. For example, we consider an operator mean
Mt whose representing function is

ft (x) = x2t−3t2+2t3(= G2t−3t2+2t3(x)).

Then Mt satisfies (i)–(iii) in Definition 2.2, but Mt is not t -weighted but (2t−3t2 +
2t3)-weighted.

3. General results

For a symmetric operator mean M with a representing function ψ , we consider a
weighted M-mean Mt whose representing function is

ψt(x) =

{
1−2t +2tψ(x) if 0 � t � 1

2 ,

(2t−1)x+2(1− t)ψ(x) if 1
2 � t � 1.
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Then {Mt}t∈[0,1] is a transpose symmetric path of weighted M-means. But this path
does not include fundamental weighted operator means except the weighted arithmetic
mean. In this section, we construct a transpose symmetric path of weighted M-means
including some fundamental weighted means stated in Section 1.

Let {Mt}t∈[0,1] be a transpose symmetric path of weighted M-means and

R =
{{ ft}t∈[0,1] : ft is the representing function of Mt ∈ {Mt}t∈[0,1]

}
.

We denote { ft}t∈[0,1] by { ft} briefly. Now we consider the following function.

DEFINITION 3.1 Let {ϕs} ∈ R . Then we define a function mt [ϕs] : [0,∞) → [0,∞) as

mt [ϕs](x) = (1− t)ϕ1−s(xt)+ txtϕs(x1−t) for t,s ∈ [0,1] .

In particular, if ϕ is the representing function of a symmetric mean, then we define

mt [ϕ ](x) = (1− t)ϕ(xt)+ txtϕ(x1−t) for t ∈ [0,1] .

Then the function mt [ϕs] makes a transpose symmetric path of weighted M[ϕs]-means
by the following Theorem 3.1. We recognize that t and s in mt [ϕs] express the weight
parameter and the parameter determining the path, respectively. We remark that we
do not have to consider a one-parameter family {ϕs} ∈ R if we choose s = 1

2 , the
representing function ϕ of a symmetric mean, in Definition 3.1.

THEOREM 3.1 Let {ϕs} ∈ R and mt [ϕs] be as in Definition 3.1. Let Mt [ϕs] be the
binary operation whose representing function is mt [ϕs] , and also M[ϕs] = M 1

2
[ϕs] .

Then the family {Mt [ϕs]}t∈[0,1] is a transpose symmetric path of weighted M[ϕs]-
means.

Proof. We shall verify that Mt [ϕs] has four properties in Definition 2.2 by using
its representing function mt [ϕs] .

(i) Operator monotonicity of mt [ϕs] is obtained since ϕ1−s(xt) , ϕs(x1−t)
1

1−t and

xtϕs(x1−t) = xt{ϕs(x1−t)
1

1−t }1−t

are operator monotone for t ∈ [0,1] (e.g. [15]), and we have mt [ϕs](1) = 1 obviously.
(ii) We easily get that m0[ϕs](x) = 1 and m1[ϕs](x) = x , and also m 1

2
[ϕs](x) is the

representing function of M[ϕs] obviously.
(iii) The equality mt [ϕs](x) = xm1−t [ϕs](x−1) holds since

xm1−t [ϕs](x−1) = x
[
{1− (1− t)}ϕ1−s(x−(1−t))+ (1− t)x−(1−t)ϕs(x−{1−(1−t)})

]
= txtx1−tϕ1−s(x−(1−t))+ (1− t)xtϕs(x−t)

= txtϕs(x1−t)+ (1− t)ϕ1−s(xt)
= mt [ϕs](x).
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(iv) We obtain m′
t [ϕs](1) = t since

m′
t [ϕs](x) = t(1− t)xt−1ϕ ′

1−s(x
t)+ t{txt−1ϕs(x1−t)+ (1− t)ϕ ′

s(x
1−t)}

holds. �
We have the following fundamental properties of the weighted operator mean

Mt [ϕs] in Theorem 3.1. For A,B > 0 and binary operations M,N given by (1.2), we
note that (M+N)(A,B)≡M(A,B)+N(A,B) and (αM)(A,B)≡αM(A,B) (α > 0).

THEOREM 3.2 Let {ϕs},{ψs} ∈ R . If ϕs � ψs for each s ∈ [0,1] , then Mt [ϕs] �
Mt [ψs] for all t ∈ [0,1] .

Proof. It is immediately obtained by Definition 3.1. �

THEOREM 3.3 Let {ψ( j)
s } ∈R and α j > 0 for j = 1, . . . ,n with α1 + · · ·+αn = 1 . If

ϕs = α1ψ(1)
s + · · ·+ αnψ(n)

s for each s ∈ [0,1] , then

Mt [ϕs] = α1Mt [ψ
(1)
s ]+ · · ·+ αnMt [ψ

(n)
s ]

holds for t ∈ [0,1] , and also {Mt [ϕs]}t∈[0,1] is a transpose symmetric path of weighted
M[ϕs]-means.

Proof. Since {ϕs} ∈ R holds, we have the desired result by Theorem 3.1 and by

considering representing functions of Mt [ϕs] and Mt [ψ
( j)
s ] . �

4. Examples

A transpose symmetric path of weighted M[ϕs]-means given in Theorem 3.1 in-
cludes some weighted operator means, for example, the weighted Heron mean, the
weighted logarithmic mean and the weighted Heinz mean.

Firstly we discuss {Mt [ϕs]}t∈[0,1] for the representing function ϕ of the logarith-
mic mean. Let ϕ(x) = LM(x) . Then the representing function of Mt [LM] is

mt [LM](x) =
1

logx

{
1− t

t
(xt −1)+

t
1− t

xt(x1−t −1)
}

= LMt (x),

in particular

m 1
2
[LM](x) =

x−1
logx

= LM(x).

Therefore mt [LM] makes a transpose symmetric path of weighted LM -means. This
weighted LM -mean coincides with the weighted logarithmic mean LMt introduced
by Pal, Singh, Moslehian and Aujla [10], that is, Mt [LM] = LMt .
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Moreover, we consider {Mt [ϕs]}t∈[0,1] for the representing function of the weighted
logarithmic mean, that is, ϕs(x) = LMs(x). The representing function of Mt [LMs] is

mt [LMs](x) =
1− t
t logx

{
s

1− s
(xt(1−s) −1)+

1− s
s

(xt − xt(1−s))
}

+
txt

(1− t) logx

{
1− s

s
(x(1−t)s −1)+

s
1− s

(x1−t − x(1−t)s)
}

,

in particular

m 1
2
[LMs](x) =

1
logx

{
s

1− s
(x

1−s
2 −1)+

1− s
s

(x
1
2 − x

1−s
2 )
}

+
x

1
2

logx

{
1− s

s
(x

s
2 −1)+

s
1− s

(x
1
2 − x

s
2 )
}

.

Next, we discuss {Mt [ϕs]}t∈[0,1] for the representing function ϕs of the weighted

power mean. Let ϕs(x) = Ps,[q](x) = {(1− s)+ sxq} 1
q for q ∈ [−1,1] . Then the repre-

senting function of Mt [Ps,[q]] is

mt [Ps,[q]](x) = (1− t)
{
s+(1− s)xtq} 1

q + txt
{
(1− s)+ sx(1−t)q

} 1
q
, (4.1)

in particular

m 1
2
[Ps,[q]](x) =

1
2

{
s+(1− s)x

q
2

} 1
q
+

1
2
x

1
2

{
(1− s)+ sx

q
2

} 1
q
.

This transpose symmetric path includes the following weighted means. Here, we can
newly introduce the weighted Heinz mean.

(i) Weighted Heron mean: By putting q = 1 in (4.1), we have Ps,[1] = As and the
representing function of Mt [As] is

mt [As](x) = (1− s)xt + s{(1− t)+ tx}= Kt,[s](x),

in particular

m 1
2
[As](x) = (1− s)x

1
2 + s

x+1
2

= K[s](x).

Therefore mt [As] makes a transpose symmetric path of weighted K[s] -means. This
weighted K[s] -mean coincides with the weighted Heron mean Kt,[s] , that is, Mt [As] =

Kt,[s] . We remark that K[ 1
2 ](a,b) =

(√a+
√

b
2

)2 = P[ 1
2 ](a,b) is sometimes called the

square-root mean, and Mt [A] is regarded as the weighted square-root mean in the sense
of the Heron mean.

(ii) Weighted Heinz mean: Here, we replace the parameter q of HZ[q](a,b) as
HZ[s](a,b)=HZ[ 1−s

2 ](a,b) . Then HZ[0](a,b)= G(a,b) and HZ[1](a,b)= A(a,b) hold,
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and also HZ[s](a,b) is increasing for s � 0. By putting q = 0 in (4.1), we have Ps,[0] =
Gs and the representing function of Mt [Gs] is

mt [Gs](x) = (1− t)x(1−s)t + txt+s(1−t) = x(1−s)t {(1− t)+ txs} ,

in particular

m 1
2
[Gs](x) =

x
1−s
2 + x

1+s
2

2
= HZ[s](x).

Therefore mt [Gs] makes a transpose symmetric path of weighted HZ[s] -means, so that
we can define the weighted Heinz mean HZt,[s] and its representing function HZt,[s](x)
as

HZt,[s] = Mt [Gs],

HZt,[s](x) = mt [Gs](x) = (1− t)xt−st + txt+s(1−t).

(iii) By putting q =−1 in (4.1), we have Ps,[−1] = Hs and the representing function
of Mt [Hs] is

mt [Hs](x) = (1− t)
{
s+(1− s)x−t}−1 + txt

{
(1− s)+ sx−(1−t)

}−1
,

in particular

m 1
2
[Hs](x) =

1
2

{
s+(1− s)x

−1
2

}−1
+

1
2
x

1
2

{
(1− s)+ sx

−1
2

}−1
.

We remark that if s = 1
2 , then the representing function of Mt [H] is

mt [H](x) = (1− t)
(

x−t +1
2

)−1

+ txt

(
x−(1−t) +1

2

)−1

,

in particular

m 1
2
[H](x) = x

1
2 = G(x).

Therefore mt [H] makes a transpose symmetric path of weighted G-means. Of course,
this is a different weighted G-mean from the standard weighted geometric mean Gt .

By Theorem 3.2, we have

Mt [Hs] � Mt [Gs] � Mt [LMs] � Mt [As] (4.2)

for t,s ∈ [0,1] . (4.2) ensures the following inequalities since xt � mt [Gs](x) holds for
all x > 0, which is a refinement of (1.1).
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THEOREM 4.1 For t,s ∈ [0,1] , the inequalities

Ht � Gt � HZt,[s] � Mt [LMs] � Kt,[s] � At

hold. In particular, we have

Ht � Gt � HZt,[ 1
2 ] � LMt � Kt,[ 1

2 ] � At . (4.3)

5. Estimations of the weighted logarithmic mean

In this section, we obtain the following estimations of LMt via the power differ-
ence mean, which are more precise than (4.3).

THEOREM 5.1 For t ∈ [0,1] and natural numbers n such that n � 2 , the inequalities

HZt,[ 1
2 ] � Mt [J[−1

3 ]] � · · · � Mt [J[−1
n ]] � Mt [J[ −1

n+1 ]] � · · ·
� LMt � · · · � Mt [J[ 1

n+1 ]] � Mt [J[ 1
n ]] � · · · � Mt [J[ 1

2 ]] � Kt,[ 1
2 ]

hold, where Mt [J[ 1
n ]] and Mt [J[−1

n ]] are the weighted operator means such that

Mt [J[ 1
n ]] =

1
n+1

(
At +HZt,[ n−1

n ] + · · ·+HZt,[ 1
n ] +Gt

)
,

Mt [J[−1
n ]] =

1
n−1

(
HZt,[ n−1

n ] +HZt,[ n−2
n ] + · · ·+HZt,[ 2

n ] +HZt,[ 1
n ]

)
.

Proof. We consider {Mt [ϕ ]}t∈[0,1] for the representing function of the power dif-

ference mean, that is, ϕ(x) = J[q](x) =
q

q+1
xq+1−1
xq−1

for q∈ [−2,1] . The representing

function of Mt [J[q]] is

mt [J[q]](x) = (1− t)
q

q+1
xt(q+1) −1

xtq −1
+ txt q

q+1
x(1−t)(q+1)−1

x(1−t)q−1
, (5.1)

in particular

m 1
2
[J[q]](x) =

q
q+1

x
q+1
2 −1

x
q
2 −1

1+ x
1
2

2
.

Put q = 1
n in (5.1) for a natural number n . Since

J[ 1
n ](x) =

1
n+1

x
n+1
n −1

x
1
n −1

=
1

n+1

(
x+ x

n−1
n + · · ·+ x

1
n +1

)

=
1

n+1

(
G1(x)+Gn−1

n
(x)+ · · ·+G 1

n
(x)+G0(x)

)
,
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we have

mt [J[ 1
n ]](x) =

1
n+1

(
mt [G1](x)+mt [Gn−1

n
](x)+ · · ·+mt [G 1

n
](x)+mt [G0](x)

)
=

1
n+1

(
At(x)+HZt,[ n−1

n ](x)+ · · ·+HZt,[ 1
n ](x)+Gt(x)

)
by Theorem 3.3, and also Theorem 3.2 ensures

LMt(x) = mt [LM](x) � · · · � mt [J[ 1
n+1 ]](x) � mt [J[ 1

n ]](x)

� · · · � mt [J[ 1
2 ]](x) � mt [A](x) = Kt,[ 1

2 ](x)

since J[1] = A , J[0] = LM and J[q] is increasing for q ∈ R .

Put q = −1
n in (5.1) for a natural number n such that n � 2. Since

J[−1
n ](x) =

−1
n−1

x
n−1
n −1

x
−1
n −1

=
1

n−1
x

1
n

(
x

n−2
n + x

n−3
n + · · ·+ x

1
n +1

)

=
1

n−1

(
x

n−1
n + x

n−2
n + · · ·+ x

2
n + x

1
n

)
=

1
n−1

(
Gn−1

n
(x)+Gn−2

n
(x)+ · · ·+G 2

n
(x)+G 1

n
(x)
)

,

we have

mt [J[−1
n ]](x)

=
1

n−1

(
mt [Gn−1

n
](x)+mt [Gn−2

n
](x)+ · · ·+mt [G 2

n
](x)+mt [G 1

n
](x)
)

=
1

n−1

(
HZt,[ n−1

n ](x)+HZt,[ n−2
n ](x)+ · · ·+HZt,[ 2

n ](x)+HZt,[ 1
n ](x)

)
by Theorem 3.3, and also Theorem 3.2 ensures

HZt,[ 1
2 ](x) = mt [G](x) � mt [J[−1

3 ]](x) � · · · � mt [J[−1
n ]](x) � mt [J[ −1

n+1 ]](x)

� · · · � mt [LM](x) = LMt (x)

since J[0] = LM , J[−1
2 ] = G and J[q] is increasing for q ∈ R . �
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