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INEQUALITIES FOR GENERALIZED PARAMETRIC MARCINKIEWICZ
INTEGRALS ALONG POLYNOMIAL COMPOUND CURVES

FENG L1u, ZUNWEI FU" AND LIGUANG WANG

(Communicated by J. Pecari¢)

Abstract. Under some weaker size conditions assumed on the integral kernels both on the unit
sphere and in the radial directions, the sharp L” boundedness was proved for the generalized
parametric Marcinkiewicz integrals along polynomial compound curves via an extrapolation ar-
gument. As applications, the corresponding results for generalized parametric Marcinkiewicz
integral operators related to the Littlewood-Paley g7 -functions and area integrals are also estab-
lished.

1. Introduction

The primary purpose of this paper is to present certain sharp L” boundedness
for rough generalized parametric Marcinkiewicz integrals along polynomial compound
curves. Let us begin with some notations and definitions.

DEFINITION 1. (Generalized parametric Marcinkiewicz integral operators along
submanifolds). Let R” (n > 2) be the n-dimensional Euclidean space and S"~! denote
the unit sphere in R” equipped with the induced Lebesgue measure do. Assume that
Qe L'(S"!) is a function of homogeneous degree zero and satisfies

1 Qu)do(u) =0. (D)
N

Let h be a measurable function on Ry := [0,e) and T': R” — R” be a suitable map-
ping. For a suitable function ¢ : Ry — R and 1 < g < e, we define the generalized
parametric Marcinkiewicz integral operators E)JYZ arp by

y[r=P t

where y = y/|y| for y e R"\ {0}, p =¢+it (¢,7 € R with ¢ > 0) and f € ./ (R")
(the space of Schwartz functions on R").
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For the sake of simplicity, we denote imgmp =Mpap if g=2 and I'(y) =y.
Specially, when p = 1 and A(-) = 1, the operator 2, o , reduces to the classical well-
known Marcinkiewicz integral operator g, which was first introduced by Stein [26]
who established the L” (1 < p < 2) bounds for 9 under the condition that Q €
Lip, (S"!) for 0 < o < 1. Stein’s result was later extended and improved greatly by
many authors. For example, see [6,7] for the case Q € H'(S"~!) (the Hardy space on
871, [3,4] for the case Q € L(logL)"/2(S"1), [4,8] for the case Q € B~ /2 (sn-1)
(the block space generated by r-blocks). For h(-) = 1, the operator 2, o, is just the
classical parametric Marcinkiewicz integral operator Mg ,. Hormander [11] (resp.,
Sakamoto and Yabuta [24]) first studied the L” bounds for Mg , with real (resp.,
complex) number p . For further research on 90, o , and other extensions, we refer the
readers to consult [15, 16,17, 18,19,20,22,23], among others.

On the other hand, the investigation on the generalized Marcinkiewicz integral
operator has also attracted the attention of many authors. When p =1 and I'(y) =y,
we denote ‘J)TZ’QI’ o by 93?279. In 2002, Chen et al. [5] first introduced the operator
9!, and showed that M/ , is bounded from the homogeneous Triebel-Lizorkin space
E) (R") to LP(R") for 1 < p,q <eo if h(-) =1 and Q € L(S""") for some 1 <
s < oo, Later on, the above result was improved by Fan and Wu [9] to the case Q €
L(logL)'/4(s"1) for ¢ >2 and Q € L(logL)'/4+¢(S"~1) for 1 < g <2 andany € > 0.
Meanwhile, Al-Qassem et al. [2] established the bounds of ] , : F) (R") — LP(R")
for pe (2B/(2B—1),2B) and g € (2B/(2B —1),2) under the conditions that A(-) =
1 and Q € Fg(S"!) for some B > 1. Here .Zg(S"!) for B > 0 was introduced
by Grafakos and Stefanov [10] in the study of L” bounds for rough singular integrals.
In particular, Le [13] observed that 90/ , is bounded from £ (R") to LP(R") for
1 < p,q < oo provided that h € Apaxo 41 (R ) and Q € L(logL)(S""!). Recently, Al-
Qassem et al. [1] improved the results of [9, 13] and proved the following conclusions.

THEOREM 1. ([1]) Let Q satisfy the condition (1) and 1 < g < oo. Then:

() If Qe L(logL)(s" "YU (U BV (")) and h € A (Ry), then
r>1
19985 0 o f 10y < Co(L+Ni ()£ 59, () for 1 <p <gq.

(i) If @ € L(log L) /4(s" YU (U B> V(s"1)) and h € A7 y(Ry), then

r>1

Hfngpfﬂu’(ﬂ@") < Cp(l +N1/q(h))Hf||F,£{q(R")7 for g < p < ee.

(i) If Q€ L(logL)/a(s"1yu (U B97V($771)) and h € Ay(Ry) for some 7>
2, then i
1990 .pf llr &) < Collllay ) 1f L0, (B
f(;r1<p<qif2<)/<°oandq’>)/, and for Y < p < oo if 2 <y < o and
q<y.
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Here the above constants C, > 0 are independent of h.

This paper focuses on rough generalized parametric Marcinkiewicz integrals along
polynomial compound curves. More precisely, we shall establish certain sharp L?
bounds for 9)?27971-7 p, With T'(y) = Py(o(]y]))y’, where Py is areal polynomial on R of
degree N and satisfies Py(0) =0 and ¢ € §. Here § is the set of all positive increasing
%¢!(R;) functions ¢ such that there exist Cy, ¢y > 0 such that ¢’ (¢) > Cy¢(¢) and
O(21) <cp(r) forall £ > 0.

REMARK 1. There are some model examples for the class §, such as t* (o >
0), Pin(1+1)(B > 1), tInln(e+1), real-valued polynomials P on R with positive
coefficients and P(0) = 0 and so on. Note that there exists B, > 1 such that ¢(2¢) >
Byo(t) forany ¢ € F (see [21]).

For convenience, we denote 9017 or., =/ nQ.Pypp i T'(y) =Pv(e(y])y . Re-
cently, the first author [ 18] established the following result.

THEOREM 2. ([18]) Let Py be a real polynomial on R of degree N and satisfy
Py(0) =0 and ¢ € §. Assume that h(-) =1 and Q € Fg(S""") for some B >1/2
and satisfies (1). Then

1990, £y, 0.0 f o @) < Cpll 1l 9, (@)

forpe (14+1/(2B),14+2B) and g € (1+1/(2B),1+2pB). Here the constant C, > 0
is independent of the coefficients of Py, but may depend on p,q,n,@,p,N.

Based on the above, a question that arises naturally is the following.

QUESTION 1. Is the operator ‘Jﬁh Q.py.pp Dounded from F 0 4(R") to LP(R") un-
der the same conditions /,Q in Theorem i and Py, ¢ in Theorem 2?

This question is the main motivation of this work, which can be addressed by the
following results.

THEOREM 3. Let Py be a real polynomial on R of degree N and satisfy Py(0) =
0 and ¢ € §. Suppose that Q satisfies (1). Then:

() If Q€ L(logL)(S" ') and h € A (R.), then
1998 0.5y pf lLr ) < Cp(L+ (|20l 101y (sn-1)) (1 + N1 (h))”fHng(Rn),

for 1 <p<gq.
(i) If Q€ L(logL)V4(S"~1) and h € N ,(Ry.) for 1 < q < e, then

192 0y g @) < Col+ 1211 aogrysacsnty) (1 Ny g (D)1 g, -

for g < p < oo.
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(iii) If Q € L(logL)'/4(S"~') and h € Ay(Ry) for some y > 2. Then
1998 . £y, .0 f 2 @) < Cp (L4 1R 101/ 1) 1l g ) 1 F 1L (B

for1<p<g<?if2<y<e,andfory <p<ocoandy <q<e if2<y< .

Here the above constants C, > 0 are independent of h,Q and the coefficients of Py,
but may depend on p,q,n,@,p,N.

THEOREM 4. Let Py be a real polynomial on R of degree N and satisfy Py(0) =
0 and ¢ € §. Suppose that Q satisfies (1). Then:

(i) If Qe BSO’O)(S"_I) forsome r>1 and h € N (R,.), then
198 g ey < o1+ 120 00,5 1)1+ NI g,
for 1 <p<q.
(i) If Qe Bﬁo’l/qil)(S"’l) for some r > 1 and h € N7 ,,(Ry) for 1 < q < oo, then
190 0 by pf Lr ey < Cp(1+ €211 017011 gu-17) L+ N1 g (D f L9, ey
for g < p < eo.
(iii) If Q € Bﬁo’l/q_l)(S"’l) for some r > 1 and h € Ay(R) for some y>2. Then
190 0 £y pf L (Re) < Cp(1+ 121 go/a-1 g1 el ay ) 1 1 g, ey
forl<p<g</VYif2<y<eco,andfory <p<eandy <q<e if2<y< .

Here the above constants C, > 0 are independent of h,Q and the coefficients of Py,
but may depend on p,q,n,@,p,N.

Theorems 3 and 4 can be proved by applying extrapolation arguments following
from [25] and the following refined sharp results.

THEOREM 5. Let Py be a real polynomial on R of degree N and satisfy Py(0)

0 and ¢ € F. Suppose that Q € L*(S"~') for some s € (1,2] satisfying (1) and h €
Ay(Ry) for some y € (1,2]. Then:

(1) For 1 < p < gq, it holds that
190% 00 py.p pf |Lr (1) < Cpls — D~ (y— 1)71”Q”LS(S”*)HhHAy(RJr)Hf”FRAR”)'
(i) For g < p < oo, it holds that

1900 5 by 0. ) < Cpls = 1) ™40y =1) Q| g1 [l ay ) L1l g, (o)
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Here the above constants C, > 0 are independent of h,Q,v,s and the coefficients of
Py, but may depend on p,q,n,@,p,N.

THEOREM 6. Let Py be a real polynomial on R of degree N and satisfies Py(0) =
0 and ¢ € F. Suppose that Q € L*(S""') for some s € (1,2] satisfying (1) and
h e Ay(Ry) for some y € (2,00|. Then

1992 g - p o ny < Cols = 17907 = 1)~ @1 sgsn 1)l gz 1, o

for1<p<q<7if2<y<eoco,andfory <p<oand?y <q<o if 2<y< e,
Here the above constants C, > 0 are independent of h,Q,v,s and the coefficients of
Py, but may depend on p,q,@,p,N.

REMARK 2. There are some remarks as follows:

(a) Theorem 3 (i) and (ii) extend [23, Corollary 2], which corresponds to the case
q = 2. Theorems 3 and 4 generalizes Theorem 1, which corresponds to the case
Py(t) =1t and ¢@(t) =t. Moreover, Theorems 3 and 4 are essentially different
from Theorem 2, even in the special case h(t) = 1.

(b) Our main results improve and generalize the main results in [4,5,9, 13].

(c) It should be pointed out that all of our main results are new, even in the special
case: p=1,g=2,h(t)=1and o(t) =1.

The paper is organized as follows. Section 2 contains some notations and lemmas,
which play key roles in our proofs. The proofs of main results will be given in Section 3.
Finally, we establish the L” bounds for generalized parametric Marcinkiewicz integral
operators related to Littlewood-Paley g7 -functions and area integrals in Section 4. We
would like to remark that the main method employed in the proofs of Theorems 5 and
6 is a combination of ideas and arguments from [1, 14,23,27]. The proofs of Theorems
3 and 4 are based on Theorems 5 and 6 and some extrapolation arguments following
from [4,25].

Throughout the paper, we let p’ denote the conjugate index of p which satisfies
1/p+1/p’ = 1. The letter C will stand for positive constants not necessarily the same
one at each occurrence but is independent of the essential variables.

2. Preliminary notations and lemmas

This section is devoted to presenting some definitions and lemmas, which play key
roles in the proofs of main results. We start with some definitions of function spaces.

DEFINITION 2. (Function classes L(logL)®(S"~!), B ($"1) and Fg(S" ).

(i) For o >0, the class L(logL)*(S"~!) denotes the class of all measurable func-
tions Q on S"~! which satisfy

|9 sgogryeqse ) = [, 1940)]108%(120)] +2)do(6) <
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(ii) The block spaces in R" originated from the work of Taibleson and Weiss on the
convergence of the Fourier series in connection with developments of the real
Hardy spaces. The block spaces on $"~! was introduced by Jiang and Lu [12]
in studying the homogeneous singular integral operators. A r-block on S"~! is
an L"(S"7!) (1 < r < o) function b which satisfies supp(h) = I and ||b||, <
11|17, where |I| = o(I),and I = {x € S""' : |x—xo| < &} for some a € (0, 1]
and xo € S"!. The block B\”")(S"~1) is defined by

B (sm1) = {QeLl(s" N:Q=S Auby, M£°’V>({/1u})<oo},
u=1

where v> —1, A, € C, by is a r-block supported on a cap I, on S"~! and
M ((A}) = Sy (Al (1+10g (11 71)) . The norm of B (") is
(1) = NSO Q)= inf{MﬁO’v)({l‘l})} , where the infimum is

taken over all r-block decompositions of €.

(iii) For B >0, .Z5(S""!) is defined by

given by €] o)

s QeLl'(S""): su lo
Zo( )= {Rel s s [ 100l

do(y') < oo}.
REMARK 3. The following inclusion relations are valid:

L'(S"Y) € LlogL)P (S"™™") € L(log L)P> (S~ 1) for r > 1 and 0 < B < By:
L(logL)B(s" Y C H'(S" Y forf > 1

L(logL)P(S" ) ¢ H' (™) ¢ L(logL)P(S"~") for 0 < B < 1;

Uzis™) < () Z(8"") & LlogL(s™):

g>1 B>1

mt%ﬁ Sn l gH Sn l g U Sn 1

B>1 B>1

Uz eBY (s forg>1andv> —1;
r>1

B(OVZ)(S" B (S™) forg>landvy > v > —1;
UBYMs g | Jrs™") forv>—1;

g>1 r>1

B (S ¢ HY(S" 1)+ L(logL) (8" 1) forg>1,v>—1.

DEFINITION 3. (Function classes A,(R;) and .45(Ry)).

(i) For y>0, Ay(R) will always be used to denote the collection of all measurable
functions 4 : [0,00) — C satisfying

1 (R /v
= —_— y [e%e)
17| ay®) ZL;%(R/() |h(1)] dt) < oo.
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(i) For y > 0, the set .#,(R) denotes the collection of all measurable functions
h:[0,) — C satisfying

Ny(h) =Y m"2"dy(h) < o with d,,(h) = %)2*’6 |E (k,m)|,
m=1 €

where E(k,1) = {t € (2F,2+1]: |n(¢)| < 2} and

E(k,m) = {t € (2K, 281 . 2m= L < |n(r)| < 2™}, for m > 2.

REMARK 4. The function class .#y(R) was first introduced by Sato in [25]. Tt
is well-known that

Ap(Ry) Ay (Ry), for 0 <y <pp <o,

e/V‘h(RJ'-) g ‘/%/1 (R+), for 0 < N < <oo
Ay(Ry) € A5(Ry), forany y>1and o > 0.

We now recall the definition of the Homogeneous Triebel-Lizorkin spaces.
DEFINITION 4. (Homogeneous Triebel-Lizorkin spaces). Let ./ (R") be the tem-

pered distribution class on R". For z € R and 0 < p, ¢ < o, (p # ), the homoge-
neous Triebel-Lizorkin spaces ', (R") is defined by

Fpofq(R") - {f e (RY): ”fHF,;{q(R") = H(%Q‘iaq‘\lﬂi*ﬂq) 1/q
ic

LP(R?) < w}’

where q’\,(’g') =¢(2/&) fori € Z and ¢ € €°(R") satisfies the conditions: 0 < o(x) <
15 supp(¢) C{x € R": 1/2< x| <2} ¢(x) > >0if 3/5<|x[<5/3; %z 0(2/8) =
1 for & #0.

REMARK 5. It is well-known that .#’(R") is dense in F, (R") and also the fol-
lowing hold:

(a) Fp,(R") =LP(R"), for 1 < p < eo.

(b) (Fgy(R") =F,%(R"), for a € R and 1 < p,q <o,

() Y, (R") CFY, (R"), fora €R, 0 < p<eeand g1 <qs.

Let {ay}trez be a lacunary sequence with satisfying infyezap1/ax 2 a>1. A
sequence {®y}cyz is said to be a partition of unity adapted to {ay }rez if @y satisfies
the following conditions:

supp®; C {ax 1 < [E] Saxpihs X, Bu(§) =1 for & € R"\{0}; [£%0P @y ()| < Cp,
keZ
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for any multi-index 3. Let <%, denote the set of all polynomials on R". Let 1 < p, g <
e and o € R. For f € .7 (R")/,, we define the norm ||f]| ¢ ((a,},., rn) bY

||f\\%({q,k}kezm) = H (ke%agﬂq)k*ﬂq) l/qHU’(Rﬂ).

The following is a well-known characterization of homogeneous Triebel-Lizorkin spaces,
which plays a key role in our proofs.

LEMMA 1. ([27]) Let o € R and 1 < p,q < oo. Let {a;}rez be a lacunary se-
quence of positive numbers with 1 < a < a"zl <D forall k€ Z. Then Hf||F’¢)zq({¢k}k€Z.’Rn)

a

is equivalent to Hf”Fﬁtq(Rn).

In what follows, we set Py(r) = Z?’ZI bit' with each b; # 0. Let Py(t) = 0 and
P(1)= th:lb,-t" for A € {1,2,...,N}. Let h,Q,p be given as in (2) and ¢ € F. For
A €{0,1,...,N}, we define the family of measures {c}',, }~0 by

— 1 R h(y)Q(>y)
A _ - 2mi&-Py (p(lyl))y M2V 4
Gmg;(é) P /t/2<‘y‘<t€ ly|—P Y

A and M}%g.e are defined by

The related maximal operators o},

i

or o)) = supllofal+ /().

ok 9k+l N dl
Mo =sup [ Jlota,l )|
kez ) 6k !

where 6 > 2 and \Gﬁm| is defined in the same way as G}ﬁg’t, but with Q and &
replaced by |Q| and |A|, respectively.
The following result follows from [14, Lemma 2.2].

LEMMA 2. ([14]) Let N € N\ {0} and Py(t) = X* , bit' with each b; #0. If
@ €F and Q€ L*(S" 1) for some s > 1. Then for any 0 < € <min{1/s',1/N}, r >0
and & € R", it holds that

,
s
where the constant C(@) > 0 is independent of Q,s and the coefficients of Py, but
depends on @.

2dt _
— <C@Q: 501y @) brE| .

LEMMA 3. Let Q € L*(S"™ 1) for some s € (1,2] and h € Ay(R..) for some y €
(1,2]. Suppose that @ € §. Then, for 1 <A <N, t >0 and & € R", the following
estimates hold:

max { || o qlls 107, (&) 1670, [(E)1} < ClIQ s 1llaye., ) 3)
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mx {0, (6) — Tl 61 | [0, (6) ~ o7l 6)]

<CHQHU s ”h”AY R+)( (f)’l|b/1§|)“”“ )

— P
max { |0}, ()], ||tht\ )} <ClQ (st 1Bl ) (@O 62E]) 477 . (5)

The above C > 0 are independent of h,Q,s,y and the coefficients of Py, but may
depend on ¢.

“)

Proof. By a change of variable, one has

o L —2mi r)é-x h(r
G]’%,QJ(&) = I—P/t/2 Snle(x/)e 2miPy (9(r))& dc(xl)rl(,ﬁ),d” ©6)

It follows easily that

—

10, () < 2111 g1y Iy ) < ClRLzs(sn-1) 1ALy e -

Similarly one may get

—

1670, /(&) < ClIQ s(sny 1 ay -
Then (3) holds. By Holder’s inequality and (6), one finds

|o7%§<5> o;%glt@}

/ / (¢~ 2mP(00)EY _ efzmm<<p<r>>é~f)d(,(x/)@dr
/2 gn—1 r ;P
<C<0 beélllﬂllu sy 1 llayry) < ClLLssn-1) [17llaym ) @ (8)* 628 .
Similarly, it holds that
|07, 1(E) = lo7a 1 (E)] < ClIR s(s-1) I1Blla, ey () * DA E].
These inequalities together with (3) yield (4).
On the other hand, by Holder’s inequality, Lemma 2 and (6), one has
— t . d
|G}%Qt(€)| <// | 1Q(x/)efhrll’x((P(V))é'x]dc(x/) (V)|7r
e 21 Jsn-
. / 2dr 1/7'
1N ,—2miPy (o(r))&-x" |~ “"
<2l 190, Gy (] [ @002 7)

1
t/2 |
< IR ssr1) 1Bl aye ) (@)} 28 ]) 247

Similarly, we get

— P
|07, 1(8)] < ClIQI (1) 1Al ay(e, ) (90 b2 E) ™47 .

This proves (5) and finishes the proof of Lemma 3. [
By Lemma 3 and the arguments similar to those used to derive [23, Lemma 2.3],
one can get the following result. The details are omitted.



196 F. L1U, Z. FU AND L. WANG

LEMMA 4. Let Q € L5(S" 1) for some s € (1,2] and h € Ay(R..) for some y €
(1,2]. Let 6 =27 and ¢ € §. Then for A € {1,2,....,N} and 1 < p < oo, the
following inequalities hold:

o (Al < Cls= 17 =17 sy 19 zxgsiy 1l o ey,

A% — _
HMh,Q,e(f)HLP(R") <C(s—1) I(Y— 1) 1HhHAy(ﬂh)HQHU(SH)||fHLP(R")~
The above constants C > 0 are independent of h,Q, s,y and the coefficients of P;,.

Applying Lemma 4, we can obtain:

LEMMA 5. Let Q € L*(S"1) for some s € (1,2] and h € Ay(R..) for some y €
(1,2]. Let A € {1,2,...,N}, 1 <g <o and ¢ €F. Then:

(1) For 1 < p <gq, it holds that

H / Y (k+1) ‘ ‘q 1/q
Z , On.as*8k )
kez /2T

LP(R")

(N

<C(s— 1) (y= 1) lAlla, @) 190l zs(sn-1) |gxl?

@) 1@l (keEZ )" ey
(ii) For g < p < oo, it holds that
H 2/2r (k+1) >l/q
|Gth*gk‘ -
Lr(Rr)

(3

<Cls— 1)~y = 1)V Rllay e |l sy

(3 Jaul) WHU(M

keZ

Here the above constants C > 0 are independent of h,Q, s,y and the coefficients of P),.

Proof. This lemma is a variant of [23, Lemma 2.4]. We first prove (7). Let 1 <
g <~ and 1 < p < g. By duality, there exists a sequence of functions { fi (x,7)} defined
on R" x Ry with

||{fk('a')}HLp’(Rn/jq’(m’([z-r’fkgs’f(kﬂ)}w/;))) <1

such that

23 (k+1)
kEZ‘/
k+l dt (9)
Of ey, .1 —d
/RkeZ /}, o 80 fube,r) S

1
< o= or= 1 (3 lal) | I
keZ

1/q
|tht*gk‘q ) H LP(R™)
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where
k+l /d[
=5 0 ot Al and ) = o)
keZ

Since p'/q’ > 1, there exists a nonnegative function u € L(?'/7)" (R") with |[u|| LI
= 1 such that

Y (k+1)
~ / dt
A
1y = 2 [ / ot + Aule)| Tu(@dx.
keZ

A change of variable together with the Holder’s inequality yields easily that

|(ly)(y)] /’ dr/ ) /
PRy = [ ) 190 ldo
/t/2<b"§l \y\" Y t/2| (r)| r Jsn—1 ‘ (y )| (y ) (10)
S C”h||Ay(R+)||Q||LS(SIH)~

By (10) and the Holder’s inequality, one has

R")

!
|G]&Q7t * gk(x)|q

DR\
= ([ 1oy, lonl = Paloh) 2 2 )

H(y)Q0)|  \/a
) </z/2<|y|<z v “) h(ly)Q (11)
el — P (o)) LRVEDL

1/2<y|<t , BE
Cl1hlla, @) 1@ s sr-1)) 777
1|k Q
<= paoyl Mgy

1/2<yl<t
Estimates (11) together with the Holder’s inequality and Lemma 4 yield that
”H”Lp’/q’ (R")
< C([Pllayrs) ”Q”U 1))/

- s BODRY)|  di
<3, L [ o = Paolb) ol P00y Lyax

< C(llAllayr,) IIQIID g1y /4
k+1
h(|y))Q(y dt
S L O [ oy -2 x OB g @
= 1/2<y<t ]

Y (k+1)
Ak~
e 1) [ (3 /}, el ) 61 ) @)z

S C([I7llay ®y) ML zs(sn- 1))‘”"

(k-+1) /dl

57
ké/ i (-,

<Cs— 1) N y—1)" <HhHA,<R+)HQHUWV’,

L7'/4 (Rn) 5 hQ(ﬁ)||L("//"/)'(R")

12)



198 F. L1U, Z. FU AND L. WANG

where i(x) = u(—x) and &, (i) = 0,3 (il) with p = 1. Combining (12) with (9)

leads to

LP(RM)

th
](GZ , k

<Cls—1)"Yy— 1)_1||h||Ay(R+)||Q”LS(S" !

(Z|gk\ )

kez Lr(R)

This proves (7).
We now prove (8). Let ¢ < p < eo. By duality, there exists a nonnegative function
f in L9 (R") with AN ey () S 1 such that

)
23 k+1 dl
= \O}%Q * gr|1— f(x)dx.
I(Z Lo /%Z/ sl

(13)
Similar arguments to those as in deriving (11) may yield that
|07, *8k(X)[9 < (U sy 1R rgsn1))
h(|y])Q(y (14)
o T A (NG S
t/2<l<t v

By change of variable and (14), we have

Y (k+1)
dt
/> / (O 0, % 84l S ()
keZ ,
<l |9
Y (k+1)
h Q dt

LS L st map e < MU0 0
" ien ) 2T 1/2<y|<t Iyl t

< Cllay 1@ ) [ (T 1)) s o (P (0

keZ

(1) th 1/q)1q
|Gh(2t * gl )

(15)
Here f(x) = f(—x) and M, 3, = My, o with p =1 and 6 =277 . By Lemma 4,
(13), (15) and the Holder’s inequality, we obtain

Y (k+1)

H Z/M O, &l )1/4 Lr(R7)
<Z gk (x) ) Hq (Rn)HM%e(f)(—')HL(p/q)’(Rn)

keZ

< Cls =171 (= 1) (g 190 1) H(kxzwgm)

< C(Il] ) 12150127

q
Lr(Rm)

which leads to (8) for g < p < eo. When p = ¢, then inequality (10) gives that

2 h(yhQO) | di
e dy— < C(s— D)7 (y=1)7! Q|5 gn-1y-
Lo o MBS < o= 1) = 1) il 2
(16)
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By (16), the Holder’s inequality and the Fubini’s theorem, we have

k+l
1/q14
H 2 ‘ Onay *gr|T— )
kez//’/"
k+l
dt
_/ 2/ |G}%Q.t*gk|q7dx
" ke

< C([17llaye-) HQHU s

ru nig RUYDQWY)| | dt
/R keZ/Y/i/k //2<|y|<z lgix = Pale(bD)I* |y|" o _d

< Cllay | @A) [ 3, i) 9ax
kEZ
2s'Y (k+1)

dt
<sup [ / [h(]y|)Q ()Idy_
kez, )25 7k 2<hl<e I t

<Cls= 1) (7= 1) (Il e |9 1) H(kzzmk\) B .
(S

LP(R")

which gives (8) for the case p = g. This completes the proof of Lemma 5. [

LEMMA 6. Let Q € L*(S"™") for some 1 < s < e and h € Ay(Ry) for some
1 <y<eoo. Let 9 €F. Then, for L €{1,2,....N} and ¥ < p < oo, it holds that

HGh Q( Mzrwey < CHhHAy(ﬂh)HQHLS(SH)Hf||Lﬂ(Rn)~

The constants C > 0 are independent of h, 2, s, v and the coefficients of P), .

Proof. By change of variable and the Holder’s inequality, one has

||Gh9;\*f( )| )
//2/sn QNI =Py(e(r)y)lda(y /)|h(r)|7

<l (f),] [, 920017 Pa(p) o ()
< Wil oIl ([, 19091 [ 1= Patot ) o)

which implies

Vﬂ)l/f

A% 1
G (1)) < Illay e 19050

! dr 1y (A7)
y 4r /
([, |sz<y>|(§gg [ =Bl ) o))
By the fact that ¢ € § and [21, Lemma 3.2], we can get
H(sup PO, gy < I (18)

t>0
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for any 1 < v < eo. Here C > 0 is independent of y' and the coefficients of P) . By
(17), (18) and the Minkowski’s inequality, we have

o & () 1o ey < CllAllay w4 120 501 11 oy < Clll oy ey 1R sgsn-1) L1l oy

for ¥ < p < . This proves Lemma 6. [J
Applying Lemma 6, we can get the following result.

LEMMA 7. Let Q € L(S""!) for some 1 <s <2 and h € Ay(R,.) for some
Y= 2. Then

2/23 k+1‘ | )1/(1
o * 8kl —
kez i L@ (19)
< Cpls = 1) 1@l 1) Wl | (2 lewt?) | -
keZ

holds for 1 <p<q <y if2<y<oo, andfor Y <p<oeoif2<y<eandq>Y.
The above constant C > 0 is independent of h, Q, v, s and the coefficients of P;,.

Proof. We first prove (19)for 1 <p<g<7y if2<y<e.Let I<p<g<Y.
By the similar argument as in getting (9), there exists a sequence of functions {fi(x,7)}
defined on R" x R4 with

H {fk('7 )} ||Lp,(Rn7éql(qu([2s’k72sl(k+l)]7d[/t))) <1

such that
/2‘ (k+1) ‘ o 1/q
* 8k )
h Q ! L”(R") (20)
<o (g6
C(S 1 ke%‘gk| 17 Rn H HLp/q Rn
where

23 (k-+1)

3 [ oy e e and i) = ().
kEZ

Since p’ > ¢, there exists a nonnegative function u € L?'/4) (R") with ||u]| L1 () =
1 such that

2v (k+1)

~ s dt
Gl =2 [, L ok i)t Sutxa.
kEZ
By a change of variable and Holder’s inequality, we obtain

|G * fil, 1)
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\h(lyl)ﬂ(y)ldy
|y|"

! z d
= [ [ R Ploy 010 o))<

t/2 Jsn—1 r
< Clllay o (121501

X</,;2/s,n1 Felx— Py (@(n)y )7 1Q0))|do (y )r)”q

< / P A ]

~ 1/q
=Cllh Q - 1/q</ X_P 1 q‘ ()|>
e (190er) ([ V=Bl ool S0
This together with the arguments similar to those used in deriving (12) yields that

q/
16t gny < € (Il (1901 1))
23 (k-+1) /dl
(X Lm0l )o@ @
keZ )
q
<C(Ilaym o) (192011 sr-1))"/7)

2_sk+1 /dt
NZ L o)
keZ

where ii(x) = u(—x) and &];}(i1) = 6 3(ii) with p =1 and & = 1. Note that 1 <
(P'/q') < . Invoking Lemma 6, we have

21

10 1R @ 1 oy

Ak~
Ho-h,Q (i) HL(P’/q’)’ (R") < C”Q”L1 (s ”””L(p’/q’)’ (R (22)

Here the constant C > 0 is independent of the coefficients of P). Since g < y. Then
12l s, ) < [12]la,(r, ) - This together with (21) and (22) implies that

(23)

AS)ll

161l gy < CIRIE g 121
Combining (23) with (20) yields that

23 (k+1)
kEZ

<C(s—1)" 1/thHAyR+ ‘QHLA sn-1y

\thz 8kl? —> /qH ()

<Z|gk\ )

Lr ]R"

This gives (19) for 1 <p<g <y if 2< y< oo,
We now prove (19) for Y < p <o if 2<y< oo and ¢ > 7. Let 2 < y < oo,
q>7Y and Y < p < . We first prove the following inequality

23 (k+1)

H ke%/ |07 * 8l _)1/7/

< Cls— 1) 7|9 s 1] .

LP(RM)

(Z)" s

(24)

)
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when 2 < y < oo,

When 2 < y < oo. We get easily by Holder’s inequality that

|07, * 8x()|”

- (/,2<‘ <t lgx(x— Py (o(|y|)y ))|‘ (M)n( >|dy>y,

/2<y
h(yDI" 1M , \Y/Y
S ([/2<\y\gt [y|" dy) (25)

5= Py (@(b )] %ﬁ)'dy
o)
y

|
e P L BT A O [t

k=< |y| <2kt

Let ¥ < p < . Itis clear that p/y > 1. By duality, there is a nonnegative function

f e Lw/Y) (R4 with Hf”L(P/V)’(Rd) < 1 such that
o ralar) | = [ Z L, lotas ! drfax

Iz L.
(26)

By some changes of variables and Holder’s inequality, (25) and (26) may yield that

I L

< Ikl g,

2r (k+1) 2? (k+1)

2r (k+1)

2 VN VAT
|G 0 * 8l dr) Hde)
19 g1 g1y 7/

2v (k+1)

LS L L late meb) 2 v
RY fz Jotk << 1yl 27)

< CUM 1205 )77 [ 3 leeol 675 (P ()
keZ

<CIANE ., 1901 5 W

(g s

~7L>k
165 o g
keZ

Lr/Y (Rd)

Here f(x) = f(—x) and 6;%9*(]‘) = th(f) with p =1 and h(r) = 1. (27) together
with Lemma 6 yields (24) for 2 < Y < ee.

When y = . By duality, there exists a nonnegative function f € P (R") with
Hf”LI’,(R") =1 such that

23 (k-+1)

s/ (k+1) N N dt
Z /S,k |Gh,(2,t*gk| () /n Z/ |Gh,Q,r*gk\7f(x)dx-
keZ keZ
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One can easily check that
23 (k+1) 23 (k+1) dl
A -
L3 ), iotaralfrwar< [ Slawl [, okl f(-0Tax
keZ keZ

<2(s—1)" /E\gk |0'hQ F)(—x)dx.
keZ

Invoking Lemma 6, one may get

23 (k-+1)

dt
Z/ |6f&9,r*g’<|_
ez 4

This yields (24) for y = eo. By change of variable again, it holds that

<Cls =)Ll 1) 1Bl ays)

Z gl

LP(R") LP(R" )

2/ () 1/q 1/q
a5’ 7) (S o),
H ke%/ | h,Q.t g‘ 17 ]R" ke% th k¢ g| LI’(R")
(28)
(28) and (24) will lead to
IS ),
s’k k
=} th t (Rn) (29)
<= )2y Il | (S beet?) oy
keZ
On the other hand, by Lemma 6, one can easily check that
‘SUP sup \G,fmﬂ, gl - \Hcﬁg(sup\gko b
k€214 L keZ LP(R") (30)
< Cllllyge ) 1905 | suplal |, -

Note that ¥ < g < . Interpolation between (29) and (30) implies that

!
28 di\1/q
A
(2 ) 108 =at's)
keZ o

<C(s = 1)1 s 1l sy

LP(R?)

(Z)

This together with (28) yields (19) for ¥ < p < e if 2 <y < o and ¢ > 7. This
finishes the proof of Lemma 7. O

3. Proofs of Theorems 3-6

Let Py be a real polynomial on R of degree N and satisfy Py(0) = 0. We may
assume without loss of generality that Py(¢) = Zf"zl b;t" with each b; #£0. Let G,fg .
be given as in Section 2. We start with proving Theorem 5.
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Proof of Theorem 5. By Minkowski’s inequality, we can write

9')IIZ’Q.’PN.’q)’p‘f(x)
0
1

VR R IR =
0 o0
< 2 ([ L lektf(x—PN(«p(y>>y’>%dy\ ary e

k=

1/q
1—2C / ‘ th _>

Let y be a ¢;°(R) function such that y(z) =1 for || < 1/2 and y(r) =0 for |r| > 1.
For 1 <A <N and § € R", we define the family of measures {V, ; }/~0 by

QW)h(y]) , jadiy1a
ly dy) ?)
(31

ﬁ(é)ZG,ﬁgJ(é) 1T wie@)|bEl) Gth H 1)[bi&)). (32)
j=A+1 j=A
Clearly,
Ohay = 2 Via- (33)

Here we use the convention IT;cga; = 1 and the fact that G}? a, = 0 because of (1).
By (31) and (33), one has

N o N
W 0 ) <O Y ( [Tz e sl ™) =) ¥ (). 39
A=1 70 4 =1

For 1 <A < N. Define ¥y ; by ¥, 5 (§) = ®i(§), where @ is given as in Lemma 1
with a; = @(2757k)~2 |b)f1 |. By the properties of ¢, it holds that

1< By/F < Bl < 872 ke, (35)
Aag

By the Minkowski’s inequality and the definition of ¥y ; , we can write

k+l
adr\1/q
) Via x Wi+ f(x)
=21 vt/ 7)
k+l l/q
2/ |vm~v, s ) (6
/GZ keZ
- Z-%w.q
jez

Applying Lemma 3 and (32), there exists a constant C > 0 independent of A, Q. s, y
and the coefficients of Py such that

1
Ver (&) < Cllkll sy ) 1R ooy min{ 1, 9 ()} b2 &L, (9(0)* B2 E )}, (37)
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for 1 <A < N. Combining (37) with the Plancherel’s theorem implies that

H‘@)sz iz (R)

k+1 dl
-s /[ o M Hn «fPdx
keZ

Y (k+1)
dt
<y [ /, WP 1P (38)
keZ Jk
< €578yl 1901 3 / )
keZ
<Cls— 1) =17 (|Ihla,m,) ||sz||w1>2B £ 122 gy
where
Ejx={x€R": 92" EIT0)"2 L byx| < @27 -iD) ),

(38) together with the fact that F3),(R") = L*(R") yields that

1l
2

1Z2.j2()ll 2@y Cs = 1) 72y = 1) 72| Al gy |1l 5511 B 1719, (@en)-
(39)
On the other hand, invoking Lemma 5 and (32), there exists C > 0 independent of

h,Q, s,y and the coefficients of P) such that

Y (k+1) 1/q
* q_
keZ//}/k | tl gk' ) LI’(R") (40)
1/q
<Cls—1)"Yy=1)7""n Q||ysgn- 4 H ,
(5= D)7 =1 hllay ) 190 s | z &) e
forall p € (1,4) and
2r (k+1) 1/2
2/ [Via * 8kl —> ®Y) )
< — 1) Va(y_ 1)1 e
< Cls= )7y = 1079l g |2l s (kezz|gk|) iy
forall p € [g,). By (35), (40), (41) and Lemma 1 we obtain
1Z5.j.q ()l ey
—1 —1 q 1/‘1
<Cls =) =17 Mhllayzo 10w | ( 2 M ea 1) | ) @2

keZ
<Cls=1)7 =17 nllayw) 19 s 119, @y for 1 <p<aq,
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forall p € (1,q) and

1Z5.j.a(D)lLr @)

<Cs_l_1/q l/qh Q s({n— H \I’ *f
(5= 70y = 1) il @ x| (X 15 )
<C(s— 1) 9y 1)l sy | @ ssn ), oy
(43)
forall p € [g,). A change of variable leads to the following
27 1/q
54N0 = (T [ M= ¥paes @ g) " @
S

By interpolation among (39) and (42)-(44), one may get

128Dl < Cls—= 1) (=17 1l aym) 19 s 1) BoP V1 kg, ey (45)

forall 1 <p <gq,

|Za (D)o ey < Cls = 1) Y0y = 1)~V ]|y 190 5oy BoP 111, o)
(46)
for all g < p < oo. Here B > 0 depends only on p,q. (34) together with (36), (45) and
(46) yields the conclusion of Theorem 5. [

Proof of Theorem 6. By Lemmas 1, 3 and 7 and the arguments similar to those
used in proving Theorem 5, we can get the conclusion of Theorem 6. The details are
omitted. [

Proofs of Theorems 3 and 4. By Theorem 5 and extrapolation arguments following
from [4,25], we can get (i)-(ii) of Theorems 3 and 4. Similarly, we can get (iii) of
Theorems 3 and 4 by Theorem 6 and extrapolation arguments. [

4. Further results

As applications of Theorems 3 and 4, certain L” bounds for the parametric Marcin-
ol A * q :
kiewicz integral operators ///h,Q,PN, op and ///h,Q,PN, 0.0, related to the Littlewood-

Paley g; -function and the area integral S, respectively, will be established. Here

A g%
My opyppf X //Rn+1 t—a|T) {|>) .
h(W)QY) . Nyl T
x\ /\m e e Ao T )

where A >0 and R = R" x (0,00);

///hQPN,(ppSf //

i LM o] B
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where T'(x) = {(y,#) e R"": |x—y| <t} and h, Q, Py, @, p be given as in (2).
Similar arguments to those in getting [20, Lemma 4.2] may give that:

LEMMA 8. Let A > 1 and 1 < q < eo. Then there exists a constant C(n,A) >0
such that for any nonnegative locally integrable function g on R”",

/n(///;ftg’m q)pf( x))g(x)dx < C(n,?L)/n(WZﬁQ’PN@’pf(x))qM(g)(x)dx,

where M is the usual Hardy-Littlewood maximal operator on R”".

As applications of Theorems 3 and 4, we can get:

THEOREM 7. Let Py be a real polynomial on R of degree N and satisfy Py(0) =
0 and ¢ € §. Let Q satisfy (1) and 1 < g < eo.

(i) If Qe L(logL)"/4(S"™") and h € N g(Ry) for 1 < q < o, then
7L *
85 oo i) < CoL+ 1920 o1y (L N g ) g,
for g < p < eo.
(i) If Q € L(logL)/4(S"~") and h € Ay(R+) for some 2 < y < . Then
A g%
”//h (gPN (pprLP R") <C (1 + HQHL 1ogL)1/q(sn 1 )HhHAy (R+) ”fHF0 (R")»
fory <g<p<eo.
(iii) If Q € Bgo’l/q_l)(S"_l) for some r > 1 and h € N1 ,,(Ry) for 1 < q <o, then
Aq,%
285, o ) < CoUH 12 o 1y )N ) g,
for g < p <oo.

(iv) If Qe Bﬁo’l/qil)(S"’l) for some r > 1 and h € Ay(Ry) for some 2 < 7y < oo,
Then

A
14256 o lir @y < Co(1H+ 1120 yosa- o1 MWllay(z o 1/l g, ey

fory <g<p<eo.

Here the above constants C, > 0 are independent of h,Q and the coefficients of Py,
but may depend on p,q,n,A,@,p,N. The same results hold for smz QPyop.S:
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Proof. Fix 1 < g < p < oo, by the duality, L” bounds for M, Holder’s inequality

and Lemma 7, one has

)Lq* _ A.q.x q
= su M, x)dx
N> 5
My p <ppf||Ll’R" p / (A0 py 0. (%)) T8 (%)
o ,  <1/R?
181, (p /gy gy

C(nA)  sup / (M g p f (0)"M(g) ()dx

181, p/g)" gny <

C(naz’vp?q) Hsz,PN,(p,prZP(R")'

Combining this with Theorems 3 and 4 implies the conclusions of Theorem 7 for
A,
hQ,Py,@

On the other hand, it is clear that

ni A.q,
M pyppsf¥) <2 .4, ary.ppf ),

which together with the bounds for ///h Q) P op implies the bounds for .#, Praop.S”

O
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