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GENERALIZATIONS OF CYCLIC REFINEMENTS OF
JENSEN’S INEQUALITY BY LIDSTONE’S POLYNOMIAL
WITH APPLICATIONS IN INFORMATION THEORY

NASIR MEHMOOD, SAAD IHSAN BUTT*, DILDA PECARIC AND JOSIP PECARIC

(Communicated by A. Vukelic)

Abstract. Jensen’s inequality plays pivotal role in attaining divergence between probability dis-
tributions. Shannon, Relative and Zipf-Mandelbrot entropies have ample applications in many
applied sciences, especially in information theory, biology, economics, etc. In the present paper,
we have obtained new generalizations of cyclic refinements of Jensen’s inequality using differ-
ent new Green functions by employing Lidstone’s polynomial. As an application of our obtained
results we have given new entropic bounds. Also, we have established the connections between
Shannon and Relative entropy with Zipf-Mandelbrot entropy.

1. Introduction

Information theory is the branch of mathematics which illustrates how uncertainty
should be quantified, manipulated and represented. Since the publication of ground-
breaking paper of Claude Shanon in 1948 [25], the subject has had remarkable ap-
plications in almost every field of science and technology. It has also been shaping
the theories of neural computation, statistics, economics, psychology etc. However, to
work for such applications, Jensen’s inequality is the key to success. Jensen’s inequality
for differentiable convex mappings has compelling applications in information theory.

To move on, we consider Lidstone series, a generalization of the Taylor series,
approximating a given function in the neighborhood of two points instead of one by
using the even derivatives. Such series have been studied by G. J. Lidstone (1929),
H. Poritsky (1932), J. M. Wittaker (1934) and others (see [1, 2]). Widder proved the
fundamental lemma:

LEMMA 1.1. [29]If ¢ € C*'[0,1], then

_ 1
o) = [§20)(1 -2+ 0P ()R] + [ Gulzro® (ryar,
=0 0
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where P, is a Lidstone’s polynomial of degree (2n+ 1) defined by the relations
Py (Z) =2
Pl(2) =Pii(2)
P,(0)=P,(1)=0, n>1
and

Gi(z,r) =Glz,r) = {EZ i’ )

. . . . 2 .
is homogeneous Green function of the differential operator 57 on [0,1], and with the
successive iterates of G(z,r)

1
Gu(z,r) = /G1 (2,8)Gu—1(s,r)ds, n=2. )
0

The Lidstone’s polynomial can be expressed in terms of Gn(z,r) as

1

P(2) = [ Galeurnar ©
0
For j=1,...,5, consider the well known Lagrange Green function along with new

Green functions G ;) : [0, 02| X [0, 00] — R defined as

(p—z)(0n—r)

G By
L B
LR B
dote—{ G LIS

All these functions are convex and continuous. The following lemma holds:

LEMMA 1.2. [21] Let ¢ € C*[o, 0] , then the following identities hold:

Oh—2 Z— 0
= o
0Q) = o ablon) + o

d(on)+ [ Gry(zne” (r)ar ©)
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6(2) = 9lan) + (2~ )9 (00) + [ Gioy ()9 ()

(241

"

6(2) = 9(02) + (@~ 2)9'(en) + [ Gis) ()0 (r)ar

8(2) = 9(02) — (02— )9 (00) + (2= 019 () + [ Gy ()9 (1)

6(2) = 9(0n) + (02— )¢ (04) — (02~ 209 (02) + [ Gy (2:7)9 (1)

(241

251

(10)

(1)

12)

13)

REMARK 1.3. The Green function G(y)(+,-) is called Lagrange Green function
(see [29]). The new Green functions G;(-,-), (j = 2,3,4,5), were introduced by
Pecari¢ et al. in [21]. The result (10) given in the previous Lemma represents a special
case of the representation of the function using the so-called "two-point right focal’

interpolating polynomial in case when (n =2 & p =0) (see [1]).

The most influential inequality dealing convex functions is the classical Jensen’s
inequality [12] having both discrete and continuous variants. Here, we present some
recent work on the classical and discrete Jensen’s inequalities (see [13]). To make

statements of that work simple, we need the following hypothesis:

(My) Let I CR be aninterval, z:= (z1,--+,zn) € I" andlet p1,...,p, and Aq,.

represent positive probability distributions for integers 2 < k < m.

(M;) Let (Z,%,0) be a probability space.

c Mk

Let [ > 2 be a fixed integer. For j=1,---,1, the c-algebrain Z' generated by the

projection mappings pr; : 7! — Z defined by

prj(zlr'-,Z[) =z

is denoted by %'. &' is the product measure on Z'. This measure is uniquely (8 is

o -finite) specified by
51(31X...XBZ)I:(S(Bl)...(S(BZ), BjE@, j=1,...,L

(M3) Let f be a 6 -integrable function on Z taking values in an interval I C R.
(My) Let ¢ be a convex function on I such that ¢ o f is 0 -integrable on Z.
We state the following two main results proved in [13]:
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THEOREM 1.4. Assume (M1). If ¢ : I — R is a convex function with p :=
(P1yeesPm) and A = (A1, ..., A) then

q) (Z puzu> < Cdi.s‘ (d),z,p,l) (14)
u=1
k—1
m (k-1 gozfv+lpu+vzu+v m
=D, (Z Avarlpu-&-v) ¢ = | < X put (z)
S YN

where u+v means u+v—m in case of u+v > m.

THEOREM 1.5. Assume (M) and (M,-My). Then for p:=(p1,...,pm) and A :=
(AL, M)

/fd5 gcpar( <Cznt /(P fd6 te [0,1]7
V4

where

Cint = Cint (¢7f767p7z’)

Z Avarlpu-&-vf (Zu+v)

m k—1
= (2 AV+1pu+v> /q) =0 = dé" (z1,-. . 7m), (15)
u=t \r=0 ZOA'VJrlpu-&-v

and for t € |0,1]

m [k—1
Cpar (t) = Cpar (1,9, f,8,p,4) := (Z zfv+1pu+v>
u=1

v=0

2 %+1pu+vf(zu+v)
ol S [ a5 a8 @), 0
szv-&-lpwrv z

where u+v means u+v—m in case of u+v > m.

REMARK 1.6. Theorem 1.4 can be considered as the weighted form of Theorem
2.1in [3]. Lemma 2.1 (b) in [10] assures that the integrals in (15) and (16) exist and are
finite.
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REMARK 1.7. Under the conditions (M) ), with p := (p1,...,pm) and A :=
(A1y...y &) we define

Ji (q)) Jl z paz' ¢ Zpuq) Zu Cdi.\'((bazapal)

JZ((Z)) :JI(Z7P7A§¢) CdlS ((Z) z p7 (2 puZu) )

where ¢ : I — R is a function. The functionals ¢ — J;(¢) are linear and Theorem 1.4

implies that
Jl(¢)>07 l:l72

provided that ¢ is a convex function.
Assume (M {-My). Then we have the following additional linear functionals

J5(0) = J5(0.£.6.p.2) i= [ 9 £a8 ~Ciu (6.£.8.p.2) >0,
Z

J4(¢) :J4(ta¢afa67p7z’) ::/¢ofd6_cpur(t7¢7f76apal) 2 0; re [Oa 1]7
Z
J5(¢):J5(t7¢7f76apal)::Ci"f(¢7f76apa ) par( ¢ f76pa ) ; Z‘E[O,l},

J6(0) = Js(t,0,1,8,0, 1) 1= Cpar (t,0, f,5,D, A /fd6 >0; 1€[0,1].

2. Extensions of cyclic refinements of Jensen’s inequality by Lidstone’s
interpolating polynomial

To start for real weights, we need the following assumptions:

k—1
. . 2 )LLJrlpquleH»v
(Ay) For the linear functionals J;(-) (i = 1,2), assume further that =——— €
;01\+1Pu+v

[061,062} foru=1,...m

k7
> )L]Jrlpuﬂf(Zuﬂ)
(Az) For the linear functionals J;(-) (i=3,...,6), assume further that *=>—
Z }Lwrlpuﬂ

=0

€log, o] foru=1,...m

We propose the following Lemma in which we construct the generalized identities
having real weights utilizing Lidstone’s interpolating polynomial and Green functions.
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LEMMA 2.1. Let m,k € N, p:= (p1,...,pm) and A := (A1,...,A) be real tuples

k—1 m k

for 2<k<m, suchthat Y, Api1pusyZ0 foru=1,...mwith Y p,=1and Y A, =
v=0 u=1 v=1

1. Also let 7 € [o,00] C R and z € [0, 00)™. Consider the function ¢ € C*"[0y, o)

such that (o) = ¢(0n), ¢'(on) =0=9¢'(x2), G, and G(;), (j=1,...,5) be the

same as defined in (2) and (4)—(8), respectively. Then for (i=1,...,6) along with the

assumptions (A1 ) and (A ), we have the following generalized identities:

(a) Forn>1
n—1 B
-go-nr e 0(25)

=0
+0®) (0n)J; (Pl (;2__“;1 ))]
2n 1 r—oq (2n)
— o) /J( (az_al 7a2_a1)>¢ (Pdr.  (17)

(b) Forn>?2

o1~ J(oyten)

n—2 - '~
(B arfpean () e ten (5] Jo

=0

[2%) (0%)
o 2n—3 (2n) . ) r—0oq ﬂ
+(O(2 O(l) /¢ (S) /J; (G(j)(Z7 V)) G, (OCQ—OQ s oh—o drds.
o (9]
(18)

Proof. Fix (i=1,...,06).

(@) As ¢ € C¥'([o, ]), by Widder’s lemma we have

n—1

0 =3 (o — o) [(P(zl)(al)Pz (;27061) + 0 ()P, (a_—aolcl)}

=0
o) 1/G (Z_O” i >¢<2">(r)dr. (19)

00 —0p 0—0q

Now employing our respective cyclic Jensen’s functional J;(-) on (19) and prac-
ticing its linearity, we get (17) for (i=1,...,6).
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(b) For fix j =2, testing identity (10) in cyclic Jensen’s functional J;(-) and employ-
ing its properties along with the assumed condition, we have

7(6) = 5(0(en)) +: (=)o (@) ) + [ 4 (Goy(wr)) o ()

J, Z)+/Ji (G(z)(Zy”)) ¢H(r)dr

o
_ / TGy (z,r)9" (r)dr. 20)
o
Using representation (19) for ¢”, we get
n—2
"y — 2| 4 (2042) P oQ—r (21+42) P r—oq
o7 (r) E(,)(sz o) {‘P () l(a o +0 ()P pr—
— o) / G- 1( e >¢<2">(s>ds- 1)
062—061 O — 0

Now, using (21) in (20) and applying Fubini’s theorm, we get (18) for j =2 and
(i=1,...,6). The cases for (j = 1,3,4,5) can be treated analogously.

Now we obtain generalizations of discrete and integral cyclic Jensen’s type linear func-
tionals, with real weights for 2n— convex functions.
THEOREM 2.2. Consider ¢ € C*"[0y, 0] be such that ¢ is 2n— convex function
along with the suppositions of Lemma 2.1. Then we conclude the following results:
(a) Ifforall (i=1,...,6),
—o —o
J,-(Gn<Z ‘ 7V7‘)>>0, re o, o) (22)

0 —0 0p—0

holds, then we have
— op—2
2 o —0y) { @ (0)J; <Pz ( 2 ))
=0 0 — 0

(21) . |
+¢ (0‘2>J’<Pl<a2—a1>)]' (23)

(b) Ifforall (i=1,...,6) and (j=1,...,5)

5]

r— o Nl 04]
/Ji (G(j)(Z,V))Gn] ((x2 o s m) dr 2 O, re [al,(XQ] (24)
o
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holds, then we have

Ji(9) Z/JZ(G(J-)(ZJ’))
n—2
N2 | 4 (2042) n—r (2i+2) r—og ,
X(;(,)(az on? |02 (am (25 ) ol <"‘2>Pl<a2_al>]>d~

Proof. We start with the proof of (a) and its assumed conditions. Fix (i=1,...,6).
By our assumption ¢ € C**[0;, o] and is 2n— convex function, we have ¢ (:) >0
(see [22], p. 16). Therefore applying Lemma 2.1 (a) by taking into account assumption
(22) and ¢ >0, we get (23).
In the similar passion, we can give the proof of (25).
We will finish the present section by the following results:

THEOREM 2.3. If the assumptions of Lemma 2.1 be fulfilled with additional con-
ditions that p =(p1,.. ,pm) and A := (A1, ..., A) be non negative tuples for 2 < k <m,
such that 2 pu=1and Z Ay = 1. Then for ¢ : [ot), 0] — R being 2n— convex func-

tion, we conclude the followzng results:

(a) (23)is valid for odd n > 1. Besides, for function

H(z) ':nil(az—al)ﬂ 0 ()P, B2 ) 4o ()P, —
5 00— oy 00— oy
(26)
to be convex, the right side of (23) is non negative, means
Ji(¢) =0, i=1,...,6. 27)
(b) For odd n > 3, (25) holds. Moreover, let (25) is valid and
n—2
N2t | g (2142) o —r ) (21+2) ( r—o )]
0 — o o )P, + )P, >0,
Z(,)(z 1) [‘P ( 1)l<a2—a1 AN COL A G
(28)

then, we get (27) forall (i=1,...,6) and (j =1,...,5).

Proof.

(a) Fix (i=1,...,6).
From (2), we get G,(z,r) <0 for odd n and G,(z,r) > 0 for even n. Moreover
G1 in (1) is convex and G,_ is positive for odd n. Thus taking into account
(2), Gy, is convex in first variable if n is odd. Therefore (22) holds by virtue of
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Remark 1.7 on account of given weights to be positive. Hence (23) is established
by taking into account Theorem 2.2 (a). Moreover, the R.H.S. of (23) can be
written in the functional form J;(H) for all (i =1,...,6) after reorganizing this
side. Employing Remark 1.7 the nonnegativity of R.H.S. of (23) is secure, espe-
cially (27) is established.

(b) Fix (i=1,...,06).
For odd n > 3, G,_ is positive. Also we have assumed positive weights and
for all (j =1,...,5), Gj(zr) is convex. Thus by practicing Remark 1.7,

J; <G( J) (z,r)) > 0 which together with positivity of G, yields (24). As ¢
is 2n—convex, hence by following Theorem 2.2 (b), we obtain (25). Finally,

taking into account the positivity of J; (G( )z r)) and (28), we get (27).

3. Applications to entropic bounds

Let ¢ : (0,00) — (0,%0) be a convex function with p := (py,...,pn) and q :=
(q1,---,qm) be positive probability distributions. Then ¢ -divergence functional is de-

fined (in [14]) as follows
Is(p.q) = Y, qud <&>-
u=1 qu

Surveying the classical Csiszdr divergence functional, we propose a new functional:

DEFINITION 1. Let ¢ : I — R be a function with I an interval in R. Let p :=
(p1s---ypm) €ER™, and q:= (q1,...,qm) € (0,0)™ such that

Pu el, u=1,...,m.
qu
Then let
~ m p
Iy(p,q) = Y, qud (q—") (29)
u=1 u

REMARK 3.1. Under the assumptions of Theorem 2.2 (a), we consider the dis-
crete extensions of cyclic refinements of Jensen’s inequalities for (i = 1), from (23)
with respect to 2n— convex function ¢ in the explicit form:

1
2 Avi1Putv
=0

k—1
)y A'erlpu-&-vZu-'rv
¢ v=0
k—1

2 pu¢ (Zu) - 2 <
u=l u=l goz'v+1pu+v

k—
v
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k—1
ZO}LV+1PM+VZM+V
o — ‘*](717
m m > )Llr'+lpu+v
0 — 2y =0
X puPl <7> 2'lH*lpu-‘rv
u—1 0 — 0 Z’l 2 O — 0

n—1
+ 3 (0 —01)* ¢ ()
=0

k—1
> )Lv+ll7u+vzu+v
=0
= (04]

k—1
m m by Av+l[7u+v
lu — al v=0
X P A P,
2 Pu- L1 (az o ) ~ <VEE) v+1pu+v> )

0 — 0

(30)
where P, is a Lidstone’s polynomial defined in Lemma 1.1.
THEOREM 3.2. Let m,k € N (2 < k< m), Ay,..., A4 be positive probability dis-
tributions. Let p := (p1,...,pm) € R™ and q :=(q1,...,qm) € (0,00)" be such that

Pu S [061,062}, u=1,...,m.
qu

Also let ¢ € CZ"[al,ocz] such that ¢ is 2n— convex function. Then the following in-
equalities hold:

Iy(p.q)

m k—1 2 2'erlpu-‘rV n—1

=l \r= 20 lv+lqu+v (=0
k—1
2 7%+1Pu+\
o — F——
Z“ m k—1 g v4-14u+v
X un P . Z ZlerlCIu-&-v P —
u=1 —| 0 — 0y
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k—1
Ygo)['v+1pu+v
U
f]ﬂ -0 m k—1 z,olwrlqu
X un Py 0:2 2 ZlerlCIu-&-v Py W . (3D
u—1 \ y—

Proof. Replacing p, with ¢, and z, with % for (u=1,...,m) in (30) , we get
3.

REMARK 3.3. Under the assumptions of Theorem 2.3 (a) for (i =1), (31) be-
comes

m k=1 2 Av+ll7u+v
LCXEDY (2 AquW) ol =—- . (32)
v=0 2 Mot 1 Guty

We now explore two exceptional cases of the previous result.

One corresponds to the entropy of a discrete probability distribution.

Shannon entropy and related measures are increasingly used in molecular ecology and
population genetics, information theory, dynamical systems and statistical physics (see
[7, 20]). For positive m-tuple q = (g1, ...,gm) such that 3" g, = 1, the Shannon
entropy is defined by

m
S(@) ==Y, quIngu. (33)
u=1
Some recent bounds for Shannon entropy can be seen in [17, 11]. We propose the
following results:

COROLLARY 3.4. Let mk € N (2 <k <m), Ay,...,A be positive probability
distributions.

(a) If q:= (CII»--w%n) € (O»‘x’)m: then

2 qulng,

N N2y
2 g Afv+1‘]u+v> In (2 A’erqw-v) + 2 e al(zl)glzl :

u=1
1
0 — o
i o — qL i kij golwl%ﬂ
X qu- P, - Mitquiy | P | ———
u=1 0 — 0 =1 \v—0 o — o

o — o) (20— 1)!

+2

1=0 (062 )2l
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1 —o

m L — L k—1 2 Ayt 1Gu-+v
X P P =
LZ,I qu- 11 a2 o 2 vg(,)%ﬂ%w 1 0 — 0

(34)

(b) If q:= (q1,...,9m) is a positive probability distribution, then we get the bounds
for the Shannon entropy of q.

S(a)
m k—1 k—1 n—1 21
op — o 20—1)!
S| DT Lo e B y (oo (I-1)
u=1 \v=0 v=0 = (061)
o — H%
m O — q_ m [k—1 ZOMH%H
X .P u P V=
ug,l qu- I 0 — oy g ; xlv+ICIu+v 1 0 — 0
_"il (0 —oy)? (21 —1)!
1=0 (a2>2l
T
m qi -0 m ZOMHIIHV
X P _
LZ,]‘]M 1 0 — 0 ,Z’l Zlv+ICIu+V 0 — oy
(35)
Proof.

(a) Using ¢(z) := —Inz and p:= (1, 1,...,1) in Theorem 3.2, we get the required
results.

(b) It is a special case of (a).

REMARK 3.5. Using Remark 3.3, (35) becomes

m k—1 k—1
S(q) < — 2 (2 zlv+ICIu+v> In (2 Afv+1‘]u+v> . (36)
v=0

u=1 \v=0

The second case corresponds to the Relative entropy or Kullback-Leibler divergence
between two probability distributions. One of the best known distance function used in
mathematical statistics, information theory and signal processing is Kullback-Leibler
distance (see [28]). The Kullback-Leibler distance [19] between the positive probabil-
ity distributions p = (p1,...,pm) and q = (g1, ...,qm) is defined by

D(q||p) = Equ1n<"“> (37)
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Some recent bounds for Relative entropy can be seen in [17, 11] (see also [9]). We
propose the following results:

COROLLARY 3.6. Let mk € N (2 <k <m), Ay,...,A be positive probability

distributions.

(@) If a:=(q1,--+,qm),P = (P1,---;pm) € (0,00)", then

Pu

m L o m
X P A A | —
ug,lfh 1 - ‘ ,,26 v+1qu+v o

u=

k—1
A
m VEO v+1q9u+v n—1 ((X2 _ a1)21(2l _ 1);
ZA'VJrlCIu-&-v —1 + Z (Oll)zl
le ZOMHPHV =0
y=
k—1
2 l»+ll7u+1
o — fi
i » (XZ _ _u i i 2’ P E v+ 19u+v
X . e —
MZI(]M 1 ~\= v+19u+v 06— 0
n i (0p — o) (20— 1)!
paar (062)21
;0 v4+1Pu+v
/\:17 — o
E. v+ 19u+v

(38)

(b) If If q := (q1,---,qm),P := (P1,...,Pm) are positive probability distributions,

then we have

D(q | p)
m (k-1 Zkv+lqu+v n—l(a 2
n— o) (21— 1)!
>z<zav+lqu+v>1 Sl ED e
A T g |
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2 )Lq+1pu+t
o — H——
m o — % m (k-1 2 Avi 1 quty
X -P “ | - | —————
LZ,IC]u 1 0 — oy LZ,I g,%ﬂ%w 1 0 — 0
n—1 21
o — o 21 —1)!
5 maae
1=0 (062)
—1
gol\+lpu+t
[ |
m % — 0o m k—1 207%+111u+v
P | _ A S I -7 L —
X Mg,lq 1 p— LZ,I g, v 1qu+ 1 0 — 0
(39)
Proof.
(a) Using ¢(z) := —Inz in Theorem 3.2, we get the desired results.
(b) It is special case of (a).
REMARK 3.7. Using Remark 3.3, (39) becomes
k—1
m [k—1 ;0 lv+lqu+v
D(a|p)> Y, (2 mlqu+v> | = (40)
u=1\v=0 2 A1 Dusy

v=0

Zipf’s law [26, 27] is one of the basic laws in information science and is extensively ap-
plied in linguistics. Let m € {1,2,...}, ¢ >0, d > 0, then Zipf-Mandelbrot entropy
can be given as:

& In( u+c
H,c,d)= " 41
( C H:ndu 1 u+ ( C7d) ( )
where
m “ 1
ed G; (o+c)d
Consider
Gu=¢(usm,c,d) = ————- 42)
(u—!—c)dHQd

where ¢ (u;m,c,d) is discrete probability distribution known as Zipf-Mandelbrot law.
Application of Zipf-Mandelbrot law can be found in linguistics, information sciences
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and also is often applicable in ecological field studies. Some of the recent study regard-
ing Zipf-Mandelbrot law can be seen in the listed references (see [15, 17, 18, 11]). Now
we state our results involving entropy introduced by Mandelbrot Law by establishing
the relationship with Shannon and relative entropies:

THEOREM 3.8. Let m,k e N (2<k<m), A:=(Ay,...,\) be a probability dis-
tribution and q be as defined in (42) by Zipf-Mandelbrot law with parameters m €
{1,2,...}, ¢=0, d > 0. Then, the following holds

S(a) = Z(Hc.d)

< S Avii 1 Avil

In
© A (2 (v ) B >> (H:“d;o((wmw)
n—1 21 m _ dyym
(o — o) (21 —1)! 1 o — ((u+c)H"))

_ P ,

E(') (o) Z‘l ((u+c)?H,) : o0 — o

k=1 ((u+v+c)dHc”fd)

a J—
B i Z Avei P =
o (u+v+c)H") : o — oy

u=1

o — o)L —1)! | & 1 ((u+c)'HYy) — e
-2 E((Hc)ngjd)'B( )

=0 (0n)* o — oy

k=1 ((utvte)?Hm)

m -0
-2
u=1

k—1 - o1
L L — Y = R - 43)
2\ & T vr o) —

Proof. Tt is interesting to see that for ¢, be as defined in (42), 2 qu = 1. There-

=1
fore, using above g, in Shannon entropy (33), we get Mandelbrot entropy(41)

m 1 1
S(q) = —qulng, = _ugfl ((u+c)H)) " ((u+c)H))
-1 1 1
(H™) ug'l (u+c) (u+c)dH™

— (Hffd) Lﬁa (u—:c)d <ln(1) —dIn(u+c) —ln(HL’_f‘d)>

~ =) 21 (u+c)d (dln(HCHln( Zd))
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_d & In(utc) .
_ (Hé’fd)g oo D) (44)

Finally, substituting this g, = W in Corollary 3.4(b), we get the desired result.
Uu-+c c.d

The next result establish the relationship of Relative entropy with Mandelbrot entropy:

COROLLARY 3.9. Let mk e N 2<k<m), A:=(A,.

lk) be a probability
distribution and for c|,c; € [0,00), dy,dp > 0, let H" dy = Z

m
ore 1)‘“ and HC2 &=

o=1
m . 1 .
Z Ty Nowusing du =g and pu= oy in Corollary

cr.dy (u+c2)d2Hsz dy
3.6(D), then the following holds

D(q|lp)
d
i In (uter) zch; d;
u=1 14+C1 leCl d; (u+cl)d1HCrrlzdl
dy & In(u+cy)
_Z(Hacl,d1)+ In I‘ﬂd
Z;vdl IZI (u+cl)d1 ( €25 2)
kil S R
i kij At 1 v—0 (utv+cp)? IHCW{ P
n
u=1 u—i—v—l—cl)dl]-[gz d k-1 hos
v (utver) 2

c2.dy

o — (u+cl) IH‘”{ 4
+"§ (0 —oy)? (21— 1)! i 1 - 27 ey,
=0 (o) i (e H -

= Mt
o (u+v+02)d2Hg; "
0 = 2
v+1

_ i ki‘{l At P ]EOW
=0 (

dy gm —
im1 \vmo (e tv+er) He ay =0
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((M+Cl)d1Hfi dy )
—1 21 d
+nzi (0 — o) (21— 1)! i 1 P (utc2) HE 4y
21
1=0 (a2> u—1 (u+cl>d1H:; d 0 — 04
Kl Ayl
=0 (u+v+c2)d2H:; dy
=1 2 !
3 L;l
_ d ) .
=1 \i=o (u+v+c) lI‘Icr'lld1 (Xz—O(l

REMARK 3.10. Using Remark 3.3, (43) and (47) becomes

S(q) = Z(H, ¢,d) i i Y. In 1 kz‘l Y.
1 < - u—l—v—l—c)de) H, = “(utv+c)) )
(46)

m 1 (u—|—cz)d2Hmd
D — 1 C€2.d2
R (

c1udy (u—|—61) 1If;’:dl

m
(e d) + 2 3 U]y

m

HL‘hdl u=1 (u+ Cl)

k—1
7%+1

— )y CtvreNdigm
i 241 ey In =0 (uve) ey ay (47)
SE\S (wt v+t HT k1 A1

v (u+v+c )JZH"’
v=0 2 2.dy

REMARK 3.11. It is interesting to note that, in the similar passion we are able to
construct different estimations of ¢ -divergences along with their applications to Shan-
non, Relative and Mandelbrot entropies using the other inequalities for 2n— convex
functions constructed in Theorem 2.2 for discrete case of cyclic refinements of Jensen’s
inequality.

4. Monotonicity of functionals for 27— convex functions at a point

In the present section, we shall give related inequalities for n— convex functions
at a point, a generalization of the class of n— convex functions introduced by Pecari¢ et
al. in [24].
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DEFINITION 2. Let ¢ : I — R be a function and & be any point belonging to the
interior of 1. ¢ called (n+ 1)—convex at & if there exists a constant C such that

O) = 0(2) - 2" (48)

n!”
is n—concave on 1N (—o,&] and n—convex on IN[E, o). A function ¢ is called
(n+1)—concaveat & if —¢ is (n+ 1)—convexat &.

Witkowski et al in [24] deduced the conditions which are necessary and sufficient on
two linear functionals

I':C([o,8]) =R

and
Y:C(&,0,]) = R

such that the inequality T'(¢) < Y(¢) is valid for every function ¢ which is n-convex
at the point £. In the present section we shall obtain the monotonicity of particular
linear functionals which were obtained from the inequalities in the previous section.
Suppose (' represents the monomials {(x) = x', i € Ny. For the remaining part of
this section, I'i(@[4, ¢)) and Yi(@ o)) (i=1,...,6), will represent the linear cyclic
Jensen’s functionals obtained as the difference of the L. H. S. and R. H. S. of inequality
(23) applied to the intervals [04,&] and [, 0] respectively i. e., for z € [oy4,&]™,
peR”" AL eRk, ye[€ o), qeR™ and 1 € RF let

Li(@oyc) =i (9) —

Ol(é — o) [¢<2’)(al>~h (PI ( f_‘;)) +0®(&)J; (PI (2:—2))} . (49)

Yi(Pe,0n)) =i (9) —

g(az —&) [q)(z”(é)li (Pz (Zj:g)) +0®) (an); (P, (;;_i)ﬂ . (50)

In the similar passion, by using the inequality (25), for (i=1,...,6) and (j=1,...,5),
we define linear functionals as:

[

Li(e, 1)

=7 (0) - j i (Gm(z,r)) (?(:(5 —an)” [¢<2l+2)(al)P’ (éé—_ o:1>

+o2(E)R (’"_“‘ )Ddr. (51)

!
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Ti(e o)

::J,-(¢)—/Ji<G(j>(y,r)> (Sz(az—é) [ Ol <gf:r>
)

)} dr. (52)

,)» identity (17) for
[€, o] becomes:

_|_¢(2l+2) (a2 <

By constructing new linear functionals T'i(¢jq, ) and Yi(de o
(i=1,...,6) enforced to the corresponding intervals [o,&] and

Ti(9lay ) = (& — o)™ 1/J< (é o g:(;ll»
Yi(9g.0)) = (02 = €)™ 1/’( (Otz— o:z_—gé))

Further, by applying identity (18) for (i=1,...,6) and (j = L,...,5) on the intervals
o, €] and (£, 0] we get:

¢ ¢
Fi(9o ) = (E —00)™ /¢(2") (s) (a Ji (G(j) (z, V)) Gn-1 (g:zll 7 2:(;11 )dr> @

o (rdr.  (53)
0@ (r)

dr. (54)

(55)
T2 (0 ) = (00— 3 /2¢<2"><s> ( /J (Gten) s (=5 25 )a )ds
¢ &
(56)

Promptly, we are in position to state our main theorem of the present section for
inequalities involving 2n— convex function at a point:

THEOREM 4.1. Consider z € [04,8]", p€R™, A € RY, y e [E, )", q € R
and A € R* in such a way that

(a) For (i=1,...,0) consider

J(G<2:2;:2)>>0 re (o, &) (57)
o) ke om
:
g
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and let Ti(@q, &) and Yi(Pe o)) be the linear functionals introduced in (49)
and (50). If ¢ : (a1, 0] — R is (2n+ 1)— convex at the point &, then

Li(@oy.¢) < Yi(@g,o) for (i=1,...,6). (60)

(b) Similarly, for (i=1,...,6) and (j=1,...,5) suppose

/L(Qﬁ@ﬁ)Gm4<g_%'S_m>dr>Qr6kn£L (61)

—al’f—al

/J(G ) - 1(;2__2,;2__5961@0, relé m),  (62)

j j],-(G(j)(Z,r) (g_‘;ll g:(;ll)dr ds
(tgz al)zn 3/ /J( ) - 1(%,%)dr ds (63)

and let lA"i(q)[ahé]) and Y'i((l)[é,az]) be the linear functionals which are given by
(51) and (52). If ¢ : [0y, 0] — R is (2n+ 1)— convex at the point &, then

Ti(00y.21) < Vi o)) for (i=1,....6) and (j=1,...,5). (64)
Proof.
(a) Fix i =1,...,6. Employing Definition 2, set up function

D=0

C
(2n)!

such that the function @ is 2n—concave on [0, &] and is 2n—convex on [&, 05].
Executing Theorem 2.2 on @ over interval [0, &], we get

C n
0> Ti(®) =Ti(9.2) ~ 13 )'F'(Cfahﬂ). (65)
Identically practicing Theorem 2.2 on @ over interval [£, 0], we have
0<Yi(®P) =T € vy 66
<Yi(®) =Yi(9pe ) — @ i(CEn))- (66)
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Furthermore, using monomials { 2”(-) in identities (53) and (54) gives

¢
TG ) = mHE - e [ (Gn (2:—‘;‘11 g:‘;)) dr,  (67)

T = () (0 — &P / Ji ( ( ;2__§€)>dr. (68)

Therefore assumption (59) is equlvalent to

F(Calé )= (Clé on))-

So form (65) and (66), one can get

C 2n

C
Ti(@loy £) < Wri(g[ahg]) = MAi(C[zgrfaz]) <Yi(9eam)- (69

So (60) is obtained for (i =1,...,6).

(b) Similar method as above can be employed by using the identities (55) and (56).
Finally by deducing supposition (63), we have (64) for (i =1,...,6) and (j =
L,...,5).

We conclude with the following significant remarks:

REMARK 4.2. Note that inequality (60) and (64) are also valid on replacing as-

sumptions (59) and (63) with the weaker assumptions that C (Y’ (C[ £ o) ) 1",-(4'[%("1_ g])

>0 and C( (C5 az]) I (Cal £l )) >0 for (i=1,...,6) respectively.

5. Concluding remarks

It is refreshing to note that obtained inequalities for 2n— convex functions in Sec-
tion 2 are worth more as they enable us to give variety of new and sharp upper bounds
for Griiss and Ostrowski type inequalities (see [6]) as an application of the results ob-
tained by Dragomir et al in [8]. Furthermore, we can construct variety of function-
als from the inequalities introduced in the Theorem 2.2 and present Cauchy and La-
grange type mean value theorems for 2n—convex functions. More than that, taking
into account n— exponentially convex approach in [16] and [23](see also [5] and [4] ),
a new collection of non trivial examples of n—exponentially and exponentially convex
functions can be established. Finally, we are also able to construct monotonic Cauchy
means.
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