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ROSENTHAL TYPE INEQUALITIES FOR RANDOM VARIABLES

PINGYAN CHEN AND SOO HAK SUNG

Abstract. It is shown that if the higher order upper Rosenthal inequality holds for the sum of
random variables, then the lower order upper Rosenthal inequality also holds. The same result
is also established for the maximum of partial sums of random variables. No additional assump-
tions are made on the random variables. As a corollary, we obtain that the upper Rosenthal
inequality implies the Marcinkiewicz-Zygmund type inequality.
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