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ROSENTHAL TYPE INEQUALITIES FOR RANDOM VARIABLES
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(Communicated by X. Wang)

Abstract. It is shown that if the higher order upper Rosenthal inequality holds for the sum of
random variables, then the lower order upper Rosenthal inequality also holds. The same result
is also established for the maximum of partial sums of random variables. No additional assump-
tions are made on the random variables. As a corollary, we obtain that the upper Rosenthal
inequality implies the Marcinkiewicz-Zygmund type inequality.

1. Introduction

One of the most interesting inequalities for independent random variables is the
Marcinkiewicz-Zygmund inequality. It gives relations between moments of sums and
moments of summands. For a sequence {Xi,1 � i � n} of independent random vari-
ables with mean 0 and E|Xi|p < ∞,1 � i � n, for some p > 1, there exist positive
constants Ap and Bp depending only on p such that
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Using the Marcinkiewicz-Zygmund inequality, Rosenthal [10] obtained a moment in-
equality for independent random variables. For a sequence {Xi,1 � i � n} of indepen-
dent random variables with mean 0 and E|Xi|p < ∞,1 � i � n, for some p > 2, there
exist positive constants Cp and Dp depending only on p such that
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where Cp = 2−p. Burkholder [3] proved that the Marcinkiewicz-Zygmund inequality
holds for the maximum of partial sums of martingale differences. Using Burkholder [3]
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inequality, we can see that the Rosenthal [10] inequality also holds for the maximum of
partial sums of independent random variables with mean zero and finite p -th moments
for some p > 2. That is, there exist positive constants C∗

p and D∗
p depending only on

p such that

C∗
p max

⎧⎨
⎩

n

∑
i=1

E|Xi|p,
(

n

∑
i=1

EX2
i

)p/2
⎫⎬
⎭� E max

1�k�n

∣∣∣∣∣
k

∑
i=1

Xi

∣∣∣∣∣
p

� D∗
p max

⎧⎨
⎩

n

∑
i=1

E|Xi|p,
(

n

∑
i=1

EX2
i

)p/2
⎫⎬
⎭ . (1.3)

Since (|x|+ |y|)/2 � max{|x|, |y|} � |x|+ |y| for real numbers x and y, the term
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{
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i=1 E|Xi|p,

(
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}

in (1.2) and (1.3) can be replaced by ∑n
i=1 E|Xi|p +(

∑n
i=1 EX2

i

)p/2
. Of course the constants in (1.2) and (1.3) may vary.

The right-hand side of (1.2) is called the p -th order upper Rosenthal inequality for
the sum of random variables. The right-hand side of (1.3) is called the p -th order upper
Rosenthal inequality for the maximum of partial sums of random variables.

The upper Rosenthal type inequalities have been established for dependent random
variables. We refer to Shao [12] for ρ -mixing, Peligrad and Gut [9] and Utev and
Peligrad [14] for ρ∗ -mixing, Shao [13] for negatively associated random variables,
Hu [6] and Wang et al. [17] for negatively superadditive dependent random variables,
Asadian et al. [1] for negatively orthant dependent random variables, Wang and Lu [18]
for asymptotically negatively associated random variables, and Yuan and An [19] for
asymptotically almost negatively associated random variables.

When 1 < p < 2, we can obtain from (1.1) that
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The inequality (1.4) is called the p -th order Marcinkiewicz-Zygmund type inequal-
ity. It is known that if the q -th order Marcinkiewicz-Zygmund type inequality holds
for the truncated and centered random variables {Xi(x)− EXi(x),1 � i � n,x > 0},
where Xi(x) = XiI(|Xi| � x) + xI(Xi > x)− xI(Xi < −x), then the p(1 < p < q)-th
order Marcinkiewicz-Zygmund type inequality also holds for the random variables
{Xi − EXi,1 � i � n} (see Chen and Sung [4] and Fazekas and Pecsora [5]). Note
that no additional assumptions are made on the random variables {Xi}. Inspired by
the above result, it is natural to consider that the above result holds for the Rosenthal
inequality.

In this paper, we prove that if the q -th (q > 2) order upper Rosenthal inequality
holds for the sum of random variables, then the p(2 � p < q)-th order upper Rosenthal
inequality also holds. We also prove the same result for the maximum of partial sums of
random variables. As a corollary, we obtain that the upper Rosenthal inequality implies
the Marcinkiewicz-Zygmund type inequality.
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Throughout this paper, I(A) denotes the indicator function of the event A.

2. The main results

The following theorem shows that if the higher order upper Rosenthal inequality
holds for the sum of random variables, then the lower order upper Rosenthal inequality
also holds.

THEOREM 2.1. Let {Xn,n � 1} be a sequence of random variables with finite
means. Assume that for some q > 2, there exists a positive function αq(x) � 1 such
that
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where Xi(x) = XiI(|Xi|� x)+xI(Xi > x)−xI(Xi <−x). Then for any p with 2 � p < q,
there exists a positive constant C depending only on p and q such that
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Proof. Without loss of generality, we may assume that E|Xi|p < ∞ for 1 � i � n.
Let
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Set Yi(x) = Xi−Xi(x) for all i � 1 and x > 0. We proceed with two cases.
Case 1. B is an unbounded set.
By the Lebesgue convergence theorem, Hölder’s inequality, and (2.1), we get that
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since αq(n) � 1.
Case 2. B is a bounded set.
Set m = supx∈B x. Then m ∈ B or m /∈ B. We now proceed with two subcases.
Subcase 2.1. m ∈ B.
By the cr -inequality, we have that
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By Hölder’s inequality, (2.1), and m ∈ B, we have that
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For I2, we first observe that Yi(m)I(|Xi| � x) = 0 if 0 < x � m and Yi(m)I(|Xi| �
x) = Xi(x)−Xi(m)+ (m− x)I(Xi > x)+ (x−m)I(Xi < −x) if x > m. We also observe
that Yi(m)I(|Xi|> x) = (Xi−m)I(Xi > x∨m)+(Xi+m)I(Xi <−(x∨m)), where x∨y =
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max{x,y}. It follows that
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For I21, we note that x ∈ A if x > m. It follows by Markov’s inequality, (2.1), and the
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Thus, we get
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Subcase 2.2. m /∈ B.
In this case, m is a point of accumulation of the set B. Hence, there exists an

increasing sequence {mk} in B such that m/2 � mk ↑ m. Then mk + m/2 ∈ A and
(mk +m/2)/mk � 2.
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Since J2(k) is the same as I2 except that m is replaced by mk, we have that
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+ p
∫ ∞

mk

xp−1P

(∣∣∣∣∣
n

∑
i=1

((x−mk)I(Xi < −x)−E(x−mk)I(Xi < −x))

∣∣∣∣∣> x/8

)
dx

+ p
∫ ∞

0
xp−1P

(∣∣∣∣∣
n

∑
i=1

((Xi−mk)I(Xi > x∨mk)−E(Xi−mk)I(Xi > x∨mk))

∣∣∣∣∣> x/4

)
dx

+ p
∫ ∞

0
xp−1P

(∣∣∣∣∣
n

∑
i=1

((Xi +mk)I(Xi < −(x∨mk))

−E(Xi +mk)I(Xi < −(x∨mk)))

∣∣∣∣∣> x/4

)
dx

:=J21(k)+ J22(k)+ J23(k)+ J24(k)+ J25(k)+ J26(k).

By the definition of J21(k), we obtain that

J21(k) = p
∫ m

mk

xp−1P

(∣∣∣∣∣
n

∑
i=1

(Xi(x)−EXi(x))

∣∣∣∣∣> x/8

)
dx+ I21

� p
∫ m

mk

xp−1 dx+ I21

= mp−mp
k + I21.

It follows that

limsup
k→∞

J21(k) � I21 � 2p8q
(

1
q− p

+
1
p

)
αq(n)

n

∑
i=1

E|Xi|p.

Since mk +m/2 ∈ A and (mk + m/2)/mk � 2, we have by Markov’s inequality
and (2.1) that

J22(k) � p8q
∫ ∞

mk

xp−q−1E

∣∣∣∣∣
n

∑
i=1

(Xi(mk)−EXi(mk))

∣∣∣∣∣
q

dx

� p8qαq(n)
∫ ∞

mk

xp−q−1

⎧⎨
⎩

n

∑
i=1

E|Xi(mk)|q +

(
n

∑
i=1

E|Xi(mk)|2
)q/2

⎫⎬
⎭ dx

� p8qαq(n)
∫ ∞

mk

xp−q−1

⎧⎨
⎩

n

∑
i=1

E|Xi(mk+m/2)|q+
(

n

∑
i=1

E|Xi(mk+m/2)|2
)q/2

⎫⎬
⎭ dx
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� 2p8qαq(n)
∫ ∞

mk

xp−q−1
n

∑
i=1

E|Xi(mk +m/2)|q dx

� 2p8q
(
mk +

m
2

)q−p
αq(n)

n

∑
i=1

E|Xi|p
∫ ∞

mk

xp−q−1 dx

= 2p8q
(
mk +

m
2

)q−p
αq(n)

n

∑
i=1

E|Xi|p mk
p−q

q− p

� 2p8q2q−p 1
q− p

αq(n)
n

∑
i=1

E|Xi|p.

As in Subcase 2.1,

J23(k)+ J24(k) � 16
n

∑
i=1

E|Xi|p

and

J25(k)+ J26(k) � 8p
p−1

n

∑
i=1

E|Xi|p.

Thus, the upper bound of E |∑n
i=1(Xi−EXi)|p is the same as that of Subcase 2.1. �

The following corollary shows that Theorem 2.1 still holds for 1 < p < 2. But in
this case, the term of the sum of second moments has disappeared. That is, the upper
Rosenthal inequality implies the Marcinkiewicz-Zygmund type inequality.

COROLLARY 2.1. Let {Xn,n � 1} be a sequence of random variables with finite
means. Assume that (2.1) holds for some q > 2 and αq(n) � 1. Then for any p with
1 < p < 2, there exists a positive constant C depending only on p and q such that

E

∣∣∣∣∣
n

∑
i=1

(Xi −EXi)

∣∣∣∣∣
p

� Cαq(n)
n

∑
i=1

E|Xi|p.

Proof. Let y > 0 be fixed and let Yi = Xi(y). Then Yi(x) = Xi(x) if x � y and
Yi(x) = Xi(y) if x > y. By the assumption, (2.1) also holds for Yi(x). By Theorem 2.1,
there exists a positive constant D depending only on q such that

E

∣∣∣∣∣
n

∑
i=1

(Xi(y)−EXi(y))

∣∣∣∣∣
2

� Dαq(n)
n

∑
i=1

E |Xi(y)|2 . (2.2)

Since D is independent of y, (2.2) holds for all y > 0. By Theorem 2.1 of Chen and
Sung [4], we can see that∣∣∣∣∣

n

∑
i=1

(Xi −EXi)

∣∣∣∣∣
p

�
(

4Dαq(n)
2

2− p
+

4
p−1

) n

∑
i=1

E|Xi|p
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�
(

8D
2− p

+
4

p−1

)
αq(n)

n

∑
i=1

E|Xi|p.

Thus the proof is completed. �
A collection of random variables is k -wise independent if every k random vari-

ables of the collection are independent. When k = 2, it is also called pairwise inde-
pendent. The k -wise independent random variables are used in computer science for
derandomizing algorithms because they can be constructed with less randomness than
fully independent random variables (Berger and Rompel [2] and Motwani et al. [7]).
They are also used in cryptography because k -wise independent permutations allow
perfect secrecy if one allows k queries to the encryption oracle (Russell and Wang [11]
and Vaudenay [15, 16]).

COROLLARY 2.2. Let 1 < p < 4 and let {Xn,n � 1} be a sequence of 4-wise
independent random variables with E|Xn|p < ∞ for n � 1. Then there exists a positive
constant C depending only on p such that

E

∣∣∣∣∣
n

∑
i=1

(Xi−EXi)

∣∣∣∣∣
p

�
{

C∑n
i=1 E|Xi|p, 1 < p < 2,

C
{

∑n
i=1 E|Xi|p +

(
∑n

i=1 E|Xi|2
)p/2

}
, 2 � p < 4.

Proof. Since {Xn,n � 1} is a sequence of 4-wise independent random variables,
we have

E

∣∣∣∣∣
n

∑
i=1

(Xi(x)−EXi(x))

∣∣∣∣∣
4

=
n

∑
i=1

E |Xi(x)−EXi(x)|4 + ∑
1�i�= j�n

E |Xi(x)−EXi(x)|2 E
∣∣Xj(x)−EXj(x)

∣∣2

�
n

∑
i=1

E |Xi(x)−EXi(x)|4 +

(
n

∑
i=1

E |Xi(x)−EXi(x)|2
)2

�24
n

∑
i=1

E |Xi(x)|4 +

(
n

∑
i=1

E |Xi(x)|2
)2

.

Hence (2.1) holds with q = 4 and αq(n) = 16. If 1 < p < 2, then the result follows
from Corollary 2.1. If 2 � p < 4, then the result follows from Theorem 2.1. �

REMARK 2.1. Corollary 2.2 does not hold for 2-wise (pairwise) independent ran-
dom variables (see Theorem 3.1 in Pass and Spektor [8]).

The following theorem shows that if the higher order upper Rosenthal inequality
holds for the maximum of partial sums of random variables, then the lower order upper
Rosenthal inequality also holds.
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THEOREM 2.2. Let {Xn,n � 1} be a sequence of random variables with finite
means. Assume that for some q > 2, there exists a positive function βq(x) � 1 such
that

E max
1�k�n

∣∣∣∣∣
k

∑
i=1

(Xi(x)−EXi(x))

∣∣∣∣∣
q

�βq(n)

⎧⎨
⎩

n

∑
i=1

E |Xi(x)|q +

(
n

∑
i=1

E |Xi(x)|2
)q/2

⎫⎬
⎭ , ∀n � 1,∀x > 0, (2.3)

where Xi(x) = XiI(|Xi|� x)+xI(Xi > x)−xI(Xi <−x). Then for any p with 2 � p < q,
there exists a positive constant C depending only on p and q such that

E max
1�k�n

∣∣∣∣∣
k

∑
i=1

(Xi−EXi)

∣∣∣∣∣
p

� Cβq(n)

⎧⎨
⎩

n

∑
i=1

E|Xi|p +

(
n

∑
i=1

E|Xi|2
)p/2

⎫⎬
⎭ .

Proof. The proof is similar to that of Theorem 2.1. Without loss of generality, we
may assume that E|Xi|p < ∞ for 1 � i � n . Let

A =

⎧⎨
⎩x > 0 :

n

∑
i=1

E|Xi(x)|q �
(

n

∑
i=1

E|Xi(x)|2
)q/2

⎫⎬
⎭ ,

B =

⎧⎨
⎩x > 0 :

n

∑
i=1

E|Xi(x)|q <

(
n

∑
i=1

E|Xi(x)|2
)q/2

⎫⎬
⎭ .

Set Yi(x) = Xi−Xi(x) for all i � 1 and x > 0. We proceed with two cases.
Case 1. B is an unbounded set.
By the Lebesgue convergence theorem, Hölder’s inequality, and (2.3), we get that

E max
1�k�n

∣∣∣∣∣
k

∑
i=1

(Xi −EXi)

∣∣∣∣∣
p

= lim
x→∞,x∈B

E max
1�k�n

∣∣∣∣∣
n

∑
i=1

(Xi(x)−EXi(x))

∣∣∣∣∣
p

� limsup
x→∞,x∈B

(
E max

1�k�n

∣∣∣∣∣
n

∑
i=1

(Xi(x)−EXi(x))

∣∣∣∣∣
q)p/q

� βq(n)p/q limsup
x→∞,x∈B

⎛
⎝ n

∑
i=1

E|Xi(x)|q +

(
n

∑
i=1

E|Xi(x)|2
)q/2

⎞
⎠

p/q

� (2βq(n))p/q limsup
x→∞,x∈B

(
n

∑
i=1

E|Xi(x)|2
)p/2

= (2βq(n))p/q

(
n

∑
i=1

E|Xi|2
)p/2
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� 2p/qβq(n)

(
n

∑
i=1

E|Xi|2
)p/2

.

Case 2. B is a bounded set.
The proof of this case is similar to that of Theorem 2.1 and is omitted. �
The following corollary shows that Theorem 2.2 still holds for 1 < p < 2. But in

this case, the term of the sum of second moments has disappeared.

COROLLARY 2.3. Let {Xn,n � 1} be a sequence of random variables with finite
means. Assume that (2.3) holds for some q > 2 and βq(n) � 1. Then for any p with
1 < p < 2, there exists a positive constant C depending only on p and q such that

E max
1�k�n

∣∣∣∣∣
k

∑
i=1

(Xi −EXi)

∣∣∣∣∣
p

� Cβq(n)
n

∑
i=1

E|Xi|p.

Proof. The proof is the same as that of Corollary 2.1 except that Theorem 2.1 of
Chen and Sung [4] is replaced by Theorem 2.2 of Chen and Sung [4]. �
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