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Abstract. In the present paper, we establish some entirely new Jensen-type discrete and integral
inequalities. As applications of these results, we strengthen the well-known majorization theo-
rem of Hardy, Littlewood and Pólya, and we also give a generalization of Andersson’s inequality.

1. Introduction

The Jensen inequality for convex functions is one of the significant classical in-
equalities in mathematical analysis. Many other important inequalities such as the
Hölder and Minkowski inequalities, inequalities between means, the Ky Fan inequality,
etc can be obtained as particular cases of it.

Let Φ : I ⊂ R → R be an arbitrary convex function, where I is an interval of real
numbers. The Jensen inequality reads (see, for example, [4]) that if f : [a,b] → I is
an integrable function and w : [a,b]→ R is an integrable non-negative weight function
with

∫ b
a w(x)dx > 0, the following inequality holds true

Φ
( 1∫ b

a w(x)dx

∫ b

a
w(x) f (x)dx

)
� 1∫ b

a w(x)dx

∫ b

a
w(x)Φ( f (x))dx. (1.1)

The Jensen inequality (1.1) changes its direction when Φ is a concave function. The
discrete analogue of the inequality (1.1) is as follows:

Φ
( 1

∑n
i=1 wi

n

∑
i=1

wixi

)
� 1

∑n
i=1 wi

n

∑
i=1

wiΦ(xi), (1.2)

where wi � 0,∑n
i=1 wi > 0 and xi ∈ I for all i = 1, . . . ,n. In the recent years, there

is an increasing interest in the research on the Jensen and Jensen-type inequalities,
see [5, 11, 8, 9, 14] and the references therein. Almost all of these works focus on
refining, strengthening, reversing, generalizing or considering the bounds for the Jensen
functional.
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Parrallel with those researches, an inspire work for the study of the Jensen and
Jensen-type inequalities is Andersson’s inequality. It says (see, for example, [1]) that if
fi are convex increasing functions defined on [0,1] with fi(0) = 0 then

∫ 1

0

n

∏
i=1

fi(x)dx � 2n

n+1

n

∏
i=1

∫ 1

0
fi(x)dx. (1.3)

An interesting special case of (1.3) when taking fi to be the same function f is the
following inequality

∫ 1

0
[ f (x)]ndx � 2n

n+1

(∫ 1

0
f (x)dx

)n

(1.4)

for any n ∈ N . It is noticeable that the inequality (1.4) implies the classical Jensen
inequality with respective to the convex function Φ(x) = xn ; moreover, the coefficient
2n

n+1 is much greater than 1 when n is large and it is the best possible. In 2005, Mercer
[12] proved that the inequality (1.4) was still valid for replacing n with α ∈ (−1,0]∪
[1,∞) . In other words, if f is an increasing convex function defined on [0,1] with
f (0) = 0, the following inequality holds true

∫ 1

0
Φ( f (x))dx � 2α

α +1
Φ

(∫ 1

0
f (x)dx

)
, (1.5)

where Φ(x) = xα with α ∈ (−1,0]∪ [1,∞) is the convex function. This inequality
suggests a following natural question: Can the inequality (1.5) be generalized to other
convex functions? In that case what does the coefficient 2α

α+1 change with respective to
Φ?

Motivated by the mentioned results and the above questions, in this paper we give
a generalization of the inequality (1.5) for convex functions which the coefficients in
the expansion of its Bernstein polynomials satisfying some preset condition. The main
result of the paper is given in Theorem 2.1. To obtain this theorem, we using some key
tools consisting of the Bernstein polynomials of a continuous function and Chebyshev’s
inequality for monotonic tuples. A discrete version of Theorem 2.1 is also stated in The-
orem 2.5. As applications of these results, we strengthen the well-known majorization
theorem of Hardy, Littlewood and Pólya (see Theorem 3.2) and give a generalization of
the Andersson inequality (see Theorem 3.4).

2. Main results

We begin this section with recalling some results of Bernstein polynomials. Ac-
cording to [10], the Bernstein polynomial Bf

n of order n of the function f defined on
[0,b] is given by

Bf
n(x) =

n

∑
k=0

f
(
k
b
n

)(n
k

)( x
b

)k(
1− x

b

)n−k
.

Furthermore, if f is a continuous function on [0,b] , the sequence of polynomials
{Bf

n}∞
n=1 converges uniformly on [0,b] to f , see [10, Theorem 1.1.1] for the details.
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These polynomials have the expansion in powers of x of the form

Bf
n(x) =

n

∑
k=0

(n
k

)Δk f (0)
bk xk =

n

∑
k=0

c f
nkx

k, (2.1)

where Δk f (0) is the difference of k th order of the function f at x = 0 given by

Δk f (0) =
k

∑
j=0

(k
j

)
(−1)k− j f

(
j
b
n

)
.

Now, we are ready to state the main result of the paper.

THEOREM 2.1. Let f : [0,1] → [0,b] be an integrable increasing function and
w : [0,1] → [0,∞) be a weight function with

∫ 1
0 w(x)dx = 1 . Let g : [0,1] → [0,∞)

be also an integrable increasing function satisfying
∫ 1
0 w(x)g(x)dx = 1 . Suppose that

g(x) and g(x)c belong to the interval [0,b] for all x ∈ [0,1], where the symbol c =∫ 1
0 w(x) f (x)dx . Let Φ : [0,b] → R be a continuously convex function such that the

coefficients cΦ
nk of the Bernstein polynomials BΦ

n of the function Φ satisfy that, for any
n ∈ N,

0 �
j

∑
k=0

cΦ
nk �

n

∑
k=0

cΦ
nk, ∀ j = 0, . . . ,n. (2.2)

Then, if the function f
g is also increasing on (0,1) and c � 1, the following inequality

holds true

∫ 1

0
w(x)Φ( f (x))dx �

∫ 1
0 w(x)Φ(g(x))dx

Φ(1)
Φ

(∫ 1

0
w(x) f (x)dx

)
. (2.3)

Conversely, if the function f
g is decreasing on (0,1) and c � 1, then the inequality

(2.3) is reversed.

Proof. We show the result for the first case. To this end, let us first define the two
functions f ∗ and F on [0,1] by setting, for each x ∈ [0,1],

f ∗(x) = g(x)
∫ 1

0
w(t) f (t)dt and F(x) =

∫ x

0
w(t)[ f (t)− f ∗(t)]dt.

Clearly, we have F(0) = F(1) = 0 by the hypothesis
∫ 1
0 w(x)g(x)dt = 1. Since f ∗(x) =

cg(x) , it is clear that f ∗ is increasing on [0,1] . On the other hand, by calculating
directly, we obtain, for all x ∈ (0,1) ,

F ′(x) = w(x)[ f (x)− f ∗(x)] = w(x)g(x)
( f (x)

g(x)
−

∫ 1

0
w(t) f (t)dt

)
.

It follows that the sign of F ′ depends only on the sign of the expression in the bracket.
Therefore, the derivative F ′ changes sign exactly once in (0,1) by the monotone of f

g
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on (0,1) . Since f
g is increasing on (0,1) , the derivative F ′ is negative near 0. This,

along with F(0) = F(1) = 0, leads to F(x) � 0 for all x ∈ [0,1] . This fact, together
with the hypothesis

∫ 1
0 w(x)g(x)dx = 1, yields

∫ 1

x
w(t)[ f (t)− f ∗(t)]dt � 0, x ∈ [0,1]. (2.4)

Besides, by the gradient inequality for the convex function Φ (see, for example, [4])
and the non-negativity of w , we deduce that, for all x ∈ [0,1] ,

w(x)Φ( f (x))−w(x)Φ( f ∗(x)) � w(x)ϕ( f ∗(x))( f (x)− f ∗(x)), (2.5)

where ϕ is a subdifferential of Φ . Notice that, by the increase of ϕ on [0,b] (see,
for example, [4]) and of f ∗ on [0,1] , we get ϕ( f ∗(1)) � ϕ( f ∗(0)) . Moreover, due
to the second mean-value theorem for the integral (see [2, p. 35]), together with the
inequalities (2.4), (2.5), there is a ξ ∈ [0,1] such that

∫ 1

0
w(x)Φ( f (x))dx−

∫ 1

0
w(x)Φ( f ∗(x))dx

�
∫ 1

0
w(x)ϕ( f ∗(x))( f (x)− f ∗(x))dx

=ϕ( f ∗(0))
∫ ξ

0
w(x)[ f (x)− f ∗(x)]dx+ ϕ( f ∗(1))

∫ 1

ξ
w(x)[ f (x)− f ∗(x)]dx

�ϕ( f ∗(0))
∫ ξ

0
w(x)[ f (x)− f ∗(x)]dx+ ϕ( f ∗(0))

∫ 1

ξ
w(x)[ f (x)− f ∗(x)]dx

=ϕ( f ∗(0))
∫ 1

0
w(x)[ f (x)− f ∗(x)]dx = 0,

which is equivalent to

∫ 1

0
w(x)Φ( f (x))dx �

∫ 1

0
w(x)Φ(g(x)c)dx, (2.6)

where c =
∫ 1
0 w(t) f (t)dt .

It remains to prove that the following inequality holds for all c � 1

∫ 1

0
w(x)Φ(g(x)c)dx � Φ(c)

Φ(1)

∫ 1

0
w(x)Φ(g(x))dx. (2.7)

Indeed, by using Jensen’s inequality and the hypotheses on the functions g and w , we
easily deduce that, for all k � 1,

1 �
(∫ 1

0
w(x)[g(x)]kdx

)1/k
�

(∫ 1

0
w(x)[g(x)]k+1dx

)1/(k+1)
. (2.8)
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This inequality leads to
∫ 1
0 w(x)[g(x)]kdx � 1 for all k � 1. This, together with (2.8),

gives us that

∫ 1

0
w(x)[g(x)]kdx �

(∫ 1

0
w(x)[g(x)]k+1dx

) k
k+1

�
(∫ 1

0
w(x)[g(x)]k+1dx

) k
k+1

(∫ 1

0
w(x)[g(x)]k+1dx

) 1
k+1

=
∫ 1

0
w(x)[g(x)]k+1dx,

that is, the sequence {∫ 1
0 w(x)[g(x)]kdx}n

k=0 is monotonically increasing. Clearly, the
sequence {ck}n

k=0 is also monotonically increasing because c � 1. On the other hand,
we can write the Bernstein polynomials of order n of the function Φ as

BΦ
n (x) =

n

∑
k=0

cΦ
nkx

k.

By the hypotheses of the theorem, the coefficients cΦ
nk in the above expansion satisfy

the condition (2.2). Thus, using Chebyshev’s inequality for monotonic sequences (see,
for example, [13]), we have

∫ 1

0
w(x)BΦ

n (g(x)c)dx =
n

∑
k=0

cΦ
nkc

k
∫ 1

0
w(x)[g(x)]kdx

� 1

∑n
k=0 cΦ

nk

( n

∑
k=0

cΦ
nk

∫ 1

0
w(x)[g(x)]kdx

)( n

∑
k=0

cΦ
nkc

k
)

=
BΦ

n (c)
BΦ

n (1)

∫ 1

0
w(x)BΦ

n (g(x))dx.

(2.9)

Since the function Φ is continuous on [0,b] , the Bernstein polynomials BΦ
n converges

uniformly on [0,b] to the function Φ by [10, Theorem 1.1.1]. Hence, by letting n→ ∞
in the above inequality (2.9), we obtain the inequality (2.7).

The other case is proved similarly, we omit the details.
We can use a similar argument as in the proof of Theorem 2.1 to obtain the fol-

lowing result.

COROLLARY 2.2. Let f ,g,w : [0,1] → [0,∞) be integrable increasing functions,
and Φ : R → R be an increasing convex function. If the function f

g is also increasing
on (0,1), we have the following inequality

∫ 1

0
w(x)Φ( f (x))dx �

∫ 1

0
w(x)Φ

(
g(x)

∫ 1

0
f (t)dt

)
dx. (2.10)

If the function f
g is decreasing on (0,1), then the inequality (2.10) is reversed.
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Following [10, p. 13], the coefficients cΦ
nk converges to Φ(k)(0)

k! as n→ ∞ provided
these derivatives exist. We thus deduce an immediate consequence from the proof The-
orem 2.1 as follows.

COROLLARY 2.3. Let f ,g and w be as in Theorem 2.1. Suppose that Φ : [0,b]→
R is a smooth convex function satisfying Φ(k)(0) � 0 for all k � 0 . Then, if the function
f
g is increasing on (0,1) and c � 1, the inequality (2.3) holds true. Conversely, if the

function f
g is decreasing on (0,1) and c � 1, then the inequality (2.3) is reversed.

REMARK 2.4. (i) Theorem 2.1 not only gives an affirmative answer to the first
question, but also shows the best coefficient to the second question with respec-
tive to the convex function Φ and the function f . It should be pointed out that
not all convex functions satisfy the condition (2.2). Indeed, it can check that the
functions exp(x) and xα ,α � 1, obey (2.2), whereas the function 1

1+x does not
verify (2.2).

(ii) We consider a specific case of Theorem 2.1 which the result is similar to (1.5).
The hypothesis of the function f in inequality (1.5) implies that the function
f (x)
x is increasing on [0,1] . However, the function f (x)

xβ ,β > 1, may still be
increasing on [0,1] . Hence, if this case is true, we can take w(x) = 1,g(x) =
(β +1)xβ ,Φ(x) = xα ,α � 1, and obtain the following inequality

∫ 1

0
[ f (x)]αdx � (1+ β )α

1+ αβ

(∫ 1

0
f (x)dx

)α
.

Notice that this inequality holds true without the condition
∫ 1
0 f (x)dx � 1 by

Corollary 2.2; moreover, the coefficient (1+β )α

1+αβ is greater than the coefficient
2α

1+α .

A discrete analogue of Theorem 2.1 is as follows.

THEOREM 2.5. Let {yk}n
k=1 be an increasing sequence of real numbers in the in-

terval [0,b] and {wk}n
k=1 be a sequence of non-negative real numbers with ∑n

k=1 wk =
1 . Let {xk}n

k=1 be an increasing sequence of non-negative real numbers with ∑n
k=1 wkxk =

1 . Suppose that xk,cxk ∈ [0,b] for all k = 1, . . . ,n, where c = ∑n
k=1 wkyk � 0 . Let

Φ : [0,b]→ R be as in Theorem 2.1 or as in Corollary 2.3. Then, if { yk
xk
}n

k=1 is increas-
ing and c � 1, the following inequality holds true

n

∑
k=1

wkΦ(yk) � ∑n
k=1 wkΦ(xk)

Φ(∑n
k=1 wkxk)

Φ
( n

∑
k=1

wkyk

)
. (2.11)

Conversely, if { yk
xk
}n

k=1 is decreasing and c � 1, then the inequality (2.11) is reversed.
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3. Some applications

3.1. Applications to majorization inequalities

Majorization is a preorder relation between vectors on R
n originally introduced

by Hardy, Littlewood and Pólya (see [7]). For each vector xxx = (x1, . . . ,xn) ∈ R
n , let

xxx∗ = (x∗1, . . . ,x
∗
n) be a vector obtained by rearranging the components of xxx in increasing

order. Then for xxx,yyy ∈ R
n , we say that xxx is majorized by yyy , written xxx ≺ yyy , if

k

∑
i=1

x∗i �
k

∑
i=1

y∗i , k = 1, . . . ,n,

with the equality occurs when k = n . This relation is characterized by Hardy, Little-
wood and Pólya as follows.

THEOREM 3.1. (see [3]) The following are equivalent for xxx,yyy ∈ R
n .

(i) xxx ≺ yyy;

(ii) ∑n
i=1 Φ(xi) � ∑n

i=1 Φ(yi) for all continuous convex functions Φ defined on R;

(iii) xxx is in the convex hull of the set {zzz : zzz∗ = xxx∗} in R
n ;

(iv) There is a doubly stochastic matrix A of order n such that xxx = Ayyy.

This result is called the well-known majorization theorem for vectors. Recall that
a doubly stochastic matrix A = (ai j) of order n is a square matrix of order n satisfying
that each entry ai j is non-negative and the sum of each row or of each columm is unit.
For two vectors xxx,yyy ∈ R

n , we write xxx � yyy if xi � yi, i = 1, . . . ,n . We also use the
symbol eee to denote the vector (1, . . . ,1) ∈ R

n .
We can now strengthen the majorization theorem above as follows.

THEOREM 3.2. Let Φ : [0,b] → R be as in Theorem 2.5. Let xxx = {xk}n
k=1 and

yyy = {yk}n
k=1 be two increasing sequences of real numbers from the interval [0,b] such

that the sequence { yk
xk
}n

k=1 is also increasing. If A = (ai j) be a doubly stochastic matrix
of order n satisfying that xxx = Ayyy and Ayyy � Axxx � eee, then the following inequality holds
true

n

∑
k=1

Φ(xk) � c
n

∑
k=1

Φ(yk),

where

c = max
1�i�n

Φ(∑n
j=1 ai jx j)

∑n
j=1 ai jΦ(x j)

=
Φ(1)

min
1�i�n

∑n
j=1 ai jΦ(x j)

.

Proof. Clearly, the hypotheses of this theorem satisfy the conditions of Theorem
2.5. Moreover, we can write xi = ∑n

j=1 ai jy j for all i = 1, . . . ,n by xxx = Ayyy . Hence,
from Theorem 2.5 we infer that

Φ(xi) = Φ
( n

∑
j=1

ai jy j

)
�

Φ(∑n
j=1 ai jx j)

∑n
j=1 ai jΦ(x j)

n

∑
j=1

ai jΦ(y j) � c
n

∑
j=1

ai jΦ(y j)
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for all i = 1, . . . ,n. Adding these inequalities, we obtain

n

∑
i=1

Φ(xi) � c
n

∑
i=1

n

∑
j=1

ai jΦ(y j) = c
n

∑
j=1

( n

∑
i=1

ai j

)
Φ(y j) = c

n

∑
j=1

Φ(y j),

which finishes the proof of the theorem.

REMARK 3.3. When Φ is a strict convex function and xi ’s are different from
each other, the constant c in Theorem 3.2 is smaller than 1.

3.2. Inequalities of Andersson type

Andersson [1] showed that if fi are convex increasing functions defined on [0,1]
with fi(0) = 0 then

∫ 1

0

n

∏
i=1

fi(x)dx � 2n

n+1

n

∏
i=1

∫ 1

0
fi(x)dx.

This result was extended to the class of continuously differentiable functions f on [0,1]
such that f (t)

t is increasing on [0,1] with f (0) = 0 by Fink [6] in 2003.
The main goal of this subsection is to give a generalization of the above results.

THEOREM 3.4. Let fi,g : [0,1] → [0,∞) be integrable increasing functions on
[0,1] such that fi

g is also increasing on [0,1] and
∫ 1
0 g(x)dx = 1 . Then, the following

inequality holds true
∫ 1

0

n

∏
i=1

fi(x)dx �
∫ 1

0
[g(x)]ndx

n

∏
i=1

∫ 1

0
fi(x)dx.

Proof. Since fi are increasing on [0,1] , the product ∏n−1
i=1 fi(x) is also increasing

on [0,1] . Hence, by applying Corollary 2.2 for the functions w(x) = ∏n−1
i=1 fi(x), f (x) =

fn(x) and Φ(x) = x , we have

∫ 1

0

n

∏
i=1

fi(x)dx �
∫ 1

0
g(x)

n−1

∏
i=1

fi(x)dx
∫ 1

0
fn(x)dx. (3.1)

Similarly, by applying Corollary 2.2 for the functions w(x) = g(x)∏n−2
i=1 fi(x), f (x) =

fn−1(x) and Φ(x) = x , we get

∫ 1

0
g(x)

n−1

∏
i=1

fi(x)dx �
∫ 1

0
[g(x)]2

n−2

∏
i=1

fi(x)dx
∫ 1

0
fn−1(x)dx. (3.2)

It follows from (3.1) and (3.2) that

∫ 1

0

n

∏
i=1

fi(x)dx �
∫ 1

0
[g(x)]2

n−2

∏
i=1

fi(x)dx
n

∏
i=n−1

∫ 1

0
fi(x)dx.

We continue this process until getting the desired inequality.
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COROLLARY 3.5. Let fi be as in Theorem 3.4. Let S denote the set of all non-
negative increasing functions g defined on [0,1] such that

∫ 1
0 g(x)dx = 1 and each

function fi
g is also increasing on [0,1] . Then, we have

∫ 1

0

n

∏
i=1

fi(x)dx �
(

sup
g∈S

∫ 1

0
[g(x)]ndx

) n

∏
i=1

∫ 1

0
fi(x)dx.
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