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EXTENSIONS OF HÖLDER’S INEQUALITY AND

ITS APPLICATIONS IN OSTROWSKI INEQUALITY
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(Communicated by M. Krnić)

Abstract. In this paper, we present several new extensions and refinements of Hölder’s inequality
and some related inequalities. These Hölder’s inequalities are presented via function f (t) . My
results generalize and extend the results of Tian. Furthermore, we apply our results to Ostrowski
inequality to obtain some other interesting inequalities as special cases.

1. Introduction

Let ai j > 0, 1 � i � m , 1 � j � n , p j > 1, and ∑n
j=1 p−1

j = 1. Then it is well
known that the following Hölder’s inequality holds :

m

∑
i=1

n

∏
j=1

ai j �
n

∏
j=1

( m

∑
i=1

a
pj
i j

) 1
p j

. (1)

In addition, we can get the opposite result according to 0 < pn < 1, p j < 0, j = 1,2, . . . ,
n−1, ai j > 0 and ∑n

j=1
1
p j

= 1.

m

∑
i=1

n

∏
j=1

ai j �
n

∏
j=1

( m

∑
i=1

a
pj
i j

) 1
p j

. (2)

Similarly, we can get the integral form of the Hölder’s inequality,

∫ b

a

( n

∏
j=1

f j(x)
)

dx �
n

∏
j=1

(∫ b

a
f
p j
j (x)dx

)1/p j

, (3)

where p j > 1, f j(x) > 0, j = 1,2, . . . ,n and ∑n
j=1

1
p j

= 1.

∫ b

a

( n

∏
j=1

f j(x)
)

dx �
n

∏
j=1

(∫ b

a
f
p j
j (x)dx

)1/p j

, (4)
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where 0 < pn < 1, p j < 0, j = 1,2, . . . ,n−1, f j(x) > 0 and ∑n
j=1

1
p j

= 1.

Hölder’s inequality occupies a very crucial position in the field of mathematical
analysis. Through this study, we present some new versions of Hölder’s inequalities
and give their application to some special inequalities, such as Ostrowski inequality.
In addition to the above considerations, this paper also introduces the application of
Hölder’s inequality on the time scales, and gives new forms of inequality based on the
existing lemmas.

Yang’s[25, 26] conclusions are of great help to this paper, which makes further
research possible. The applications of integral inequality in Qi’s[6, 7] gives profound
inspiration to this paper and prompts many theorems on integral Hölder’s inequality to
be obtained. Tian[10, 11, 12, 13, 14, 16], Tian and Ha[17, 18], Tian et al.[19, 21] give
many meaningful generalizations and applications of Hölder’s inequality. For other
recent Hölder’s inequalities, please see the references.

Firstly, we learned the inspiration from the article in Yang[26] to get the functions
h(t) and g(t)

h(τ) =
n

∏
k=1

[ m

∑
i=1

( n

∏
j=1

ai j

)1−τ(
apk

ik

)τ]1/pk

, (5)

where h : (−∞,+∞) → (0,+∞) .

g(τ) =
n

∏
k=1

[∫ λ2

λ1

( n

∏
j=1

f j(θ )
)1−τ

f pkτ
k (θ )dθ

]1/pk

,t ∈ R, (6)

where fk(θ ) > 0, x ∈ [λ1,λ2],k = 1,2, ...,n , and fk ∈ Lpk [λ1,λ2] .
In addition, we take into account more possibilities on this basis, thus extending it

and getting a corresponding series of results (listed below).
Secondly, we also introduce Ostrowski inequalities in this paper:

∣∣∣∣ f (x)− 1
b−a

∫ b

a
f (u)du

∣∣∣∣� M
b−a

[
(x−a)2 +(b− x)2

2

]

and ∣∣∣∣ f (x)− 1
b−a

∫ b

a
f (u)du

∣∣∣∣�
[
1
4

+
(x− a+b

2 )2

(b−a)2

]
(b−a) || f

′ ||∞,

where || f
′ ||∞:= supt∈(a,b) | f

′
(t) |< ∞ and x ∈ [a,b] .

Moreover, we will consider applying Hölder’s inequality to Ostrowski inequality
in this paper, so as to extend Ostrowski inequality.

In addition to taking into account the above situation, we have added two addi-
tional inequalities on the time scales in the article, and we are particularly grateful for
the inspiration provided by Chen[2].
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2. Main results

In order to prove the main results, we need the following lemmas.

LEMMA 2.1. [25] If ξ1 and ξ2 are positive numbers, then

(
lnξ1 − lnξ2

)(
ξ τ

1 − ξ τ
2

){� 0, if τ � 0,
� 0, if τ � 0,

and the equal sign is established only when (ξ1 − ξ2)τ = 0 .

LEMMA 2.2. [25] Let rpk > 1 , ∑n
k=1

1
pk

= r , ai j > 0 , 1 � i � m,1 � j � n,

bi =
(

∏n
j=1 ai j

) 1
r , dik = a

rpk
ik

∏n
j=1 ai j

. Then

n

∑
k=1

1
pk

( m

∑
i=1

bilndik

)
= 0.

LEMMA 2.3. [25] Let rpk > 1 , ∑n
k=1

1
pk

= r , fk(θ )> 0 , F(θ )=
(

∏n
j=1 f j(θ )

) 1
r

,

gk(θ ) = f rpk
k /Fr(θ ) , θ ∈ [a,b] → R , k = 1,2, . . . ,n. Then

n

∑
k=1

p−1
k lngk(θ ) = 0,θ ∈ [a,b].

Next, we can get the Lemma 2.4 from Kwon and Bae[5].

LEMMA 2.4. [5] Let ξ ,ζ be real numbers. Then

(
ξ − ζ

)(
etξ − etζ )� 0 if t � 0 ,

and (
ξ − ζ

)(
etξ − etζ )� 0 if t � 0 .

LEMMA 2.5. [1] Let f : [ξ ,δ ] →R be a twice differentiable mapping on (ξ ,δ ) ,
then this equality holds

∫ δ

ξ
f (t)dt =(δ − ξ )(1−h) f (θ )− (δ − ξ )(1−h)

(
θ − ξ + δ

2

)
f ′(θ )

+h
δ − ξ

2
( f (ξ )+ f (δ ))− h2(δ − ξ )2

8

(
f ′(δ )− f ′(ξ )

)
+
∫ δ

ξ
K(θ ,t) f ′′(t)dt,
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for all θ ∈ [ξ +h δ−ξ
2 ,δ −h δ−ξ

2

]
and h ∈ [0,1] . Here K : [ξ ,δ ]2 → R

K(θ ,t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
t−
(

ξ +h δ−ξ
2

)]2

, if t ∈ [ξ ,θ ],

1
2

[
t−
(

δ −h δ−ξ
2

)]2

, if t ∈ (θ ,δ ].

Analytic inequality([15], [22], [28], [29], [30], [31]), especially Hölder’s inequal-
ity occupies a very high position in mathematics, Tian and Hu [20], Zhao and Cheung[32]
have conducted in-depth research on Hölder’s inequality. We refer to Qi’s([8], [9]) re-
searches on some characteristics of inequalities and give some theorems as follows. At
this point, we use the discrete form of hr(θ ) derived above to give some theorems and
corollaries.

The following theorems and corollaries are the results of this study.

THEOREM 2.6. Let Si j > 0 , (1 � i � m,1 � j � n) , rpk > 1 , ∑n
k=1 1/pk = r .

Define a positive function hr(θ ) : R → R
+ by

hr(θ ) =
n

∏
k=1

[ m

∑
i=1

( n

∏
j=1

Si j

)1−θ (
Srpk

ik

)θ
]1/pk

,θ ∈ R. (7)

Then
h′r(θ ) � 0 if θ � 0,and h′r(θ ) � 0 if θ � 0. (8)

Here, h′r(θ ) = 0 if and only if θ = 0 or

Srpk
ik

∏n
j=1 Si j

=
Srpk

jk

∏n
j=1 S jl

,1 � i, l � m,k = 1,2, . . . ,n. (9)

Thus, we have

( m

∑
i=1

n

∏
j=1

Si j

)r

=
n

∏
k=1

( m

∑
i=1

n

∏
j=1

Si j

) 1
pk

= hr(0) � hr(1) =
n

∏
k=1

( n

∑
i=1

Srpk
ik

) 1
pk

. (10)

If r = 1 , then it is a refinement of (1)

m

∑
i=1

n

∏
j=1

Si j = h(0) � h(1) =
n

∏
k=1

( m

∑
i=1

Spk
ik

) 1
pk

.

Proof. According to the Yan[24], we can get

h′r(θ ) =
{

� 0, θ � 0,
� 0, θ � 0,

where the conditions for h′r(θ ) = 0 are θ = 0 or
S
rpk
ik

∏n
j=1 Si j

=
S
rpk
jk

∏n
j=1 S jl

,1 � i, l � m,k =
1,2, . . . ,n .
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At the same time, we also can get h′′r (θ ) � 0 and h′r(θ )θ > 0. So, for hr(0) and hr(1) ,
we can get the following conclusion

( m

∑
i=1

n

∏
j=1

Si j

)r

=
n

∏
k=1

( m

∑
i=1

n

∏
j=1

Si j

) 1
pk

= hr(0) � hr(1) =
n

∏
k=1

( n

∑
i=1

Srpk
ik

) 1
pk

.

If r = 1, then it is a refinement of (1)

m

∑
i=1

n

∏
j=1

Si j = h(0) � h(1) =
n

∏
k=1

( m

∑
i=1

Spk
ik

) 1
pk

.

Thus, the proof of Theorem 2.6 is completed.

COROLLARY 2.7. If (9) holds, then hr(θ ) = const . Otherwise, h′′r (θ ) > 0, t ∈ R
and h′r(θ )θ > 0 for θ �= 0 , especially for 0 = θ1 < θ2 < · · · < θN = 1 , we have

hr(0) = hr(θ1) < hr(θ2) < · · · < hr(θN) = hr(1).

COROLLARY 2.8. Let R(a) = ∏n
k=1

(
∑n

i=1 Srpk
ik

) 1
pk −

(
∑m

i=1 ∏n
j=1 Si j

)r
, then

R(a) � 0 , and R(a) = 0 if and only if

Srpk
ik

∏n
j=1 Si j

=
Srpk

jk

∏n
j=1 S jl

,1 � i, l � m,k = 1,2, . . . ,n.

COROLLARY 2.9. Let n = 2, p > 1,q = p/(p−1),r = 1 , then we have

m

∑
i=1

Si1Si2 =
( m

∑
i=1

Sp
i1

) 1
p
( m

∑
i=1

Sq
i2

) 1
q

−R(a).

Let Sk = Si1,Tk = Si2 , then

m

∑
k=1

SkTk =
( m

∑
k=1

Sp
k

) 1
p
( m

∑
k=1

Tq
k

) 1
q

−R(a),

where R(a) � 0 and R(a) = 0 if and only if

Sp
k

∑m
k=1 Sp

k

=
Tq
k

∑m
k=1 Tq

k

.

THEOREM 2.10. Let fk(x)> 0 , x∈ [a,b] , fk ∈Lpk [a,b] and let pk,k = 1,2, . . . ,n,
be positive real numbers satisfying ∑n

k=1
1
pk

= r . Define a positive function gr(θ ):
R → R

+ by

gr(θ ) =
n

∏
k=1

[∫ b

a

( n

∏
j=1

f j(x)
)1−θ

f rpkθ
k (x)dx

] 1
pk

. (11)
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Then
g′r(θ ) � 0 if θ � 0 , and g′r(θ ) � 0 if θ � 0 .

Here g′r(θ ) = 0 if and only if θ = 0 or

f rpk
k (x)

∏n
j=1 f j(x)

= ck = const. (12)

The function gr(θ ) defined by (14) is concave, that is g′′r (θ ) � 0 , for all θ ∈ R , and
the equal sign is established only when

f rpk
k (x)

∏n
j=1 f j(x)

= ck = const.

Thus, we can have gr(0) � gr(1) , and this reduces to (2) because

[∫ b

a

( n

∏
j=1

f j(x)
)

dx

]r

=
n

∏
k=1

[∫ b

a

( n

∏
j=1

f j(x)
)

dx

] 1
pk

= gr(0)

� gr(1) =
n

∏
k=1

(∫ b

a
f rpk
k (x)dx

) 1
pk

.

If r = 1 , then it is a refinement of (2)

∫ b

a

( n

∏
j=1

f j(x)
)

dx = gr(0) � gr(1) =
n

∏
k=1

(∫ b

a
f pk
k (x)dx

) 1
pk

.

Proof. According to the Yan[24], we can get

g′r(θ ) =
{

� 0, θ � 0,
� 0, θ � 0,

where the conditions for g′r(θ ) = 0 are θ = 0 or
f
rpk
k (x)

∏n
j=1 f j(x)

= ck = const .

At the same time, we also can get g′′r (θ ) � 0 and g′r(θ )θ > 0. So, for gr(0) and gr(1) ,
we can get the following conclusion[∫ b

a

( n

∏
j=1

f j(x)
)

dx

]r

=
n

∏
k=1

[∫ b

a

( n

∏
j=1

f j(x)
)

dx

] 1
pk

= gr(0)

� gr(1) =
n

∏
k=1

(∫ b

a
f rpk
k (x)dx

) 1
pk

.

If r = 1, then it is a refinement of (2)

∫ b

a

( n

∏
j=1

f j(x)
)

dx = gr(0) � gr(1) =
n

∏
k=1

(∫ b

a
f pk
k (x)dx

) 1
pk

.

Thus, the proof of Theorem 2.10 is completed.
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COROLLARY 2.11. If gk(x) = const , then gr(θ ) = const . Otherwise, g′′r (θ ) >
0,θ ∈ R and g′r(θ )θ > 0 for θ �= 0 , especially for 0 = θ1 < θ2 < · · · < θN = 1 , we
have

gr(0) = gr(θ1) < gr(θ2) < · · · < gr(θN) = gr(1),

gr(0) =
n

∏
k=1

(∫ b

a
Fr(x)dx

) 1
pk � gr(1) =

n

∏
k=1

(∫ b

a
Fr(x)gk(x)dx

) 1
pk

.

COROLLARY 2.12. Let pk > 1,∑n
k=1

1
pk

= r, f j(x) > 0,1 � j � n. Then

gr(0) � gr(
1
2
) � gr(1),

that is

n

∏
k=1

(∫ b

a

n

∏
j=1

f j(x)dx

) 1
pk �

n

∏
k=1

(∫ b

a

( n

∏
j=1

f j(x)
) 1

2 f
rpk
2

k dx

) 1
pk �

n

∏
k=1

(∫ b

a
f rpk
k (x)dx

) 1
pk

.

The equalities hold if and only if (12) hold

f rpk
k (x)

∏n
j=1 f j(x)

= ck = const.

THEOREM 2.13. Let f : [θ1,θ2] → R be continuous, differentiable on (θ1,θ2)
and | f ′′ | is log-convex. Thus, for some p > 1 , we have the following inequality:∣∣∣∣

∫ θ2

θ1

f (t)dt − (θ2 −θ1
)(

1−h
)
f (x)+

(
θ2 −θ1

)(
1−h

)(
x− θ1 + θ2

2

)
f ′(x)

−h
θ2−θ1

2
( f (θ1)+ f (θ2))+

h2
(
θ2 −θ1

)2
8

(
f ′(θ2)− f ′(θ1)

)∣∣∣∣
�1

4

(
1

2q+1

) 1
q
[(

x−θ1−h
θ2−θ1

2

)2q+1

+2

(
h

θ2−θ1

2

)2q+1

+
(

θ2 − x−h
θ2−θ1

2

)2q+1] 1
q
(∫ θ2

θ1

| f ′′(t) |p dt

) 1
p

,

where q = p
p−1 , h ∈ [0,1] and θ1 + θ2−θ1

2 h � x � θ2 − θ2−θ1
2 h.

Proof. By Lemma 2.5, we can get∣∣∣∣
∫ θ2

θ1

f (t)dt− (θ2−θ1)(1−h) f (x)+ (θ2−θ1)(1−h)
(

x− θ1 + θ2

2

)
f ′(x)

−h
θ2−θ1

2
( f (θ1)+ f (θ2))+

h2(θ2 −θ1)2

8

(
f ′(θ2)− f ′(θ1)

)∣∣∣∣
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=
∣∣∣∣
∫ θ2

θ1

f ′′(t)K(x,t)dt

∣∣∣∣�
∫ θ2

θ1

| f ′′(t) || K(x,t) | dt

�
(∫ θ2

θ1

| f ′′(t) |p dt

) 1
p
(∫ θ2

θ1

| K(x,t) |q dt

) 1
q

,

where q = p
p−1 and

K(x,t) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

[
t−
(

θ1 +h θ2−θ1
2

)]2

, if t ∈ [θ1,x],

1
2

[
t−
(

θ2 −h θ2−θ1
2

)]2

, if t ∈ (x,θ2].

Since for ζ1 � ξ � ζ2 ,

∫ ζ2

ζ1

| τ − ξ |q dt =
∫ ξ

ζ1

| τ − ξ |q dt +
∫ ζ2

ξ
| τ − ξ |q dt

=
1

q+1

((
ξ − ζ1

)q+1 +
(
ζ2− ξ

)q+1
)

.

We have

(∫ θ2

θ1

| K(x, t) |q dt

) 1
q

=
(∫ x

θ1

| K(x, t) |q dt +
∫ θ2

x
| K(x,t) |q dt

) 1
q

=
[∫ x

θ1

(
1
2

(
t−
(

θ1 +h
θ2−θ1

2

)))2q

dt +
∫ θ2

x

(
1
2

(
t−
(

θ2 −h
θ2−θ1

2

)))2q

dt

] 1
q

=
1
4

[∫ x

θ1

(
t−
(

θ1 +h
θ2−θ1

2

))2q

dt +
∫ θ2

x

(
t−
(

θ2 −h
θ2−θ1

2

))2q

dt

] 1
q

=
1
4

(
1

2q+1

) 1
q
[(

x−θ1−h
θ2−θ1

2

)2q+1

−
(
−h

θ2−θ1

2

)2q+1

+
(

h
θ2−θ1

2

)2q+1

−
(

x−θ2 +h
θ2−θ1

2

)2q+1] 1
q

=
1
4

(
1

2q+1

) 1
q
[(

x−θ1−h
θ2−θ1

2

)2q+1

+2

(
h

θ2−θ1

2

)2q+1

+
(

θ2 − x−h
θ2−θ1

2

)2q+1] 1
q

.

Thus, the proof of Theorem 2.13 is completed.
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COROLLARY 2.14. Let f (t) = tα ,α ∈ (0,1), [θ1,θ2]→ [0,1] . Then the inequality
in theorem 2.13 can be changed into∣∣∣∣ 1

α +1
− (1−h)xα +(1−h)

(
x− 1

2

)
αxα−1 − h

2
+

αh2

8

∣∣∣∣
�1

4

(
1

2q+1

) 1
q
(

2

(
h
2

)2q+1

+
(

x− h
2

)2q+1

+
(

1− x− h
2

)2q+1) 1
q α(1−α)

(1+(α −2)p)
1
p

,

where x ∈ [ h
2 ,1− h

2 ] , h ∈ [0,1] and p > 1,q = p
p−1 .

In particular, for h = 0 , we have∣∣∣∣ 1
α +1

− xα +
(

x− 1
2

)
αxα−1

∣∣∣∣
�1

4

(
1

2q+1

) 1
q (

x2q+1 +(1− x)2q+1) 1
q α(1−α)

(1+(α −2)p)
1
p

,

where x ∈ [0,1] .

COROLLARY 2.15. Let h = 1
2 , this inequality in Theorem 2.13 reduces to∣∣∣∣

∫ θ2

θ1

f (t)dt − θ2−θ1

2
f (x)+

θ2 −θ1

2

(
x− θ1 + θ2

2

)
f ′(x)

− θ2−θ1

4
( f (θ1)+ f (θ2))+

(θ2 −θ1)2

32

(
f ′(θ2)− f ′(θ1)

)∣∣∣∣
�1

4

(
1

2q+1

) 1
q
[(

x−θ1− θ2 −θ1

4

)2q+1

+2

(
θ2 −θ1

4

)2q+1

+
(

θ2− x− θ2 −θ1

4

)2q+1] 1
q
(∫ θ2

θ1

| f ′′(t) |p dt

) 1
p

.

Let x = θ1+θ2
2 , this inequality reduces to∣∣∣∣
∫ θ2

θ1

f (t)dt − θ2−θ1

2
f

(
θ1 + θ2

2

)
− θ2 −θ1

4
( f (θ1)+ f (θ2))

+
(θ2 −θ1)2

32

(
f ′(θ2)− f ′(θ1)

)∣∣∣∣
�1

4

(
1

2q+1

) 1
q
[
2

(
θ2 −θ1

2

)2q+1] 1
q
(∫ θ2

θ1

| f ′′(t) |p dt

) 1
p

.

COROLLARY 2.16. Under the assumptions of Theorem 2.13, the following in-
equality holds:∣∣∣∣ 1

θ2 −θ1

∫ θ2

θ1

f (t)dt − f (θ1)+ f (θ2)
2

+
θ2 −θ1

8

(
f ′(θ2)− f ′(θ1)

) ∣∣∣∣
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� 1
2(θ2−θ1)

(
1

2q+1

) 1
q
[(

x−θ1+θ2

2

)2q+1

+
(

θ2−θ1

2

)2q+1] 1
q
(∫ θ2

θ1

| f ′′(t) |p dt

) 1
p

.

If we choose x = θ1+θ2
2 , we can get∣∣∣∣ 1

θ2 −θ1

∫ θ2

θ1

f (t)dt − f (θ1)+ f (θ2)
2

+
θ2 −θ1

8

(
f ′(θ2)− f ′(θ1)

)∣∣∣∣
� 1

2(θ2 −θ1)

(
1

2q+1

) 1
q
(

θ2 −θ1

2

)2+1/q(∫ θ2

θ1

| f ′′(t) |p dt

) 1
p

.

Next we apply the Hölder’s inequality to the Ostrowski inequality and will further
extend the application of the inequality proved by Yang[27].

THEOREM 2.17. Let f : [ξ ,δ ] → R be a twice differentiable mapping on (ξ ,δ )
and f ′ ∈ Lp[ξ ,δ ] it for some p > 1 . Then∣∣∣∣

∫ δ

ξ
f (t)dt−

[
f (x)(1−h)+

f (ξ )+ f (δ )
2

h

]
(δ − ξ )

∣∣∣∣

�
(
| f ′(ξ )|x
| f ′(x)|ξ

) 1
x−ξ
(

Tqx −Tqξ

q lnT

) 1
q

×

⎡
⎢⎣
(
x− (ξ +h δ−ξ

2

))p+1−
(
h δ−ξ

2

)p+1

p+1

⎤
⎥⎦

1
p

+

(
| f ′(x)|δ
| f ′(δ )|x

) 1
δ−x
(

Mqδ −Mqx

q lnM

) 1
q

×

⎡
⎢⎣
(
h δ−ξ

2

)p+1−
(
x− (δ −h δ−ξ

2

))p+1

p+1

⎤
⎥⎦

1
p

,

where q = p/(p− 1),h ∈ [0,1] and ξ + h(δ − ξ )/2 � x � δ − h(δ − ξ )/2 . Here

T =
( | f ′(x)|

| f ′(ξ )|

) 1
x−ξ

and M =
( | f ′(δ )|

| f ′(x)|

) 1
δ−x

. And also T,M �= 1 .

Proof. Let r : [ξ ,δ ]2 → R be given by

r(x,t) =

⎧⎨
⎩

t−
[
ξ +h (δ−ξ )

2

]
, t ∈ [ξ ,x],

t−
[
δ −h (δ−ξ )

2

]
, t ∈ [x,δ ].

From Yang[27], we can get the following conclusions:

∫ δ

ξ
r(x, t) f ′(t)dt =

∫ x

ξ

[
t−
(

ξ +h
(δ − ξ )

2

)]
f ′(t)dt

+
∫ δ

x

[
t−
(

δ −h
(δ − ξ )

2

)]
f ′(t)dt

=(δ − ξ )h
f (ξ )+ f (δ )

2
+(δ − ξ )(1−h) f (x)−

∫ δ

ξ
f (t)dt.
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Obviously, we can get∣∣∣∣
∫ δ

ξ
r(x, t) f ′(t)dt

∣∣∣∣
�
∫ δ

ξ
|r(x, t)| ∣∣ f ′(t)∣∣dt

�
(∫ δ

ξ
|r(x, t)|pdt

)1/p(∫ δ

ξ

∣∣ f ′(t)∣∣q dt

)1/q

�
(∫ x

ξ

∣∣∣∣t−
(

ξ +h
δ − ξ

2

)∣∣∣∣
p

dt

) 1
p
(∫ x

ξ

∣∣∣∣ f ′
(

t − ξ
x− ξ

x+
x− t
x− ξ

ξ
)∣∣∣∣

q

dt

) 1
q

+
(∫ δ

x

∣∣∣∣t−
(

δ −h
δ − ξ

2

)∣∣∣∣
p

dt

) 1
p
(∫ δ

x

∣∣∣∣ f ′
(

t − x
δ − x

δ +
δ − t
δ − x

x

)∣∣∣∣
q

dt

) 1
q

�
(∫ x

ξ

∣∣∣∣t−
(

ξ +h
δ − ξ

2

)∣∣∣∣
p

dt

) 1
p
(∫ x

ξ

∣∣ f ′(x)∣∣( t−ξ
x−ξ

)
q ∣∣ f ′(ξ )

∣∣( x−t
x−ξ

)
q
dt

) 1
q

+
(∫ δ

x

∣∣∣∣t−
(

δ −h
δ − ξ

2

)∣∣∣∣
p

dt

) 1
p
(∫ δ

x

∣∣ f ′(δ )
∣∣( t−x

δ−x )q ∣∣ f ′(x)∣∣( δ−t
δ−x )q

dt

) 1
q

�
(
| f ′(ξ )|x
| f ′(x)|ξ

) 1
x−ξ
(

Tqx −Tqξ

q lnT

) 1
q

×

⎡
⎢⎣
(
x− (ξ +h δ−ξ

2

))p+1−
(
h δ−ξ

2

)p+1

p+1

⎤
⎥⎦

1
p

+

(
| f ′(x)|δ
| f ′(δ )|x

) 1
δ−x
(

Mqδ −Mqx

q lnM

) 1
q

×

⎡
⎢⎣
(
h δ−ξ

2

)p+1−
(
x− (δ −h δ−ξ

2

))p+1

p+1

⎤
⎥⎦

1
p

.

Thus, the proof of Theorem 2.17 is completed.

THEOREM 2.18. Let f : [ξ ,δ ] → R be a twice differentiable mapping on (ξ ,δ )
and its derivative f ′ : (ξ ,δ ) → R is bounded in (ξ ,δ ) . Then for any x ∈ [ξ ,δ ] and
p > 1 , we have∣∣∣∣ (δ − x) f (δ )+ (x− ξ ) f (ξ )

δ − ξ
− 1

δ − ξ

∫ δ

ξ
f (t)dt

∣∣∣∣
� 1

δ − ξ

(
1

q+1

) 1
q (

(x− ξ )q+1 +(δ − x)q+1) 1
q

(∫ δ

ξ
| f ′(t) |p dt

) 1
p

.

Proof. After simple calculation, we can get

∫ δ

ξ
(t− x) f ′(t)dt = (δ − x) f (δ )− (ξ − x) f (ξ )−

∫ δ

ξ
f (x)dx.
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This implies that∣∣∣∣ (δ − x) f (δ )+ (x− ξ ) f (ξ )
δ − ξ

− 1
δ − ξ

∫ δ

ξ
f (t)dt

∣∣∣∣
=
∣∣∣∣ 1
δ − ξ

∫ δ

ξ
(t − x) f ′(t)dt

∣∣∣∣
� 1

δ − ξ

∫ δ

ξ
| t − x || f ′(t) | dt

� 1
δ − ξ

(∫ δ

ξ
| t − x |q dt

) 1
q
(∫ δ

ξ
| f ′(x) |p dx

) 1
p

� 1
δ − ξ

(∫ x

ξ
| x− t |q dt +

∫ δ

x
| t− x |q dt

) 1
q
(∫ δ

ξ
| f ′(x) |p dx

) 1
p

� 1
δ − ξ

(
1

q+1

) 1
q
(

(x− ξ )q+1 +(δ − x)q+1
) 1

q
(∫ δ

ξ
| f ′(t) |p dt

) 1
p

.

Thus, the proof of Theorem 2.18 is completed.
In 1998, Hilger[3, 4] presented the theory of time scales. Tian [16] and Tian et

al.[23] gave some new time scales versions of Hölder’s inequality and Minkowski’s
inequality via the Diamond-Alpha integral. Now we give two new inequalities on time
scales based on Chen[2].

THEOREM 2.19. Let T be a time scale θ1,θ2 ∈ T with θ1 < θ2 and αk j ∈
R, j = 1,2, . . . ,n,k = 1,2, . . . ,n, ∑s

k=1
1
pk

= r , ∑s
k=1 αk j = 0 . If f j(x) > 0 , and f j( j =

1,2, . . . ,n) is a continuous real-valued function on [θ1,θ2]T , then:

(1) for rpk > 1 , we have the following inequality:

∫ θ2

θ1

n

∏
j=1

f j(x)�αx �
n

∏
k=1

[∫ θ2

θ1

( n

∏
j=1

f j(x)
)1−t (

f rpk
k (x)

)t
�αx

] 1
rpk

,

(2) for 0 < rps < 1 , rpk < 0,k = 1,2, . . . ,s− 1 , we have the following reverse in-
equality:

∫ θ2

θ1

n

∏
j=1

f j(x)�αx �
n

∏
k=1

[∫ θ2

θ1

( n

∏
j=1

f j(x)
)1−t (

f rpk
k (x)

)t
�αx

] 1
rpk

.

Proof. Firstly, we can get the following inequality from Chen[2]

∫ θ2

θ1

n

∏
j=1

f j(x)�αx �
s

∏
k=1

(∫ θ2

θ1

n

∏
j=1

f
1+rpkαk j
j (x)�αx

) 1
rpk

,
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where rpk > 1. Therefore, we can let s = n,αk j = −t/rpk for k �= j and α j j = t(1−
1

rpk
) with t ∈ R , then

∫ θ2

θ1

n

∏
j=1

f j(x)�αx �
n

∏
k=1

[∫ θ2

θ1

( n

∏
j=1

f j(x)
)1−t (

f rpk
k (x)

)t
�αx

] 1
rpk

.

Secondly, we can get the following conclusion from Chen[2]

∫ θ2

θ1

n

∏
j=1

f j(x)�αx �
s

∏
k=1

(∫ θ2

θ1

n

∏
j=1

f
1+rpkαk j
j (x)�αx

) 1
rpk

,

where 0 < rps < 1,rpk < 0(k = 1,2, . . . ,s− 1) . Therefore, we can let s = n,αk j =
−t/rpk for k �= j and α j j = t(1− 1

rpk
) with t ∈ R , then

∫ θ2

θ1

n

∏
j=1

f j(x)�αx �
n

∏
k=1

[∫ θ2

θ1

( n

∏
j=1

f j(x)
)1−t (

f rpk
k (x)

)t
�αx

] 1
rpk

.

Thus, successful proof of Theorem 2.19.

3. Conclusions

Through this study, we present some new versions of the Hölder’s inequality and
give some of their applications. At the same time, we combine Ostrowski inequality
with Hölder’s inequality to obtain a generalized form of Ostrowski inequality. Further-
more, we obtain two new inequalities according to the further extension of hr(t) and
gr(t) and consider its applications on time scales in order to obtain new inequalities
based on time scales. In future research, we hope to further extend the theorems drawn
in this paper and get some new results.
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EXTENSIONS OF HÖLDER’S INEQUALITY AND ITS APPLICATIONS IN OSTROWSKI INEQUALITY 399

[28] Z.-H. YANG AND J.-F. TIAN, A comparison theorem for two divided differences and applications to
special functions, Journal of Mathematical Analysis and Applications, 464, 1(2018), 580–595.

[29] Z.-H. YANG AND J.-F. TIAN, A class of completely mixed monotonic functions involving the gamma
function with applications, Proceedings of the American Mathematical Society, 146, 11(2018), 4707–
4721.

[30] Z.-H. YANG AND J.-F. TIAN, Sharp bounds for the ratio of two zeta functions, Journal of Computa-
tional and Applied Mathematics, 364(2020): 112359.

[31] Z. H. YANG AND J.-F. TIAN, Monotonicity rules for the ratio of two Laplace transforms with appli-
cations, Journal of Mathematical Analysis and Applications, 470, 2(2019), 821–845.
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