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ON SOME NEW NONLINEAR VOLTERRA–FREDHOLM
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Abstract. In this paper, we develop some extensions and generalizations of some new nonlinear
Volterra-Fredholm type discrete inequalities. These inequalities can be used as handy tools in
the study of class of nonlinear Volterra-Fredholm sum-difference equations and its variants to
obtain bound on the unknown function and analysis of various properties of solutions.

1. Introduction

The prominence of discrete and integral inequalities is diversified due to their ap-
plication in the study of qualitative and quantitative properties of solutions of vari-
ous linear and nonlinear difference, differential and integral equations. The Gronwall-
Bellman inequality [8, 9] and its numerous extensions and genralizations play a central
role in the analysis of properties like boundedness, uniqueness, stability etc. of solu-
tions of such equations, see [1, 2, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 17] and references
cited therein.

The necessity of such integral inequalities of more general kind has always been
felt in the study of boundedness of solutions of second order linear differential equations
of the type y′′ +A(t)y′ = 0. For the first time, Ou-Iang [10] investigated an integral in-
equality to study this class of differential equations. This inequality is currently known
as Ou-Iang’s inequality in the branch of inequalities. Recently Ma[3] have developed
the discrete version of Ou-Iang’s inequality in two variables of Volterra-Fredholm type.
This version has soon became a powerfool tool in the study of large variety of Volterra-
Fredholm difference and sum-difference equations.

In this manuscript, we extend and improve some of the results reported in [3] to
obtain new generalizations of Volterra-fredholm type discrete inequalities. These in-
equalities can be used in the study of more general kind of nonlinear Volterra-Fredholm
sum-difference equations. Some examples are also given to exhibit the importance of
our results.

Throughout this article, we let N0 = 0,1, · · · , NS = [0,S)∩Z and NT = [0,T )∩
Z , where S,T ∈ N0 . We denote R0 = [0,∞) , R+ = (0,∞) and as usual R denote
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the set of all real numbers. Further we denote N = NS ×NT ⊂ Z
2 and sublattice

N(s,t) of N by N(s,t) = ([0,s]× [0,t])∩N , for any (s,t) ∈ N . We denote the set
of all nonnegative real valued fuctions on N0 by F+(N0) and the collection of all
continuously differentiable functions from X to Y by C(X ,Y ) . For U ⊂ N2

0 , the set
of all real valued fuctions on U is denoted by F (U ) and set of all nonnegative real
valued fuctions on U is denoted by F+(U ) .

The partial difference operators Δ1 , Δ2 and Δ2Δ1 on x ∈ F (N2
0 ) or x ∈ F+(N2

0 )
are defined as Δ1x(s,t) = Δsx(s,t) = x(s+1,t)− x(s,t),Δ2x(s,t) = Δt x(s, t) = x(s,t +
1)− x(s, t), and Δ2Δ1x(s,t) = Δ2

st x(s,t) for any (s,t) ∈ N .
Before proceeding to the statement of our main result, we state here some impor-

tant finite difference inequalities and definitions that will be used in further discussion.

THEOREM 1.1. (Ma[3]) Suppose that u,a ∈ F+(N ) and w ∈ C (R+,R+) be
nondecreasing function such that w(m) > 0 for m > 0 .

If u(m,n) satisfies

u(m,n) � k+
m−1

∑
s=m0

n−1

∑
t=n0

a(s,t)w(u(s,t))+
M−1

∑
s=m0

N−1

∑
t=n0

a(s,t)w(u(s, t))

for (m,n) ∈ N , then

u(m,n) � G−1
1

{
G1

[
H−1

1

(
M−1

∑
s=m0

N−1

∑
t=n0

a(s,t)

)]
+

m−1

∑
s=m0

n−1

∑
t=n0

a(s, t)

}

for (m,n) ∈ N , where

G1(v) =
∫ v

v0

ds
w(s)

, v � v0 > 0, G1(∞) = ∞, H1(t) = G1(2t− k)−G1(t)

with H1(t) strictly increasing for t � k and G−1
1 and H−1

1 are inverse functions of G1

and H1 respectively.

THEOREM 1.2. (Pachpatte [1], p.371) Let the functions u(x,y) � 0,a(x,y) � 0,
b(x,y) � 0 be defined for x,y∈N0 and u(x,0) = u(0,y) = k, where k � 0 is a constant.
If

Δ2Δ1u(x,y) � a(x,y)u(x,y)+b(x,y) (1.1)

for x,y ∈ N0, then

u(x,y) � p(x,y)
x−1

∏
s=0

[
1+

y−1

∑
t=0

a(s,t)

]
(1.2)

for x,y ∈ N0, where

p(x,y) = k+
x−1

∑
s=0

y−1

∑
t=0

b(s,t) (1.3)

for x,y ∈ N0 .
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THEOREM 1.3. (Salem and Raslan[2]) Let u(m,n),a(m,n),b(m,n) be nonnega-
tive functions and a(m,n) nondecreasing for m,n ∈ N . If

u(m,n) � a(m,n)+
m−1

∑
s=0

n−1

∑
t=0

b(s,t)x(s,t)

for m,n ∈ N , then

u(m,n) � a(m,n)
n−1

∏
t=0

[
1+

m−1

∑
s=0

b(s,t)

]
.

THEOREM 1.4. (Lees[17]) Let u(t),a(t) and b(t) be nonnegative functions de-
fined on N0 and a(t) is nondecreasing for t ∈ N0 . If

u(t) � a(t)+
t−1

∑
s=0

b(s)u(s)

for t ∈ N0 , then

u(t) � a(t)
t−1

∏
s=0

[1+b(s)] � a(t)exp

(
t−1

∑
s=0

b(s)

)

for t ∈ N0 .

DEFINITION 1. A function α : R+ →R+ is said to be superadditive if α(x+y) �
α(x)+ α(y) for all x,y ∈ R+ .

DEFINITION 2. A function β : R+ →R+ is called as submultiplicative if β (xy)�
β (x)β (y) for all x,y ∈ R+ .

2. Main results

In present section, we state and prove some new nonlinear Volterra-Fredholm type
discrete inequalities. These inequalities can be used as powerfool tool in the analysis of
behavior of solution and determining the explicit bound on various nonlinear difference
and sum-difference equations of Volterra-Fredholm type.

THEOREM 2.1. Let x,a,Δsx(s,t),Δt x(s,t),Δ2
st x(s,t) ∈ F+(U ) and h,ω ∈

C(R+,R+) be continuous nondecreasing functions such that h(m) > 0,ω(m) > 0 for
m ∈ R+ . Let k ∈ R0 be a constant and x(0,t) = x(s,0) = k′ . If

Δ2
stx(s, t) � k+h

(
s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n))

)

(2.1)
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for (s, t) ∈ N , then

x(s,t) � k′ +
s−1

∑
m′=0

t−1

∑
n′=0

k+h

{
Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

a(m,n)

]}

(2.2)

for (s, t) ∈ N , where Q(r) =
r∫

r0

ds

ω(k+h(s))
, r � r0 > 0, P(r) = Q(2r)−Q(r) is

strictly increasing function and Q−1,P−1 are inverse functions of Q and P respec-
tively.

Proof. Define a function z(s,t) by

z(s, t) =
s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n)). (2.3)

Then we have

z(0,t) =
S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n)) (2.4)

and

Δ2
st x(s,t) � k+h(z(s,t)), (s, t) ∈ N . (2.5)

From equation (2.3), we obtain

Δsz(s, t) =
t−1

∑
n=0

a(s,n)ω(Δ2
snx(s,n)) �

t−1

∑
n=0

a(s,n)ω(k+h(z(s,n)))

� ω(k+h(z(s,t)))
t−1

∑
n=0

a(s,n). (2.6)

We also observe that

Q(z(s+1, t))−Q(z(s,t)) =

z(s+1,t)∫
z(s,t)

ds
ω(k+h(s))

� Δsz(s,t)
ω(k+h(z(s,t)))

�
t−1

∑
n=0

a(s,n).

(2.7)

Substitute s = m in (2.7) and sum it over m from 0 to s−1 to get

Q(z(s,t)) � Q(z(0,t))+
s−1

∑
m=0

t−1

∑
n=0

a(m,n). (2.8)
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As Q is increasing, (2.8) gives an estimate

z(s,t) � Q−1

[
Q(z(0,t))+

s−1

∑
m=0

t−1

∑
n=0

a(m,n)

]
. (2.9)

From (2.3) and (2.9), it is clear that

2z(0, t) = z(S,T ) � Q−1

[
Q(z(0,T ))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)

]

= Q−1

[
Q(z(0,t))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)

]
. (2.10)

The inequality (2.10) results into

Q(2z(0,t))−Q(z(0,t)) �
S−1

∑
m=0

T−1

∑
n=0

a(m,n). (2.11)

As P(t) = Q(2t)−Q(t) is strictly increasing function, we have

z(0,t) � P−1

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

]
. (2.12)

Using (2.12) in (2.9), we get

z(s, t) � Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

])
+

s−1

∑
m=0

t−1

∑
n=0

a(m,n)

]
. (2.13)

Making use of (2.13) alongwith (2.5), we have

Δ2
stx(s, t) � k+h

(
Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

])
+

s−1

∑
m=0

t−1

∑
n=0

a(m,n)

])
, (s,t) ∈ N .

(2.14)

Application of Theorem 1.2 implies the bound

x(s,t) � k′ +
s−1

∑
m′=0

t−1

∑
n′=0

k+h

(
Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

a(m,n)

])
.

(2.15)

This proves our theorem.

COROLLARY 2.1. Let x,Δsx(s,t),Δt x(s,t),Δ2
st x(s, t),h,ω ,k,k′ be as defined in The-

orem 2.1 and b,c ∈ F+(U ) . If

Δ2
stx(s, t) � k+h

(
s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω1(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

c(m,n)ω2(Δ2
mnx(m,n))

)
,

(2.16)



442 S. KENDRE AND N. KALE

for (s, t) ∈ N and there is a nondecreasing function W1(r) ∈ C(R+,R+) with the
property that both ω1 and ω2 are less than or equal to W1(r) , then

x(s,t) � k′ +
s−1

∑
m′=0

t−1

∑
n′=0

k+h

(
Q−1

2

[
Q2

(
P−1

2

[
S−1

∑
m=0

T−1

∑
n=0

d̃(m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

d̃(m,n)

])
,

(2.17)

for (s, t) ∈ N , where

Q2(r) =
r∫

r0

ds

W1(k+h(s))
, r � r0 > 0, P2(r) = Q2(2r)−Q2(r)

and Q−1
2 ,P−1

2 are inverse functions of Q2 and P2 respectively and d̃(m,n) ∈ F+(U )
is such that b(s, t) and c(s,t) both are less than or equal to d̃(s,t) .

Proof. Proof can be easily carried out by following the proof of previous theorem
with little changes.

COROLLARY 2.2. Let x,Δsx(s,t),Δt x(s,t),Δ2
st x(s,t),h,ω ,k′ be as defined in The-

orem 2.1, k1,k2 ∈ R0 be constants and c,d ∈ F+(U ) . If

Δ2
stx(s, t) � k1+k2 h

(
s−1

∑
m=0

t−1

∑
n=0

c(m,n)ω1(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

d(m,n)ω2(Δ2
mnx(m,n))

)
,

(2.18)

for (s, t) ∈ N and there is a nondecreasing function W2(r) ∈ C(R+,R+) with the
property that both ω1 and ω2 are less than or equal to W2(r) , then

x(s,t)�k′+
s−1

∑
m′=0

t−1

∑
n′=0

k1+k2

[
h

(
Q−1

3

[
Q3

(
P−1

3

[
S−1

∑
m=0

T−1

∑
n=0

ẽ(m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

ẽ(m,n)

])]
,

(2.19)

for (s, t) ∈ N , where

Q3(r) =
r∫

r0

ds

W2(k1 + k2h(s))
, r � r0 > 0, P3(r) = Q3(2r)−Q3(r)

and Q−1
3 ,P−1

3 are inverse functions of Q3 and P3 respectively and ẽ(m,n) ∈ F+(U )
is such that c(s, t) and d(s,t) both are less than or equal to ẽ(s,t) ∈ F+(U ) .

Proof. Proof can be finished by minutely observing and following the proof of
Theorem 2.1.
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THEOREM 2.2. Let x,a,Δsx(s,t),Δt x(s,t),Δ2
st x(s,t),h,ω ,k,k′ be as defined in The-

orem 2.1 and b ∈ F+(U ) . If ω(r) is a submultiplicative function and

Δ2
st x(s, t) � k+

s−1

∑
m=0

t−1

∑
n=0

a(m,n)Δ2
mnx(m,n)+h

( s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

+
S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

)
(2.20)

for (s, t) ∈ N , then

x(s, t) � k′ +
s−1

∑
m′=0

t−1

∑
n′=0

J(m′,n′)
{

k+h

(
Q−1

[
Q

(
P−1

[S−1

∑
m=0

T−1

∑
n=0

b(m,n)J(m,n)
])

+
m′−1

∑
m=0

n′−1

∑
n=0

b(m,n)J(m,n)
])}

(2.21)

where P,Q,P−1,Q−1 are as defined in Theorem 2.1 and

J(s,t) =
t−1

∏
n=0

[
1+

s−1

∑
m=0

a(m,n)

]
(2.22)

for (s, t) ∈ N .

Proof. Define a function z(s,t) as

z(s, t) = k+h

( s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

)
.

(2.23)

Then inequality (2.20) takes the form

Δ2
stx(s,t) � z(s,t)+

s−1

∑
m=0

t−1

∑
n=0

a(m,n)Δ2
mnx(m,n). (2.24)

As z(s, t) is nonnegative nondecreasing in each variable s,t ∈ N0 , a straightforward
application of Theorem 1.3 to the inequality (2.24) implies the estimate

Δ2
stx(s,t) � z(s,t)J(s,t), (2.25)

where J(s, t) is as defined in (2.22). Using (2.25) in (2.23) and submultiplicativity of
ω , we get

z(s,t)�k+h

( s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(J(m,n))ω(z(m,n))+
S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(J(m,n))ω(z(m,n))
)

.

(2.26)
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Making use of Theorem 2.1 in inequality (2.26) with appropriate modifications, we
obtain

z(s,t)�k+h

(
Q−1

[
Q

(
P−1

[S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(J(m,n))
])

+
s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(J(m,n))
])

.

(2.27)

From (2.25) and (2.27), we get

Δ2
st x(s, t) � J(s, t)

{
k+h

(
Q−1

[
Q

(
P−1

[ S−1

∑
m=0

T−1

∑
n=0

b(m,n)J(m,n)
])

+
s−1

∑
m=0

t−1

∑
n=0

b(m,n)J(m,n)
])}

. (2.28)

Applying Theorem 1.2 to the inequality (2.28), we get the desired inequality in (2.21).

REMARK 2.1. The inequality mentioned in Theorem 2.1 can be obtained as a
particular case of the above inequality if we substitute a(s,t) = 0,(s,t) ∈ N .

THEOREM 2.3. Let x,a,b,Δsx(s,t),Δt x(s,t),Δ2
st x(s,t),h,ω ,k,k′,P,Q,P−1,Q−1 be

as defined in Theorem 2.2.

I. If

Δ2
stx(s, t) � k+

s−1

∑
m=0

a(m,t)Δ2
mtx(m,t)+h

( s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

+
S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

)
,

(2.29)

for (s, t) ∈ N , then

x(s, t)�k′+
s−1

∑
m′=0

t−1

∑
n′=0

J1(m′,n′)
{
k+h

(
Q−1

[
Q

(
P−1

[S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(J1(m,n))
])

+
m′−1

∑
m=0

n′−1

∑
n=0

b(m,n)ω(J1(m,n))
])}

,

(2.30)

where J1(s, t) =
s−1
∏

s′=0
[1+a(s′,t)] for (s,t) ∈ N .
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II. If

Δ2
stx(s, t) � k+

t−1

∑
n=0

a(s,n)Δ2
snx(s,n)+h

( s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

+
S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

)
,

(2.31)

for (s, t) ∈ N , then

x(s, t)�k′+
s−1

∑
m′=0

t−1

∑
n′=0

J2(m′,n′)
{

k+h

(
Q−1

[
Q

(
P−1
[S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(J2(m,n))
])

+
m′−1

∑
m=0

n′−1

∑
n=0

b(m,n)ω(J2(m,n))
])}

,

(2.32)

where J2(s, t) =
t−1
∏

t′=0
[1+a(s,t ′)] for (s,t) ∈ N .

Proof. To prove I, define a function z(s,t) as

z(s, t) = k+h

( s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

)
.

(2.33)

Then inequality (2.20) takes the form

Δ2
st x(s,t) � z(s,t)+

s−1

∑
m=0

a(m,t)Δ2
mtx(m,t). (2.34)

Here z(s, t) is nonnegative and nondecreasing in s ∈ N0 for t ∈ N0 . Fixing t in (2.34)
and making use of Theorem 1.4, we get

Δ2
st x(s,t) � z(s,t)J1(s,t), (2.35)

where J1(s, t) is as defined in theorem. Further using submultiplicativity of ω(r) and
(2.35) in (2.33), we get

z(s, t) � k+h

( s−1

∑
m=0

t−1

∑
n=0

b(m,n)ω(J1(m,n))ω(z(m,n))

+
S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(J1(m,n))ω(z(m,n))
)

. (2.36)

A starightforward application of Theorem 2.1 to the inequality (2.36) with appropriate
modifications concludes the proof. To prove II, follow the proof of I.
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THEOREM 2.4. Let x,a,b,Δsx(s,t),Δt x(s,t),Δ2
st x(s,t),k,k

′,P,Q,P−1,Q−1 be as
defined in Theorem 2.2. Let h,g,ω ∈C(R+,R+) be nondecreasing functions such that
h is superadditive, g � h and h(m),g(m),ω(m) ∈ R+ for m ∈ R+ . If

Δ2
stx(s, t) � k+h

(
s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n))

)
+g

(
S−1

∑
m=0

T−1

∑
n=0

b(m,n)ω(Δ2
mnx(m,n))

)

(2.37)

for (s, t) ∈ N and if there is a function f̃ (s,t) ∈ F+(U ) such that f̃ (s,t) is greater
than or equal to both a(s,t) and b(s,t) then

x(s,t) � k′ +
s−1

∑
m′=0

t−1

∑
n′=0

k+h

(
Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

f̃ (m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

f̃ (m,n)

])

(2.38)

for (s, t) ∈ N .

Proof. From inequality (2.37) and assumptions, we have

Δ2
st x(s, t) � k+h

(
s−1

∑
m=0

t−1

∑
n=0

f̃ (m,n)ω(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

f̃ (m,n)ω(Δ2
mnx(m,n))

)
.

(2.39)

Then by reapeating the same arguments as in the proof of Theorem 2.1 we obtain the
desired inequality.

THEOREM 2.5. Let x,a,Δsx(s,t),Δt x(s,t),Δ2
st x(s, t),k,k

′ be as defined in Theo-
rem 2.2. Let hi,ωi ∈ C(R+,R+) be nondecreasing functions for 1 � i � l such that
hi(m) > 0,ωi(m) > 0 for m ∈ R+ . Further assume that for each i , hi is superadditive,
h = max

1�i�l
{hi} and ω = max

1�i�l
{ωi} . If

Δ2
stx(s, t) � k+

l

∑
i=1

hi

[ i

∑
j=1

{ s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω j(Δ2
mnx(m,n))

+
S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω j(Δ2
mnx(m,n))

}]
(2.40)

for (s, t) ∈ N then

x(s,t) � k′ +
s−1

∑
m′=0

t−1

∑
n′=0

k+h

{
Q−1

l

[
Ql

(
P−1

l

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

a(m,n)

]}

(2.41)
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for (s, t) ∈ N , where Ql(r) =
r∫

r0

ds

ω
(

k+h
(

l(l+1)
2 s

)), r � r0 > 0, Pl(r) = Ql(2r)−

Ql(r) is strictly increasing function and Q−1
l ,P−1

l are inverse functions of Ql and Pl

respectively.

Proof. We have

Δ2
st x(s, t)

�k+
l

∑
i=1

hi

( i

∑
j=1

{ s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω j(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω j(Δ2
mnx(m,n))

})

=k+h1

(
s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω1(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω1(Δ2
mnx(m,n))

)

+h2

[( s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω1(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω1(Δ2
mnx(m,n))

)

+
( s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω2(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω2(Δ2
mnx(m,n))

)]
...

+hl

[( s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω1(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω1(Δ2
mnx(m,n))

)

+ . . .+
( s−1

∑
m=0

t−1

∑
n=0

a(m,n)ωl(Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a(m,n)ωl(Δ2
mnx(m,n))

)]
.

(2.42)

Under assumptions, this inequality turns to the form

Δ2
stx(s, t) � k+h

{
l(l +1)

2

[ s−1

∑
m=0

t−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n))

+
S−1

∑
m=0

T−1

∑
n=0

a(m,n)ω(Δ2
mnx(m,n))

]}
. (2.43)

By similar steps as carried out in Theorem 2.1, we obtain the bound as

x(s,t) � k′ +
s−1

∑
m′=0

t−1

∑
n′=0

k+h

{
Q−1

l

[
Ql

(
P−1

l

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

a(m,n)

]}

(2.44)

for (s, t) ∈ N . This completes the proof of our theorem.
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3. Applications

EXAMPLE 3.1. Consider the following nonlinearVolterra-Fredholm sum-difference
equation

Δ2
st x(s, t) =

√
s−1

∑
m=0

t−1

∑
n=0

1
3m Δ2

mnx(m,n)+
S−1

∑
m=0

T−1

∑
n=0

(
3−m −4−m

)
Δ2

mnx(m,n) (3.1)

for (s, t) ∈ N , with initial condition x(0,t) = x(s,0) = 1.

If we let a∗(s, t) = 3−s and W (u) = u , then equation (3.1) can be rewritten as

Δ2
stx(s, t) �

(
s−1

∑
m=0

t−1

∑
n=0

a∗(m,n)W (Δ2
mnx(m,n))+

S−1

∑
m=0

T−1

∑
n=0

a∗(m,n)W (Δ2
mnx(m,n))

) 1
2

=

(
s−1

∑
m=0

t−1

∑
n=0

3−mΔ2
mnx(m,n)+

S−1

∑
m=0

T−1

∑
n=0

3−mΔ2
mnx(m,n)

) 1
2

(3.2)

for (s, t) ∈ N .

Consider h(u) =
√

u , then applying Theorem 2.1 to the inequality (3.2) we get

x(s, t) � 1+
s−1

∑
m′=0

t−1

∑
n′=0

√√√√Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

a(m,n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

a(m,n)

]
,

= 1+
s−1

∑
m′=0

t−1

∑
n′=0

√√√√Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

3−m

])
+

m′−1

∑
m=0

n′−1

∑
n=0

3−m

]
, (3.3)

where

Q(r) =
r∫

1

ds

W (h(s))
=

r∫
1

ds√
s
= 2(

√
r−1),

P(r) = Q(2r)−Q(r) = α
√

r,

Q−1(r) =
( r

2
+1
)2

,

P−1(r) =
r2

α2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r � r0 > 0,α = 0.82842.

Using these in (3.3) we obtain explicit bound on x(s,t) as

x(s, t) � 1+
s−1

∑
m′=0

t−1

∑
n′=0

{
Q−1

[
Q

(
P−1

[
T 31−S(3S −1)

2

])
+

n′ 31−m′
(3m′ −1)
2

]} 1
2
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= 1+
s−1

∑
m′=0

t−1

∑
n′=0

{
Q−1

[
Q

(
T 2 32−2S(3S−1)2

4α2

)
+

n′ 31−m′
(3m′ −1)
2

]} 1
2

= 1+
s−1

∑
m′=0

t−1

∑
n′=0

{
Q−1

[
T 31−S(3S −1)−2α

α
+

n′ 31−m′
(3m′ −1)
2

]} 1
2

= 1+
s−1

∑
m′=0

t−1

∑
n′=0

{(
T 31−S(3S−1)−2α

2α
+

n′ 31−m′
(3m′ −1)
4

+1

)2} 1
2

= 1+
s−1

∑
m′=0

t−1

∑
n′=0

(
T 31−S(3S −1)

2α
+

n′ 31−m′
(3m′ −1)
4

)

= 1+
1
16

t
(
2s(8c+3t−3)−32−s (3s−1)(t−1)

)
, (3.4)

where c =
T 31−S(3S−1)

2α
< ∞ for fixed S,T ∈ N0 .

This shows that solution of equation (3.1) is bounded for each (s,t) ∈ N .

EXAMPLE 3.2. Consider the following Volterra-Fredholm sum-difference equa-
tion

Δ2
stx(s, t) =

s−1

∑
m=0

t−1

∑
n=0

1
2

Δ2
mnx(m,n)+

[ s−1

∑
m=0

t−1

∑
n=0

(
1+

m
2

)−n Δ2
mnx(m,n)
10000

+
S−1

∑
m=0

T−1

∑
n=0

(
1+

m
2

)−n
(Δ2

mnx(m,n))
]1

3 (3.5)

for (s, t) ∈ N , with initial condition x(0,t) = x(s,0) =
1

2
.

If we let a∗(s, t) = (1+ s
2 )−t and W (u) = u , then equation (3.5) can be rewritten as

Δ2
stx(s, t) �

s−1

∑
m=0

t−1

∑
n=0

1
2

Δ2
mnx(m,n)+

[ s−1

∑
m=0

t−1

∑
n=0

(
1+

m
2

)−n
Δ2

mnx(m,n)

+
S−1

∑
m=0

T−1

∑
n=0

(
1+

m
2

)−n
(Δ2

mnx(m,n))
]1

3 (3.6)

for (s, t) ∈ N .

Consider h(u) = 3
√

u , then applying Theorem 2.2 to the inequality (3.6), we get

x(s, t) � 1
3

+
s−1

∑
m′=0

t−1

∑
n′=0

J(m′,n′)
{(

Q−1
[
Q

(
P−1

[S−1

∑
m=0

T−1

∑
n=0

(
1+

m
2

)−n
J(m,n)

])
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+
m′−1

∑
m=0

n′−1

∑
n=0

(
1+

m
2

)−n
J(m,n)

])}1

3, (3.7)

where

J(s,t) =
(
1+

s
2

)t

for (s, t) ∈ N . Where

Q(r) =
r∫

1

ds

W (h(s))
=

r∫
1

ds
3
√

s
=

3(r
2
3 −1)
2

P(r) = Q(2r)−Q(r) = (0.8811)r
2
3

Q−1(r) =

(
2r

3
+1

) 3
2

P−1(r) = [(1.135)r]
3
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

r > 1.

Using these in (3.7) we obtain explicit bound on x(s,t) as

x(s, t) � 1
2

+
s−1

∑
m′=0

t−1

∑
n′=0

(
1+

m′

2

)n′√
1.135 ST +0.7m′n′. (3.8)

For instance, if we take S = 4 and T = 5 then N = [0,4)× [0,5) and bounds on x(s,t)
for (s, t) ∈ N can be tabulated as follows:

s t x(((s,t))) s t x(((s,t))) s t x(((s,t))) s t x(((s,t)))

0 0 0.5 1 0 0.5 2 0 0.5 3 0 0.5

0 1 0.5 1 1 5.26445 2 1 10.0289 3 1 14.7934

0 2 0.5 1 2 10.0289 2 2 22.0494 3 2 36.6322

0 3 0.5 1 3 14.7934 2 3 37.8595 3 3 72.6413

0 4 0.5 1 4 19.5578 2 4 59.4313 3 4 135.705

Table 3.1

From Table 3.1 we can easily see that x(s,t) has concrete boundary for each (s,t)∈N .
In general, the inequality (3.8) gives us the bound on the solution of (3.5).

EXAMPLE 3.3. Consider the following nonlinear Volterra-Fredholm sum-
difference equation

Δ2
st x(s, t) =

s−1

∑
m=0

t−1

∑
n=0

m+n
2

√
Δ2

mnx(m,n)+
S−1

∑
m=0

T−1

∑
n=0

m+n
3

3
√

Δ2
mnx(m,n) (3.9)
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for (s, t) ∈ N , with initial condition x(0,t) = x(s,0) = 1.

If we let a∗(s, t) = s+ t and W (u) =
√

u , then equation (3.9) can be rewritten as

Δ2
stx(s, t) �

s−1

∑
m=0

t−1

∑
n=0

(m+n)
√

Δ2
mnx(m,n)+

S−1

∑
m=0

T−1

∑
n=0

(m+n)
√

Δ2
mnx(m,n) (3.10)

for (s, t) ∈ N .

Consider h(u) = u , then applying Theorem 2.1 to the inequality (3.10) we get

x(s, t) � 1+
s−1

∑
m′=0

t−1

∑
n′=0

{
Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

(m+n)

])
+

m′−1

∑
m=0

n′−1

∑
n=0

(m+n)

]}
,

(3.11)

where Q,Q−1,P,P−1 are as defined in Example 3.1. Using these in (3.11), we obtain
explicit bound on x(s,t) as

x(s, t) � 1+
s−1

∑
m′=0

t−1

∑
n′=0

(
m′n′(m′ +n′ −2)

4
+

ST (S+T −2)
1.65684

)2

. (3.12)

For instance, if we take S = 5 and T = 6 then N = [0,5)× [0,6) and bounds on x(s,t)
for (s, t) ∈ N can be tabulated as follows:

s t x(((s,t))) s t x(((s,t))) s t x(((s,t))) s t x(((s,t))) s t x(((s,t)))

0 0 1 1 0 1 2 0 1 3 0 1 4 0 1

0 1 1 1 1 26557 2 1 53112.9 3 1 79668.9 4 1 106225

0 2 1 1 2 53112.9 2 2 106225 3 2 159500 4 2 213103

0 3 1 1 3 79668.9 2 3 159500 3 3 239987 4 3 321633

0 4 1 1 4 106225 2 4 213103 3 4 321633 4 4 432849

0 5 1 1 5 132781 2 5 267202 3 5 404959 4 5 547845

Table 3.2

Table 3.2 shows that on any such domain the solution of (3.9) has a concrete boundary.

EXAMPLE 3.4. Consider the following nonlinear Volterra-Fredholm sum-
difference equation

Δ2
st x(s, t) =

(
s−1

∑
m=0

t−1

∑
n=0

N1
6
√

Δ2
mnx(m,n)

)2

+

(
S−1

∑
m=0

T−1

∑
n=0

N2
6
√

Δ2
mnx(m,n)

)
(3.13)

for (s, t) ∈ N , with initial condition x(0,t) = x(s,0) = 1
4 .

On comparing (3.13) with (2.37), we get h(x) = x2, g(x) = x, a(m,n) = N1, b(m,n) =
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N2 and ω(x) = 6
√

x . It is clear that g(x) � h(x) and h is superadditive for x ∈ R+ . If
we choose N such that N1 and N2 both are less than or equal to N then (3.13) can be
rewritten as

Δ2
stx(s, t) �

( s−1

∑
m=0

t−1

∑
n=0

N 6
√

Δ2
mnx(m,n)+

S−1

∑
m=0

T−1

∑
n=0

N 6
√

Δ2
mnx(m,n)

)2

(3.14)

for (s, t) ∈ N .

Now applying Theorem 2.4 to the inequality (3.14), we get

x(s, t) � 1
4

+
s−1

∑
m′=0

t−1

∑
n′=0

{
Q−1

[
Q

(
P−1

[
S−1

∑
m=0

T−1

∑
n=0

N

])
+

m′−1

∑
m=0

n′−1

∑
n=0

N

]}
, (3.15)

where Q,Q−1,P,P−1 are as defined in Example 3.2. Using these in (3.15), we obtain
explicit bound on x(s,t) as

x(s,t) � 1
4

+
s−1

∑
m′=0

t−1

∑
n′=0

N3(1.135ST +0.7m′n′)3. (3.16)

From inequality (3.16), we can easily conclude that the solution of equation (3.13) is
bounded for each (s, t) ∈ N .

4. Conclusions

In this paper, some more general extensions of existing Volterra-Fredholm type
discrete inequalities have been investigated. These inequalities are designed in order to
solve some crucial finite difference equations where direct application of previous in-
equalities is not possible. However in literature we come across more general Volterra-
Fredholm difference equations which involve critical nonlinear functions. Hence, the
above inequalities can be extended and generalised to study various types of nonlinear
difference equations.
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