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Abstract. In this paper, we investigate the convexity of function r �→ lnM2,1( f (z),r) in ln r on
(0,∞), where f (z) = z3 +C .

1. Introduction

Let dA be the Euclidean area measure on the finite complex plane C. Suppose α
is real and 0 < p < ∞. For any entire function f : C �→ C, we recall that the Gaussian
integral means of f is defined by

Mp,α( f ,r) =

∫
|z|<r | f (z)|pe−α |z|2dA(z)∫

|z|<r e
−α |z|2dA(z)

, ∀r ∈ (0,∞).

The Gaussian integral means is derived from the related theory of Fock spaces,
see [1, 2, 3, 4].

In [1], suppose k is a nonnegative integer and 0 < p < ∞.If 0 < α < ∞, then the
function r �→ lnMp,α(zk,r) is concave in lnr. If −∞ < α � 0, then there exists some c
(depending on k and α ) on (0,∞) such that the function r �→ lnMp,α(zk,r) is convex
in lnr on (0,c] and concave in lnr on [c,∞).

Recall the Remark 9 in [1] we have that the integral means of all monomials are
logarithmically concave when α > 0. However, this is not true for all entire functions,
even for linear mappings. And we have an instance in [1], and just choose p = 2, α = 1
and f (z) = a+ z which proved M2,1(a+ z,r) is logarithmically concave on (

√
λ ,∞) ,

for any a ∈ C.
In this paper, we consider the convexity of function r �→ lnM2,1( f ,r) in lnr, when

f (z) = z3 +C. The main result of this paper is the following theorem.

THEOREM. Suppose p = 2, α = 1, f (z) = z3 +C and |C|2 = c. There exists a
point P1 ∈ (0,∞) (depending on c) on (0,∞) such that the function r �→ lnM2,1( f (z),r)
is convex in lnr on (0,P1). And the function r �→ lnM2,1( f (z),r) is concave in lnr on
(2
√

2,∞) .
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2. Preliminaries

The proof of the Theorem is elementary but very laborious, it requires several
preliminary results which we present in this section. Throughout the paper we use the
symbol ≡ when a new notation is being introduced. We will also use the notation
A ∼ B to mean that A and B have the same sign as a convention in [5].

In order to give the proof of our main theorem,we need the following three lemmas.
The first one comes from [6]. For convenience, the proof is given.

LEMMA 1. If we write every analytic function f : C �−→C in the form of a power
series

f (z) =
∞

∑
k=0

akz
k,

then we can immediately obtain that

1
2π

∫ 2π

0

∣∣∣ f (reiθ )
∣∣∣2 dθ =

∞

∑
k=0

|ak|2r2k.

Proof.

1
2π

∫ 2π

0

∣∣∣ f (reiθ )
∣∣∣2 dθ =

1
2π

∫ 2π

0
f (reiθ ) f (reiθ )dθ

=
1
2π

∫ 2π

0

∞

∑
k=0

ak(reiθ )k
∞

∑
j=0

a j(reiθ ) jdθ

=
1
2π

∫ 2π

0

∞

∑
k=0

akr
keikθ

∞

∑
j=0

a jr
je−i jθ dθ

=
1
2π

∫ 2π

0

∞

∑
k=0

∞

∑
j=0

aka jr
k+ je(k− j)iθdθ

=
1
2π

∞

∑
k=0

∞

∑
j=0

aka jr
k+ j

∫ 2π

0
e(k− j)iθ dθ =

∞

∑
k=0

|ak|2r2k.

This completes the proof of the lemma. �
The second lemma comes directly from [5] with (0,1) being replaced by (0,∞).

For completeness, we give the proof of this lemma.

LEMMA 2. (i) Suppose f is twice differentiable on (0,∞) . Then f (x) is con-
vex in lnx if and only if f ′(x)+ x f ′′(x) � 0 on (0,∞) .

(ii) Suppose f is twice differentiable on (0,∞). Then f (x) is convex in lnx if and
only if f (x2) is convex in lnx and f (x) is concave in lnx if and only if f (x2) is
concave in lnx .
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(iii) Suppose f is positive twice differentiable on (0,∞). Let

D( f (x)) ≡ f ′(x)
f (x)

+ x
f ′′(x)
f (x)

− x

(
f ′(x)
f (x)

)2

.

Then the function ln f (x) is convex in lnx if and only if D( f (x)) � 0 on (0,∞)
and the function ln f (x) is concave in lnx if and only if D( f (x)) � 0 on (0,∞).

Proof. (i) Let t = lnx, It follows easily from the Chain Rule that

d2 f
dt2

= x[ f ′(x)+ x f
′′
(x)].

Thus f is convex in lnx if and only if f ′(x)+ x f ′′(x) � 0 on (0,∞).
(ii) For the function g(x) = f (x2), we easily compute that

g′(x)+ xg
′′
(x) = 4x[ f ′(x2)+ x2 f

′′
(x2)].

The desired result then follows from (i) .
(iii) Apply (i) to the function g(x) = ln f (x). The desired result follows immedi-

ately.
The third lemma comes from [7] and [8].

LEMMA 3. If f = f1
f2

is a quotient of two positive and twice differentiable func-
tions f1 and f2 on (0,∞), then

D( f (x)) = D( f1(x))−D( f2(x)), ∀x ∈ (0,∞).

3. Proof of Theorem

This section is devoted to the proof of the theorem.

Proof. Let p = 2, α = 1 and f (z) = z3 +C. According to

Mp,α( f ,r) =

∫
|z|<r | f (z)|pe−α |z|2dA(z)∫

|z|<r e
−α |z|2dA(z)

,∀r ∈ (0,∞),

by polar coordinates, an obvious change of variables and Lemma 1, we have

M2,1( f ,r) =

∫
|z|<r |z3 +C|2e−|z|2dA(z)∫

|z|<r e
−|z|2dA(z)

=
∫ r
0 (ρ6 + |C|2)e−ρ2ρdρ∫ r

0 e−ρ2ρdρ

=
∫ r
0 (ρ6 + |C|2)e−ρ2

dρ2

∫ r
0 e−ρ2dρ2
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=
∫ x
0 (t3 + |C|2)e−tdt∫ x

0 e−tdt
.

Let |C|2 = c > 0, we rewrite

∫ x
0 (t3 + c)e−tdt∫ x

0 e−tdt
≡ F(x).

Since
∫ x

0
e−t dt = 1− e−x,

∫ x

0
t3e−t dt = −e−x(x3 +3x2 +6x+6)+6,

so
∫ x

0
(t3 + c)e−tdt =

∫ x

0
t3e−t dt +

∫ x

0
ce−t dt

= −e−x(x3 +3x2 +6x+6)+6+ c(1− e−x)
= −e−x(x3 +3x2 +6x+6+ c)+ (6+ c).

Therefore

F(x) =
−e−x(x3 +3x2 +6x+6+ c)+ (6+ c)

1− e−x ≡ g(x)
h(x)

.

We immediately obtain

g′(x) = e−x(x3 + c),

g′′(x) = e−x(−x3 +3x2− c),

g′(x)g(x) = −e−2x(x6 +3x5 +6x4 +(6+2c)x3 +3cx2 +6cx+6c+ c2)
+e−x((6+ c)x3 +6c+ c2),

xg′′(x)g(x) = −xe−2x(−x6 +3x4 +(12−2c)x3 +18x2−6cx− (6c+ c2))
+xe−x(−(6+ c)x3 +(18+3c)x2− (6c+ c2)),

x(g′(x))2 = xe−2x(x6 +2cx3 + c2),

g2(x) = e−2x(x6 +21x4 +6x5 +(48+2c)x3 +(72+6c)x2 +(72+12c)x
+(36+12c+ c2))− e−x((12+2c)x3 +(36+6c)x2 +(72+12c)x
+(72+24c+2c2))+ (36+12c+ c2).
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Employing the D-notation in Lemma 2 (iii) , we have

D(g(x)) =
g′(x)
g(x)

+ x
g′′(x)
g(x)

− x

(
g′(x)
g(x)

)2

=
g′(x)g(x)+ xg′′(x)g(x)− x(g′(x))2

g2(x)

=
m(x)
g2(x)

,

where

m(x) = e−2x(−x6−6x5−18x4− (24+2c)x3 +3cx2− (6c+ c2))
+e−x(−(6+ c)x4 +(24+4c)x3− (6c+ c2)x+(6c+ c2)).

From the following calculations

h(x) = 1− e−x,h′(x) = e−x,h′′(x) = −e−x,h(x)h′(x) = e−x − e−2x,

h′′(x)h(x) = −e−x + e−2x,(h′(x))2 = e−2x,h2(x) = 1−2e−x + e−2x,

we can get

D(h(x)) =
h′(x)
h(x)

+ x
h′′(x)
h(x)

− x

(
h′(x)
h(x)

)2

=
h′(x)h(x)+ xh′′(x)h(x)− x(h′(x))2

h2(x)

=
e−x(1− x− e−x)

h2(x)
.

Hence, by Lemma 3,

D(F(x)) = D(g(x))−D(h(x))

=
m(x)(1−2e−x + e−2x)− e−x(1− x− e−x)g2(x)

g2(x)h2(x)

∼ m(x)(1−2e−x + e−2x)− e−x(1− x− e−x)g2(x)
≡ n(x).

By calculation, we have

n(x) = e−4x(3x4 +24x3 +(72+9c)x2 +(72+12c)x+(36+6c))
+e−3x(x7 +7x6 +27x5 +(57+ c)x4 +(84+10c)x3

−(36+6c)x2− (108+18c)x− (108+18c))+ e−2x(−x6

−6x5−18x4− (96+14c)x3− (36+3c)x2 +(108+18c))
+e−x(−(6+ c)x4 +(24+4c)x3 +(36+6c)x− (36+6c)).
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We can get
n(x) ∼ n(x) · e4x ≡ G(x).

Therefore,

G′(x) = 12x3 +72x2 +(144+18c)x+(72+12c)+ ex(x7 +14x6

+69x5 +(192+ c)x4 +(312+14c)x3+(216+24c)x2

−(180+30c)x− (216+36c))+ e2x(−2x6−18x5

−66x4− (264+28c)x3− (360+48c)x2− (72+6c)x
+(216+36c))+ e3x(−(18+3c)x4 +(48+8c)x3

+(72+12c)x2 +(108+18c)x− (72+12c)),

G′′(x) = 36x2 +144x+(144+18c)+ ex(x7 +21x6 +153x5 +(537+ c)x4

+(1080+18c)x3+(1152+66c)x2+(252+18c)x− (396+66c))
+e2x(−4x6−48x5−222x4− (792+56c)x3− (1512+180c)x2

−(864+108c)x+(360+66c))+ e3x(−(54+9c)x4

+(72+12c)x3 +(360+60c)x2+(468+78c)x
−(108+18c)),

G′′′(x) = 72x+144+ ex(x7 +28x6 +279x5 +(1302+ c)x4

+(3228+22c)x3+(4392+120c)x2+(2556+150c)x− (144+48c))
+e2x(−8x6−120x5−684x4− (2472+112c)x3− (5400+528c)x2

−(4752+576c)x− (144−24c))+ e3x(−(162+27c)x4 +(1296+216c)x2

+(2124+354c)x+(144+24c)),

G(4)(x) = 72+ ex(x7 +35x6 +447x5 +(2697+ c)x4+(8436+26c)x3

+(14076+186c)x2+(11340+390c)x+(2412+102c))
+e2x(−16x6−288x5−1968x4− (7680+224c)x3

−(18216+1392c)x2− (20304+2208c)x− (5040+528c))
+e3x(−(486+81c)x4− (648+108c)x3+(3888+648c)x2

+(8964+1494c)x+(2556+426c)).

G(5)(x) = ex(x7 +42x6 +657x5 +(4932+ c)x4 +(19224+30c)x3

+(39384+264c)x2+(39492+762c)x+(13752+492c))
+e2x(−32x6−672x5−5376x4− (23232+448c)x3

−(59472+3456c)x2− (77040+7200c)x− (30384+3264c))
+e3x(−(1458+243c)x4− (3888+648c)x3+(9720+1620c)x2
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+(34668+5778c)x+(16632+2772c)).

Since
G(5)(x) ∼ G(5)(x) · e−x ≡ H(x),

then

H ′(x) = 7x6 +252x5 +3285x4 +(19728+4c)x3+(57672+90c)x2

+(78768+528c)x+(39492+762c)+ ex(−32x6−864x5−8736x4

−(44736+448c)x3− (129168+4800c)x2− (195984+14112c)x
−(107424+10464c))+ e2x(−(2916+486c)x4− (13608+2268c)x3

+(7776−1296c)x2+(88776+14796c)x+(67932+11322c)).

After calculation,

G(0) = G′(0) = G′′(0) = G′′′(0) = G(4)(0) = G(5)(0) = H(0) = 0,

H ′(0) = 39492+726c− (107424+10464c)+67932+11322c= 1620c.

Since H ′(0) > 0, there exists a point x1 ∈ (0,∞) such that H ′(x) > 0 for x ∈
(0,x1), therefore H(x) is increasing on x∈ (0,x1). Since H(0) = 0, there exists a point
x2 ∈ (x1,∞) such that H(x) > 0 for x ∈ (0,x2), that is, G(5)(x) > 0 for x ∈ (0,x2),
therefore, G(4)(x) is increasing on x ∈ (0,x2). Since G(4)(0) = G′′′(0) = G′′(0) =
G′(0) = G(0) = 0, it have same properties. So, there exists a point x∗ ∈ (x2,∞) such
that G(x) > 0 for x ∈ (0,x∗), that is, n(x) > 0 for x ∈ (0,x∗). Thus we can obtain
D(F(x)) > 0 for r ∈ (0,x∗) , which means that there exists a point P1 ∈ (0,∞) (depend-
ing on c), function r �→ lnM2,1((z3 +C),r) is convex in lnr for r ∈ (0,P1).

Next, we consider the case of bigger r. Since x = r2, that is the case of bigger x.
We change n(x) into n1(x)

n1(x) = e−4xa1 + e−3xa2 + e−2xa3 + e−xa4,

where
a1 = 3x4 +24x3 +(72+9c)x2 +(72+12c)x+(36+6c),

a2 = x7 +7x6 +27x5 +(57+ c)x4 +(84+10c)x3− (36+6c)x2− (108+18c)x
−(108+18c),

a3 = −x6−6x5−18x4− (96+14c)x3− (36+3c)x2 +(108+18c),
a4 = −(6+ c)x4 +(24+4c)x3 +(36+6c)x− (36+6c).

Suppose x � 1, since ex is monotone increasing on x∈ [1,∞), then e−4x � e−3x �
e−2x � e−x. Since c � 0, x � ex = 1+ x+ · · ·, we have xe−3x � e−2x, xe−2x � e−x.

n(x) = e−4xa1 + e−3xa2 + e−2xa3 + e−xa4

� e−3x(x7 +7x6 +27x5 +(60+ c)x4 +(108+10c)x3+(36+3c)x2



480 H. LI AND Y. WANG

−(36+6c)x− (72+12c))+ e−2xa3 + e−xa4

� xe−3x(x6 +7x5 +27x4 +(60+ c)x3 +(108+10c)x2+(36+3c)x)
+e−2xa3 + e−xa4

� e−2x(x5 +9x4− (36+13c)x3+(72+7c)x2 +(36+3c)x
+(108+18c))+ e−xa4

� e−2x(x5 +9x4 +(72+7c)x2+(36+3c)x+(108+18c))+ e−xa4

� xe−2x(x4 +9x3 +(72+7c)x+(144+21c))+ e−xa4

� e−x(−(5+ c)x4 +(33+4c)x3 +(108+13c)x+(108+15c))
∼ −(5+ c)x4 +(33+4c)x3 +(108+13c)x+(108+15c)≡ N(x).

Also we have

N′(x) = −(20+4c)x3 +(99+12c)x2 +(108+13c),

N
′′
(x) = −(60+12c)x2 +(198+24c)x,

N
′′′
(x) = −(120+24c)x+(198+24c),

N(4)(x) = −(120+24c).

Since N(4)(x) < 0, N′′′(x) is monotone decreasing on x ∈ (1,∞). We notice that
N′′′(2) = −240− 48c + 198 + 24c = −42− 24c < 0, so we can get N′′′(x) < 0 on
x ∈ (2,∞), so N′′(x) is monotone decreasing on x ∈ (2,∞). When x = 4, N′′(4) =
−168−96c< 0, so N′′(x) < 0 on x ∈ (4,∞), that is, N′(x) is monotone decreasing on
x∈ (4,∞). When x = 6, N′(6) =−648−419c< 0, so N′(x) < 0 on x∈ (6,∞), that is,
N(x) is monotone decreasing on x ∈ (6,∞). When x = 8, N(8) = −2612−1929c< 0,
so N(x) < 0 on x ∈ (8,∞), that is, the function r �→ lnM2,1((z3 +C),r) is concave in
lnr for r ∈ (2

√
2,∞).
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