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SOME INEQUALITIES FOR RECIPROCALLY (s,m)––CONVEX IN THE

SECOND SENSE FUNCTIONS AND APPLICATIONS TO SPECIAL MEANS

MIREYA R. BRACAMONTE, JESÚS MEDINA-VILORIA AND MIGUEL

VIVAS-CORTEZ ∗

(Communicated by A. Vukelić)

Abstract. We present the notion of reciprocally (s,m)–convex functions and present some ex-
amples and properties of them. We derive some inequalities for this new class of functions,
specifically these inequalities are: Hermite–Hadamard and Fejér. In addition, we present some
applications of our results to special media of positive real numbers.

1. Introduction

Let R be the set of real numbers, I ⊆ R be an interval and R+ = (0,+∞) . A
function f : I ⊆ R → R is said to be convex in the classical sense if it satisfies the
following inequality

f (tx+(1− t)y) � t f (x)+ (1− t) f (y),

for all x,y∈ I and t ∈ [0,1] . Convexity theory has played an important and fundamental
role in the developments of different fields of pure and applied sciences [63, 64, 71].
In recent years, it received considerable attention, in order to extend the validity of
their results to large classes of optimization, these concepts have been generalized and
extended in several directions using novel and innovative techniques.
The concepts of convex functions have been generalized in various directions using
novel and innovative ideas, see [65, 73, 67, 4, 71, 53, 74] A classical inequality for
convex functions is the Hermite–Hadamard inequality, this is given as follows:

f

(
a+b

2

)
� a+b

2

∫ b

a
f (x)dx � f (a)+ f (b)

2
,

where f : I → R is a convex function and ab ∈ I with a < b (see [35]). In [43], it is
obtain the class of (s,m)–convex functions in the second sense as the following.
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DEFINITION 1. A function f : [0,b]→R is said to be (s,m)–convex in the second
sense, where (s,m) ∈ (0,1]2 , if for every x,y ∈ [0,b] and t ∈ [0,1] we have

f (tx+m(1− t)y) � ts f (x)+m(1− t)s f (y). (1)

İ. İşcan in [5], gave the following definition of harmonically convex functions:

DEFINITION 2. Let I be an interval in R\ {0} . A function f : I → R is said be
harmonically convex on I if the inequality

f

(
xy

tx+(1− t)y

)
� t f (y)+ (1− t) f (x), (2)

holds, for all x,y ∈ I and t ∈ [0,1] .

The following Fejér inequality for harmonically convex functions holds true.

THEOREM 1. ([4]) Let f : I ⊂ R \ {0} → R be a harmonically convex function
and a,b ∈ I with a < b. If f ∈ L(a,b) , then one has

f

(
2ab
a+b

)∫ b

a

p(x)
x2 dx �

∫ b

a

f (x)
x2 p(x)dx � f (a)+ f (b)

2

∫ b

a

p(x)
x2 dx, (3)

where p : [a,b] → R is nonnegative and integrable and satisfies

p

(
ab
x

)
= p

(
ab

a+b− x

)
.

In [44] define m–harmonic-arithmetically convex functions.

DEFINITION 3. Let f : (0,b] ⊆ R+ → R and m ∈ (0,1] be a constant. If

f

(
xy

ty+m(1− t)x

)
� t f (x)+m(1− t) f (y),

for all x,y ∈ (0,b] and t ∈ [0,1] , then f is said to be an m–harmonic-arithmetically
convex (or m–HA–convex) function.

In [6], gave the definition of harmonic s–convexity in the second sense as follows.

DEFINITION 4. A function f : I ⊆ R+ → R is said to be harmonically s–convex
in the second sense and s ∈ (0,1] if

f

(
xy

tx+(1− t)y

)
� ts f (y)+ (1− t)s f (x), (4)

is valid for all x,y ∈ I and t ∈ [0,1] .
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Following are some classic inequalities that have been demonstrated for this class of
functions. In [6], İşcan also shows the following inequalities of Hermite–Hadamard for
harmonically s–convex functions.

THEOREM 2. Let f : I ⊆ R+ → R be an harmonically s–convex function, s ∈
(0,1] and a,b ∈ I with a < b. If f ∈ L[a,b] , then the following inequalities hold:

2s−1 f

(
2ab
a+b

)
� ab

b−a

∫ b

a

f (x)
x2 dx � f (a)+ f (b)

s+1
. (5)

2. Reciprocally (s,m)–convex in the second sense functions

Now, we combine two definitions of m–harmonicity and harmonic s–convexity in
the second sense and obtain the class of reciprocally (s,m)–convex in the second sense
functions as the following.

DEFINITION 5. The function f : R+ →R is said to be reciprocally (s,m)–convex
in the second sense, where (s,m) ∈ (0,1]2 if

f

(
xy

ty+m(1− t)x

)
� ts f (x)+m(1− t)s f (y), (6)

for all x,y ∈ R+ and t ∈ [0,1] .

REMARK 1. 1. Note that if s = 1, then the reciprocally (s,m)–convex func-
tions in the second sense is m–harmonic-arithmetically convex functions.

2. If m = 1, then the reciprocally (s,m)–convex functions in the second sense is
harmonically s–convex functions in the second sense.

3. Note that if s,m = 1, then the reciprocally (s,m)–convex functions in the second
sense is harmonically convex functions.

EXAMPLE 1. Let s,m ∈ (0,1] , p ∈ [1,+∞) and f : R+ → R defined by f (x) =
1
xp , then f is reciprocally (s,m)–convex.

Proof. Let x,y ∈ R+ and s,m ∈ (0,1] ,

f

(
xy

ty+m(1− t)x

)
=
[
ty+m(1− t)x

xy

]p

=
[ty+(1− t)mx]p

(xy)p � typ +mp(1− t)xp

(xy)p

= t
1
xp +mp(1− t)

1
yp � ts

1
xp +m(1− t)s 1

yp

= ts f (x)+m(1− t)s f (y).

Thus, f is a reciprocally (s,m)–convex function.
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The next result is a characterization of the functions reciprocally (s,m)–convex.

THEOREM 3. Let (s,m) ∈ (0,1]2 and if we consider the function g : R+ → R ,

defined by g(t) = f

(
1
t

)
, then f is reciprocally (s,m)–convex function if and only if

g is (s,m)–convex in the second sense.

Proof. For the proof, we will make use of the following equivalences:

f

(
xy

ty+m(1− t)x

)
� ts f (x)+m(1− t)s f (y), ∀x,y ∈ R

+, t ∈ [0,1] y s,m ∈ (0,1],

f

⎛
⎜⎜⎝ 1

t
1
x

+m(1− t)
1
y

⎞
⎟⎟⎠� ts f (x)+m(1− t)s f (y), ∀x,y ∈ R

+,t ∈ [0,1] y s,m ∈ (0,1],

f

(
1

tu+m(1− t)w

)
� ts f

(
1
u

)
+m(1− t)s f

(
1
w

)
,

donde u =
1
x
,w =

1
y
∈ R

+,t ∈ [0,1] y s,m ∈ (0,1],

g(tu+m(1− t)w)� tsg(u)+m(1− t)sg(w) , ∀u,w ∈ R
+, t ∈ [0,1] y s,m ∈ (0,1].

This completes the proof.

EXAMPLE 2. Let s ∈ (0,1] and f : R+ → R , f (x) =
1
xs , then f is a reciprocally

(s,1)–convex function.

In effect, let h : R → R , defined by h(x) = xs , then h is (s,1)–convex function

in the second sense (see [45]).Thus, f : R+ → R , defined by f (x) = h

(
1
x

)
=

1
xs is a

reciprocally (s,1)–convex function (by Theorem 3).
The following theorems are properties of the reciprocally (s,m)–convex in the

second sense functions.

THEOREM 4. Let f ,g : R+ → R be two functions and k � 0 ,

1. If f ,g are reciprocally (s,m)–convex functions, then f +g is reciprocally (s,m)–
convex function.

2. If f is reciprocally (s,m)–convex functions, then k f is reciprocally (s,m)–
convex function.

Proof.
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1. Let x,y ∈ R+ and t ∈ [0,1] ,

( f +g)
(

xy
ty+m(1− t)x

)
= f

(
xy

ty+m(1− t)x

)
+g

(
xy

ty+m(1− t)x

)
� ts f (x)+m(1− t)s f (y)+ tsg(x)+m(1− t)sg(y)
= ts( f +g)(x)+m(1− t)s( f +g)(y).

Thus, f +g is reciprocally (s,m)–convex functions.

2. Let x,y ∈ R+ and t ∈ [0,1] ,

(k f )
(

xy
ty+m(1− t)x

)
= k f

(
xy

ty+(1− t)x

)
� kts f (x)+ km(1− t)s f (y).

Verifying that k f is reciprocally (s,m)–convex function.

THEOREM 5. If f1, f2 : R+ → R are reciprocally (s,m)–convex functions, then
f := max{ f1, f2} so too is.

Proof. Let x,y ∈ and t ∈ [0,1] . We have

f1

(
xy

ty+m(1− t)x

)
� ts f1(x)+m(1− t)s f1(x) � ts f (x)+m(1− t)s f (y),

and

f2

(
xy

ty+(1− t)x

)
� ts f2(x)+ (1− t)s f2(y) � ts f (x)+m(1− t)s f (y).

From which we obtain that

f

(
xy

tx+(1− t)y

)
= max

{
f1

(
xy

ty+(1− t)x

)
, f2

(
xy

ty+(1− t)x

)}
� ts f (x)+m(1− t)s f (y).

Thus, f is reciprocally (s,m)–convex functions.

THEOREM 6. If fn : R+ → R is a sequence of reciprocally (s,m)–convex in the
second sense functions, converging pointwise to a function f on R+ , then f is recipro-
cally (s,m)–convex in the second sense function.

Proof. Let x,y ∈ R+ and t ∈ [0,1]

f

(
xy

ty+m(1− t)x

)
= lim

n→∞
fn

(
xy

ty+m(1− t)x

)
� lim

n→∞
[ts fn(x)+m(1− t)s fn(y)]

= ts f (x)+m(1− t)s f (y).

This completes the demonstration.
Now our interest is to determine the conditions under which the composition of

functions belongs to the class studied. Thus, these conditions are presented in the fol-
lowing theorem.
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THEOREM 7. Let f : R+ → R be a m–HA–convex function with m ∈ (0,1] and
g : R+ → R be a nondecreasing and (s,m)–convex in the second sense, such that
f (R+) ⊆ R+ , then g ◦ f is reciprocally (s,m)–convex in the second sense.

Proof. Since f is a m–HA–convex function we have, for any x,y ∈ R+ and t ∈
[0,1] and m ∈ (0,1] , we obtain,

f

(
xy

ty+m(1− t)x

)
� t f (x)+m(1− t) f (y)

In addition, g is a nondecreasing function and is a reciprocally (s,m)–convex in the
second sense, therefore

g

(
f

(
xy

ty+m(1− t)x

))
� g(t f (x)+m(1− t) f (y)) � tsg( f (x))+m(1− t)sg( f (y)).

Thus, g ◦ f is reciprocally (s,m)–convex.

3. Hermite–Hadamard type inequalities

In the next section we demonstrate the important results of this article, in which
we demonstrate some classic inequalities that were generalized for the new classes of
functions.

THEOREM 8. (Hermite–Hadamard type left–inequality) Let f : R+ → R be a re-
ciprocally (s,m)–convex function with s,m ∈ (0,1] . If a,b ∈ R+ with a < b and
f ∈ L[a,b] , then

2s f

(
2ab
a+b

)
� ab

b−a

∫ b

a

f (x)
x2 dx+

abm
b−a

∫ b

a

f (mx)
x2 dx. (7)

Proof. Since f is a reciprocally (s,m)–convex, we obtain

f

(
2ab
a+b

)
= f

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
2

1
ab

ta+(1− t)b

+
1
2
m

1
abm

tb+(1− t)a

⎞
⎟⎟⎟⎟⎟⎟⎠

� 1
2s f

(
ab

ta+(1− t)b

)
+

m
2s f

(
abm

tb+(1− t)a

)
.

Thus,

2s f

(
2ab
a+b

)
� f

(
ab

ta+(1− t)b

)
+mf

(
abm

tb+(1− t)a

)
. (8)
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Integrating over the interval [0,1] the inequality (8), we have

2s f

(
2ab
a+b

)
�
∫ 1

0

[
f

(
ab

ta+(1− t)b

)
+mf

(
abm

tb+(1− t)a

)]
dt. (9)

We know that, ∫ 1

0
f

(
ab

ta+(1− t)b

)
dt =

ab
b−a

∫ b

a

f (x)
x2 dx, (10)

and for
∫ 1
0 f

(
abm

tb+(1− t)a

)
dt , it is done x =

ab
tb+(1− t)a

, we get

∫ 1

0
f

(
abm

tb+(1− t)a

)
dt =

ab
b−a

∫ b

a

f (mx)
x2 dx. (11)

Substituting (10) and (11) in (9), we obtain

2s f

(
2ab
a+b

)
� ab

b−a

∫ b

a

f (x)
x2 dx+

abm
b−a

∫ b

a

f (mx)
x2 dx,

thus obtaining the inequality (7).

THEOREM 9. (Hermite–Hadamard type right–inequality) Let f : R+ → R be a
reciprocally (s.m)–convex function with s,m ∈ (0,1] . If a,b ∈ R+ with a < b and
f ∈ L[a,b] , then

ab
b−a

∫ b

a

f (x)
x2 dx � min

{
f (a)+mf (mb)

s+1
,
f (b)+mf (ma)

s+1

}
. (12)

Proof. Since f is reciprocally (s,m)–convex, we have for all x,y ∈ R+ and t ∈
[a,b] , then

f

(
xy

ty+(1− t)x

)
� ts f (x)+m(1− t)s f (my). (13)

Since (13) is valid for any x,y ∈ R
+ , it is particularly true for x = a and y = b , that is,

f

(
ab

tb+(1− t)a

)
� ts f (a)+m(1− t)s f (mb).

Integrating on [0,1] , we obtain

∫ 1

0
f

(
ab

tb+(1− t)a

)
dt �

∫ 1

0
[ts f (a)+m(1− t)s f (mb)]dt. (14)

Resolving each of the integrals of (14), using changes of variables, we obtain
∫ 1

0
f

(
ab

tb+(1− t)a

)
dt =

ab
b−a

∫ b

a

f (x)
x2 dx, (15)
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∫ 1

0
tsdt =

[
ts+1

s+1

]1

0
=

1
s+1

, (16)

∫ 1

0
(1− t)sdt =−

∫ 0

1
usdu,(doing the change u=1− t)=

[
us+1

s+1

]1

0
=

1
s+1

. (17)

Substituting (15)–(17) in (14), we get

ab
b−a

∫ b

a

f (x)
x2 dx � f (a)

s+1
+

mf (mb)
s+1

=
f (a)+mf (mb)

s+1
. (18)

Performing the same procedure for x = b and y = a , we have

ab
b−a

∫ b

a

f (x)
x2 dx � f (b)+mf (ma)

s+1
. (19)

Thus, from (18) and (19)

ab
b−a

∫ b

a

f (x)
x2 dx � min

{
f (a)+mf (mb)

s+1
,
f (b)+mf (ma)

s+1

}
.

Hence we get the inequality (12).

REMARK 2. Note that if m = 1 in (7) and (12) it is obtained the Hermite–Hadamard
type inequalities for harmonically s–convex function (see [6]).

REMARK 3. Note that if s = 1 in (12) it is obtained the following inequality:

ab
b−a

∫ b

a

f (x)
x2 dx � min

{
f (a)+mf (mb)

2
,
f (b)+mf (ma)

2

}
. (20)

4. Fejér type inequalities

To establish the inequality of type Fejér for differentiable functions, use is made
of a previous lemma and the following definition.

DEFINITION 6. ([42]) We say that a function g : [a,b]⊂ R\{0}→ R is harmon-

ically symmetric with respect to
2ab
a+b

if

g(x) = g

⎛
⎜⎝ 1

1
a

+
1
b
− 1

x

⎞
⎟⎠ (21)

holds for all x ∈ [a,b] .
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LEMMA 1. [42] Let f : I ⊆ R \ {0} → R be a differentiable function on I◦ and
a,b ∈ I◦ with a < b and let g : [a,b] → [0,+∞) be continuous positive mapping and

harmonically symmetric to
2ab
a+b

. If f ′ ∈ L[a,b] , then the following identity holds

f (a)+ f (b)
2

∫ b

a

g(x)
x2 dx−

∫ b

a

g(x) f (x)
x2 dx

=
b−a
4ab

∫ 1

0

(∫ U(t)

L(t)

g(x)
x2 dx

)[
(U(t))2 f ′ (U(t))− (L(t))2 f ′ (L(t))

]
dt,

where

L(t) =
2ab

(1− t)a+(1+ t)b
and U(t) =

2ab
(1+ t)a+(1− t)b

.

In the following result we show the Fejér inequality for functions differentiable
f : R+ → R and | f ′|q is recı́procally (s,m)–convex.

THEOREM 10. Let f : R+ →R be a differentiable function on R+ and a,b∈R+
with a < b and let g : [a,b] → [0,+∞) be continuous positive mapping and harmoni-

cally symmetric to
2ab
a+b

such that f ′ ∈ L[a,b] . If | f ′|q is reciprocally (s,m)–convex

for q � 1 , then the following inequality holds∣∣∣∣ f (a)+ f (b)
2

∫ b

a

g(x)
x2 dx−

∫ b

a

g(x) f (x)
x2 dx

∣∣∣∣ (22)

�
(

b−a
2ab

)2

‖g‖∞

[
μ

1− 1
q

1 ν
1
q + μ

1− 1
q

2 η
1
q

]
,

where

μ1 =
2ab2

b−a
+
(

2ab
b−a

)2

ln

(
2a

a+b

)
,

μ2 =
(

2ab
b−a

)2

ln

(
2b

a+b

)
− 2a2b

(b−a)2 ,

ν = min

{
1
2s

[
ν1
∣∣ f ′ (b)

∣∣q +mν2
∣∣ f ′ (ma)

∣∣q] , 1
2s

[
mν1

∣∣ f ′ (mb)
∣∣q + ν2

∣∣ f ′ (a)
∣∣q]} ,

η = min

{
1
2s

[
ν2
∣∣ f ′ (b)

∣∣q +mν1
∣∣ f ′ (ma)

∣∣q] , 1
2s

[
mν2

∣∣ f ′ (mb)
∣∣q + ν1

∣∣ f ′ (a)
∣∣q]}

with

ν1 = a2
{

β (s+2,1)
[
2s+2 ·2 F1

(
2,s+2;s+3;

b−a
b

)
−2 F1

(
2,s+2;s+3;

b−a
2b

)]

−β (s+1,1)
[
2s+1 ·2 F1

(
2,s+1;s+2;

b−a
b

)
−2 F1

(
2,s+1;s+2;

b−a
2b

)]}
,

ν2 =
(

2ab
a+b

)2

β (2,s+1).2F1

(
2,2;s+3;

b−a
a+b

)
.
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Proof. From Lemma 1 and Hölder’s inequality, we get

∣∣∣∣ f (a)+ f (b)
2

∫ b

a

g(x)
x2 dx−

∫ b

a

g(x) f (x)
x2 dx

∣∣∣∣
=
∣∣∣∣b−a

4ab

∫ 1

0

(∫ U(t)

L(t)

g(x)
x2 dx

)[
(U(t))2 f ′ (U(t))− (L(t))2 f ′ (L(t))

]
dt

∣∣∣∣
� b−a

4ab

∫ 1

0

(∫ U(t)

L(t)

|g(x)|
x2 dx

)∣∣∣(U(t))2 f ′ (U(t))− (L(t))2 f ′ (L(t))
∣∣∣dt

� b−a
4ab

‖g‖∞

∫ 1

0

(∫ U(t)

L(t)

1
x2 dx

)∣∣∣(U(t))2 f ′ (U(t))− (L(t))2 f ′ (L(t))
∣∣∣dt

�
(

b−a
2ab

)2

‖g‖∞

{∫ 1

0

[
t (U(t))2

] 1
p
([

t (U(t))2
] 1

q ∣∣ f ′ (U(t))
∣∣)dt

+
∫ 1

0

[
t (L(t))2

] 1
p
([

t (L(t))2
] 1

q ∣∣ f ′ (L(t))
∣∣)dt

}
(

where
1
p

= 1− 1
q

)

�
(

b−a
2ab

)2

‖g‖∞

⎧⎨
⎩
[∫ 1

0

((
t (U(t))2

) 1
p
)p

dt

] 1
p
[∫ 1

0

([
t (U(t))2

] 1
q ∣∣ f ′ (U(t))

∣∣)q

dt

] 1
q

+

[∫ 1

0

((
t (L(t))2

) 1
p
)p

dt

] 1
p
[∫ 1

0

([
t (L(t))2

] 1
q ∣∣ f ′ (L(t))

∣∣)q

dt

] 1
q

⎫⎬
⎭

=
(

b−a
2ab

)2

‖g‖∞

{[∫ 1

0
t (U(t))2 dt

] 1
p
[∫ 1

0
t (U(t))2 ∣∣ f ′ (U(t))

∣∣q dt

] 1
q

+
[∫ 1

0
t (L(t))2 dt

] 1
p
[∫ 1

0
t (L(t))2 ∣∣ f ′ (L(t))

∣∣q dt

] 1
q
}

=
(

b−a
2ab

)2

‖g‖∞

{[∫ 1

0
t (U(t))2 dt

]1− 1
q
[∫ 1

0
t (U(t))2 ∣∣ f ′ (U(t))

∣∣q dt

] 1
q

+
[∫ 1

0
t (L(t))2 dt

]1− 1
q
[∫ 1

0
t (L(t))2 ∣∣ f ′ (L(t))

∣∣q dt

] 1
q
}

. (23)

Resolving each of the integrals of (23)

By making the change x =
2ab

(1+ t)a+(1− t)b
, you have to proceed to

μ1 =
∫ 1

0
t (U(t))2 dt =

2ab2

b−a
+
(

2ab
b−a

)2

ln

(
2a

a+b

)
. (24)
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Now to solve the integral
∫ 1
0 t (L(t))2 dt , we make the change x =

2ab
(1− t)a+(1+ t)b

,

we get

μ2 =
∫ 1

0
t (L(t))2 dt =

(
2ab
b−a

)2

ln

(
2b

a+b

)
− 2a2b

(b−a)2 . (25)

On the other hand by the reciprocal (s,m)–convexity of | f ′|q on R
+ for q � 1, we

have ∫ 1

0
t [U(t)]2

∣∣ f ′ (U(t))
∣∣q dt (26)

=
∫ 1

0
t

[
2ab

(1+ t)a+(1− t)b

]2 ∣∣∣∣ f ′
(

2ab
(1+ t)a+(1− t)b

)∣∣∣∣
q

dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1
0 t

[
2ab

(1+ t)a+(1− t)b

]2

∣∣∣∣∣∣∣ f
′

⎛
⎜⎝ mab

1
2
(1+ t)ma+

1
2
m(1− t)b

⎞
⎟⎠
∣∣∣∣∣∣∣
q

dt

∫ 1
0 t

[
2ab

(1+ t)a+(1− t)b

]2

∣∣∣∣∣∣∣ f
′

⎛
⎜⎝ amb

1
2
m(1+ t)a+

1
2
(1− t)mb

⎞
⎟⎠
∣∣∣∣∣∣∣
q

dt

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1
0 t

[
2ab

(1+ t)a+(1− t)b

]2 [ 1
2s (1+ t)s | f ′ (b)|q +

1
2s m(1− t)s | f ′ (ma)|q

]
dt

∫ 1
0 t

[
2ab

(1+ t)a+(1− t)b

]2 [ 1
2s m(1+ t)s | f ′ (mb)|q +

1
2s (1− t)s | f ′ (a)|q

]
dt.

Resolving each of the integrals above,

ν1 =
∫ 1

0
t(1+ t)s

[
2ab

(1+ t)a+(1− t)b

]2

dt (27)

= a2
{

β (s+2,1)
[
2s+2 ·2 F1

(
2,s+2;s+3;

b−a
b

)
−2 F1

(
2,s+2;s+3;

b−a
2b

)]

−β (s+1,1)
[
2s+1 ·2 F1

(
2,s+1;s+2;

b−a
b

)
−2 F1

(
2,s+1;s+2;

b−a
2b

)]}
,

ν2 =
∫ 1

0
t(1− t)s

[
2ab

(1+ t)a+(1− t)b

]2

dt (28)

=
(

2ab
a+b

)2

β (2,s+1).2F1

(
2,2;s+3;

b−a
a+b

)
.

Substituting (27) and (28) in (26), we get

∫ 1

0
t [U(t)]2

∣∣ f ′ (U(t))
∣∣q dt (29)
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�

⎧⎪⎪⎨
⎪⎪⎩

1
2s [ν1 | f ′ (b)|q +mν2 | f ′ (ma)|q]

1
2s [mν1 | f ′ (mb)|q + ν2 | f ′ (a)|q]

� min

{
1
2s

[
ν1
∣∣ f ′ (b)

∣∣q +mν2
∣∣ f ′ (ma)

∣∣q] , 1
2s

[
mν1

∣∣ f ′ (mb)
∣∣q + ν2

∣∣ f ′ (a)
∣∣q]}= ν.

Again by the reciprocal (s,m)–convexity of | f ′|q on R
+ for q � 1, we have

∫ 1

0
t [L(t)]2

∣∣ f ′ (L(t))
∣∣q dt (30)

=
∫ 1

0
t

[
2ab

(1− t)a+(1+ t)b

]2 ∣∣∣∣ f ′
(

2ab
(1− t)a+(1+ t)b

)∣∣∣∣
q

dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1
0 t

[
2ab

(1− t)a+(1+ t)b

]2

∣∣∣∣∣∣∣ f
′

⎛
⎜⎝ mab

1
2
(1− t)ma+

1
2
m(1+ t)b

⎞
⎟⎠
∣∣∣∣∣∣∣
q

dt

∫ 1
0 t

[
2ab

(1− t)a+(1+ t)b

]2

∣∣∣∣∣∣∣ f
′

⎛
⎜⎝ amb

1
2
m(1− t)a+

1
2
(1+ t)mb

⎞
⎟⎠
∣∣∣∣∣∣∣
q

dt

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1
0 t

[
2ab

(1− t)a+(1+ t)b

]2 [ 1
2s (1− t)s | f ′ (b)|q +

1
2s m(1+ t)s | f ′ (ma)|q

]
dt

∫ 1
0 t

[
2ab

(1− t)a+(1+ t)b

]2 [ 1
2s m(1− t)s | f ′ (mb)|q +

1
2s (1+ t)s | f ′ (a)|q

]
dt

=

⎧⎪⎪⎨
⎪⎪⎩

1
2s [ν2 | f ′ (b)|q +mν1 | f ′ (ma)|q]

1
2s [mν2 | f ′ (mb)|q + ν1 | f ′ (a)|q]

� min

{
1
2s

[
ν2
∣∣ f ′ (b)

∣∣q +mν1
∣∣ f ′ (ma)

∣∣q] , 1
2s

[
mν2

∣∣ f ′ (mb)
∣∣q + ν1

∣∣ f ′ (a)
∣∣q]}= η .

Substituting (24), (25), (29) and (30) in (23), we get∣∣∣∣ f (a)+ f (b)
2

∫ b

a

g(x)
x2 dx−

∫ b

a

g(x) f (x)
x2 dx

∣∣∣∣�
(

b−a
2ab

)2

‖g‖∞

[
μ

1−1
q

1 ν
1
q +μ

1−1
q

2 η
1
q

]
.

Thus the demonstration is completed.

5. Applications for special means

Let us recall the following special means of two numbers a,b ∈ R (see [6]):
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1. The arithmetic mean

A(a,b) :=
a+b

2
.

2. The weight arithmetic mean

Aλ (a,b) := λa+(1−λ )b, with λ ∈ [0,1] .

3. The geometric mean
G(a,b) :=

√
ab.

4. The harmonic mean

H(a,b) :=
2ab
a+b

.

5. The p–logarithmic mean with p ∈ R\ {0} and a < b .

The following theorems are results in which we present the relationship between
the means defined above.

THEOREM 11. Let 0 < a < b. Then we have the following inequality

2s−1G2(as,bs)H−s(a,b) � Ls
s(a,b) � A(s+1)−1

(
as,

bs

s

)
, (31)

with s ∈ (0,1) .

Proof. By example 2, we have f : R+ → R defined by f (x) =
1
xs , for s ∈ (0,1)

is reciprocally (s,1)–convex and using Remark 2, we obtain

2s−1 f

(
2ab
a+b

)
� ab

b−a

∫ b

a

f (x)
x2 dx � f (a)+ f (b)

s+1
. (32)

Solving each of expressions present in the above inequalities,

2s−1 f

(
2ab
a+b

)
= 2s−1

(
2ab
a+b

)−s

= 2s−1H−s(a,b). (33)

ab
b−a

∫ b

a

f (x)
x2 dx =

ab
−(b−a)(s+1)

[
b−(s+1)−a−(s+1)

]
(34)

=
ab

(b−a)(s+1)

[
1

as+1 −
1

bs+1

]
=

ab
(b−a)(s+1)

bs+1−as+1

as+1bs+1

=
1

asbs

bs+1−as+1

(s+1)(b−a)
=

1
G2(as,bs)

⎧⎨
⎩
[

bs+1−as+1

(s+1)(b−a)

] 1
s

⎫⎬
⎭

s

=
1

G2(as,bs)
Ls

s(a,b),
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and

f (a)+ f (b)
s+1

=
as +bs

(s+1)asbs (35)

=
1

asbs

as +(s+1−1)
bs

s
s+1

=
1

G2(as,bs)

[
1

s+1
as +

(
1− 1

s+1

)
bs

s

]

=
1

G2(as,bs)

[
(s+1)−1as +

(
1− (s+1)−1) bs

s

]

=
1

G2(as,bs)

[
(s+1)−1as +

(
1− (s+1)−1) bs

s

]

=
1

G2(as,bs)
A(s+1)−1

(
as,

bs

s

)
.

Substituting (33)–(35) in (32), we get

2s−1H−s(a,b) � 1
G2(as,bs)

Ls
s(a,b) � 1

G2(as,bs)
A(s+1)−1

(
as,

bs

s

)

So we get the inequality (31).

THEOREM 12. Let 0 < a < b. Then we have the following inequality

2s−1G2(ap,bp)H−p(a,b) � Lp
p(a,b) � A(s+1)−1

(
ap,

bp

s

)
, (36)

with s ∈ (0,1) .

Proof. By example 1, we have f : R+ →R defined by f (x) =
1
xp , for p∈ [1,+∞)

is reciprocally (s,1)–convex for s ∈ (0,1] and using Remark 2, we obtain

2s−1 f

(
2ab
a+b

)
� ab

b−a

∫ b

a

f (x)
x2 dx � f (a)+ f (b)

s+1
. (37)

Solving each of expressions present in the above inequalities,

2s−1 f

(
2ab
a+b

)
= 2s−1

(
2ab
a+b

)−p

= 2s−1H−p(a,b). (38)

ab
b−a

∫ b

a

f (x)
x2 dx =

ab
b−a

∫ b

a

1
xp+2 dx (39)

=
ab

−(b−a)(p+1)

[
b−(p+1)−a−(p+1)

]

=
ab

(b−a)(p+1)

[
1

ap+1 −
1

bp+1

]
=

ab
(b−a)(p+1)

bp+1−ap+1

ap+1bp+1
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=
1

apbp

bp+1−ap+1

(p+1)(b−a)
=

1
G2(ap,bp)

⎧⎨
⎩
[

bp+1−ap+1

(p+1)(b−a)

] 1
p

⎫⎬
⎭

p

=
1

G2(ap,bp)
Lp

p(a,b).

f (a)+ f (b)
s+1

=
ap +bp

(s+1)apbp (40)

=
1

apbp

ap +(s+1−1)
bp

s
s+1

=
1

G2(ap,bp)

[
(s+1)−1ap +

(
1− (s+1)−1) bp

s

]

=
1

G2(ap,bp)

[
(s+1)−1ap +

(
1− (s+1)−1) bp

s

]

=
1

G2(ap,bp)
A(s+1)−1

(
ap,

bp

s

)
.

Substituting (38)–(40) in (37), we get

2s−1H−p(a,b) � 1
G2(ap,bp)

Lp
p(a,b) � 1

G2(ap,bp)
A(s+1)−1

(
ap,

bp

s

)
.

So we get the inequality (36).
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Facultad de Ciencias Exactas y Naturales, Escuela de
Ciencias Fı́sicas y Matemática
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