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HARDY INEQUALITIES AND CAFFARELLI–KOHN–NIRENBERG

INEQUALITIES WITH RADIAL DERIVATIVE

TUAN DUY NGUYEN, LE-LONG PHI ∗ AND WEIJIA YIN

(Communicated by J. Pečarić)

Abstract. In this paper, we study several inequalities of Hardy and Caffarelli-Kohn-Nirenberg
type. We set up some optimal versions of these inequalities using the radial derivatives or the
convex combinations of the full gradient and its radial part. We also exhibit their optimizers in
some certain cases.

1. Introduction

Let N � 3 and Ω be a domain in R
N containing 0. The classical Hardy inequality

that plays an important role in many areas such as analysis, probability and partial
differential equations says that for all u ∈C∞

0 (Ω) :

(
N−2

2

)2 ∫
Ω

|u|2
|x|2 dx �

∫
Ω

|∇u|2 dx. (1.1)

It is well-known that the constant
(

N−2
2

)2
is sharp but the equality in (1.1) is never

happened by nontrivial functions. See, for instance, [27, 38] for historical backgrounds
and some standard references on Hardy inequalities [3, 26, 28, 42].

It was showed in [23] that the operator −Δ− (N−2
2

)2 1
|x|2 is critical on the whole

space R
N in the sense that there is no strictly positive W ∈ V 1 ((0,∞)) such that the

inequality ∫
RN

|∇u|2 dx−
(

N−2
2

)2 ∫
RN

|u|2
|x|2 dx �

∫
RN

W (|x|) |u|2 dx

holds for all u ∈ C∞
0

(
R

N
)
. However, the situation on bounded domain is different.

Indeed, to study the stability of singular solutions of certain nonlinear elliptic equations,
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Brezis and Vázquez established in [4] the following Hardy type inequality: for all u ∈
W 1,2

0 (Ω) :

∫
Ω

|∇u|2 dx−
(

N−2
2

)2 ∫
Ω

|u|2
|x|2 dx � z2

0ω
2
N
N |Ω|− 2

N

∫
Ω

|u|2 dx. (1.2)

Here ωN is the volume of the unit ball and z0 = 2.4048... is the first zero of the Bessel

function J0 (z) . The constant z2
0ω

2
N
N |Ω|− 2

N is optimal when Ω is a ball. However,

z2
0ω

2
N
N |Ω|− 2

N is not achieved in W 1,2
0 (Ω) . Actually z2

0ω
2
N
N |Ω|− 2

N

∫
Ω

|u|2 dx is just a first

term of an infinite series of extra terms that can be added to the RHS of (1.2). See, for
instance, [1, 11, 13, 18, 19, 20, 24, 35, 36].

In [21], Ghoussoub and Moradifam introduced the notion of Bessel pair and es-
tablished the following general Hardy inequality with radial weights:

THEOREM A. Let 0 < R � ∞ , V and W be positive C1− functions on (0,R) such

that

R∫
0

1
rN−1V (r)dr = ∞ and

R∫
0

rN−1V (r)dr < ∞ . Then the following are equivalent:

(1) (V,W ) is a N−dimensional Bessel pair on (0,R) .

(2) There exists c > 0 such that
∫
BR

V (x) |∇u|2 dx� c
∫
BR

W (x) |u|2 dx for all u∈C∞
0 (BR) .

Moreover, the largest c for which the inequality holds is equal to β (V,W ;R) .

Here a couple of C1 -functions (V,W ) is a N -dimensional Bessel pair on (0,R) if
there exists c > 0 such that the ordinary differential equation

y′′(r)+
(

N−1
r

+
Vr (r)
V (r)

)
y′(r)+

cW (r)
V (r)

y(r) = 0

has a positive solution on the interval (0,R) . Also, β (V,W ;R) is defined as the supre-
mum of such c . See the book [22] for various examples of the N -dimensional Bessel
pair.

Motivated by the general Hardy inequalities with Bessel pair in [21], and the recent
results in [29, 30], our first aim of this note is to study an improved version of Theorem
A using the radial derivative. We note that the following improved version of (1.1): for
all u ∈C∞

0

(
R

N
)

(
N−2

2

)2 ∫
RN

|u|2
|x|2 dx �

∫
RN

∣∣∣∣ x
|x| ·∇u

∣∣∣∣
2

dx (1.3)

has been set up in, for instance, [37]. The constant
(

N−2
2

)2
is still optimal. In the polar

coordinate,
∣∣∣ x
|x| ·∇u

∣∣∣= |∂ru(rω)| . Hence x
|x| ·∇u is actually the radial derivative of u .
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Obviously, (1.3) is (1.1) when u is radial. Actually, the Hardy type inequalities with
radial derivative have been studied extensively. See [25, 34, 37, 39, 40, 41, 44, 45],
for example. It is also worthy to mention that radial derivative plays an important role
in the study of several functional inequalities on homogeneous groups. We refer the
interested reader to the monograph [43] for this subject.

Our first result can be read as follows:

THEOREM 1.1. Let p > 1 , 0 < R � ∞ , V and W be positive functions on (0,R) .
Then the following are equivalent:

(A)
∫
BR

V (|x|) |∇u|p dx �
∫
BR

W (|x|) |u|p dx for all u ∈C∞
0 (BR) .

(B)
∫
BR

V (|x|)
∣∣∣ x
|x| ·∇u

∣∣∣p dx �
∫
BR

W (|x|) |u|p dx for all u ∈C∞
0 (BR) .

(C)
∫
BR

V (|x|) |∇u|p dx �
∫
BR

W (|x|) |u|p dx for all radial functions u ∈C∞
0 (BR) .

Combining Theorem 1.1 and Theorem A, we get

COROLLARY 1.1. Let 0 < R � ∞ , V and W be positive C1− functions on (0,R)

such that

R∫
0

1
rN−1V (r)dr = ∞ and

R∫
0

rN−1V (r)dr < ∞ . Then the following are equiva-

lent:

(1) (V,W ) is a N−dimensional Bessel pair on (0,R) .

(2) There exists c > 0 such that
∫
BR

V (x) |∇u|2 dx� c
∫
BR

W (x) |u|2 dx for all u∈C∞
0 (BR) .

(3) There exists c > 0 such that
∫
BR

V (x)
∣∣∣ x
|x| ·∇u

∣∣∣2 dx � c
∫
BR

W (x) |u|2 dx for all u ∈

C∞
0 (BR) .

(4) There exists c > 0 such that
∫
BR

V (x) |∇u|2 dx � c
∫
BR

W (x) |u|2 dx for all radial

functions u ∈C∞
0 (BR) .

Moreover, the largest c for which the inequality holds is equal to β (V,W ;R) .

We have the following optimal Hardy type inequalities as some examples of our
results: Let a � N−2

2 , then for all u ∈C∞
0 (BR) :

∫
BR

∣∣∣ x
|x| ·∇u

∣∣∣2
|x|2a dx �

(
N−2a−2

2

)2 ∫
BR

|u|2
|x|2a+2 dx+ z2

0ω
2
N
N |BR|−

2
N

∫
BR

|u|2
|x|2a dx,
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∫
BR

∣∣∣ x
|x| ·∇u

∣∣∣2
|x|2a dx �

(
N−2a−2

2

)2 ∫
BR

|u|2
|x|2a+2 dx+

1
4

k

∑
j=1

∫
BR

|u|2
|x|2a+2

(
j

∏
i=1

log(i) ρ
|x|

)−2

dx

for every integer k , where ρ > R

(
eee.

.e(k−times)
)

,

∫
BR

∣∣∣ x
|x| ·∇u

∣∣∣2
|x|2a dx�

(
N−2a−2

2

)2 ∫
BR

|u|2
|x|2a+2 dx+

1
4

∞

∑
j=1

∫
BR

|u|2
|x|2a+2 X2

1

( |x|
R

)
...X2

j

( |x|
R

)
dx.

Here X1 (t) = (1− logt)−1 , Xk (t) = X1 (Xk−1 (t)) .

In the same line of thought, we will also investigate in this paper the optimal
Caffarelli-Kohn-Nirenberg (CKN) inequalities with the radial derivative. Here, we will
use the following form of the CKN inequality (see [46]):

⎛
⎝∫

RN

|u|r dx
|x|s

⎞
⎠

1/r

� C

⎛
⎝∫

RN

|∇u|p dx

|x|μ

⎞
⎠

a/p⎛
⎝∫

RN

|u|q dx

|x|θ

⎞
⎠

(1−a)/q

(CKN)

where

a =
[(N−θ )r− (N− s)q] p

[(N−θ ) p− (N− μ − p)q]r
.

The CKN inequalities were first introduced in 1984 by Caffarelli, Kohn and Niren-
berg in their celebrated work [5]. It is worth noting that many well-known and impor-
tant inequalities such as Gagliardo-Nirenberg inequalities, Sobolev inequalities, Hardy-
Sobolev inequalities, Nash’s inequalities, etc are just the special cases of the CKN in-
equalities.

Assume that we can find d > 0 such that d (p+ μ −N)+ N − p = 0. Denote
Dp,q

μ,θ
(
R

N
)

the completion of the space of smooth compactly supported functions with
the norm ⎛

⎝∫
RN

|∇u|p dx

|x|μ

⎞
⎠

1/p

+

⎛
⎝∫

RN

|u|q dx

|x|θ

⎞
⎠

1/q

and

GN (N, p,q,r,μ ,θ ,s) = sup
u∈Dp,q

0,N+θd−Nd(RN)

⎛
⎝∫

RN

|u|r
|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

|∇u|p dx

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q
|x|N+θd−Nd dx

⎞
⎠

1−a
q
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where

a =
[(N−θ )r− (N− s)q] p

[(N−θ ) p− (N− μ − p)q]r
.

For α � 0, we also denote

Rα (u) =

(
α |∇u|2 +(1−α)

∣∣∣∣ x
|x| ·∇u

∣∣∣∣
2
) 1

2

.

We note that R0 (u) is the radial derivative of u while R1 (u) is the standard gradient

of u . Also, R0 (u) � Rα (u) � R1 (u) for 0 � α � 1 and Rα (u) � α
1
2 R1 (u) for

α � 1. When u is radial, then Rα (u) = |∇u| .
Our next purpose is to show that in some situations, we can get sharp versions of

the Caffarelli-Kohn-Nirenberg inequalities with radial derivative R0 (u) . For instance,
we have

THEOREM 1.2. For all (a,b) ∈ A =
{
a<b+1, b� N−2

2

}∪{a>b+1, b� N−2
2

}
and u ∈C∞

0

(
R

N \ {0})\ {0} one has

⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠
⎛
⎝∫

RN

|R0 (u)|2
|x|2b dx

⎞
⎠−

⎛
⎝ |N−a−b−1|

2

∫
RN

|u|2
|x|a+b+1 dx

⎞
⎠

2

=

∫
RN

∣∣∣∣∣∣
⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠ (R0 (u))x

|x|b+1 −
⎛
⎝N−a−b−1

2

∫
RN

|u|2
|x|a+b+1 dx

⎞
⎠ x

|x|a+1 u

∣∣∣∣∣∣
2

dx

∫
RN

|u|2
|x|2a dx

.

As a consequence,

⎛
⎝ |N−a−b−1|

2

∫
RN

|u|2
|x|a+b+1 dx

⎞
⎠

2

�

⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠
⎛
⎝∫

RN

|R0 (u)|2
|x|2b dx

⎞
⎠ . (1.4)

The constant |N−a−b−1|
2 is optimal.

As a by-product, we can obtain the following sharp CKN inequalities in [12]:

⎛
⎝ |N−a−b−1|

2

∫
RN

|u|2
|x|a+b+1 dx

⎞
⎠

2

�

⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠
⎛
⎝∫

RN

|∇u|2
|x|2b dx

⎞
⎠ . (1.5)

The constant |N−a−b−1|
2 is optimal. Moreover, optimizers for (1.5), if exist, must be

radial since in this situation |R0 (u)| = |∇u| . Actually, it was proved in [7] that the
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extremizers for (1.5) is of the form Dexp
(

t
b+1−a |x|b+1−a

)
. Now since we are just

using the radial derivative R0 in (1.4), it is an interesting and challenging problem to
investigate the symmetry and symmetry breaking phenomena for (1.4). This is indeed
our next goal. More precisely, using spherical harmonic decomposition, we will show
that indeed all the optimizers for (1.4) have to be radially symmetric.

THEOREM 1.3. Let u be an optimizer of (1.4). Then u is radially symmetric and

hence is of the form Dexp
(

t
b+1−a |x|b+1−a

)
.

However, there are many situations where we could not replace the standard gradi-
ent by the radial derivative in the CKN inequality. For instance, if GN (N, p,q,r,μ ,θ ,s)
can be attained by nonradial optimizers (such as in [14, 15]), then we could not expect
that ⎛

⎝∫
RN

|u|r
|x|N+sd−Nd dx

⎞
⎠

1/r

(1.6)

�GN (N, p,q,r,μ ,θ ,s)

⎛
⎝∫

RN

∣∣∣∣ x
|x| ·∇u

∣∣∣∣
p

dx

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q
|x|N+θd−Nd dx

⎞
⎠

1−a
q

.

Indeed, let U be the nonradial maximizer for GN (N, p,q,r,μ ,θ ,s) . If (1.6) holds true,
then

GN (N, p,q,r,μ ,θ ,s)

⎛
⎝∫

RN

|∇U |p dx

⎞
⎠

a
p
⎛
⎝∫

RN

|U |q
|x|N+θd−Nd dx

⎞
⎠

1−a
q

=

⎛
⎝∫

RN

|U |r
|x|N+sd−Nd dx

⎞
⎠

1/r

�GN (N, p,q,r,μ ,θ ,s)

⎛
⎝∫

RN

∣∣∣∣ x
|x| ·∇U

∣∣∣∣
p

dx

⎞
⎠

a
p
⎛
⎝∫

RN

|U |q
|x|N+θd−Nd dx

⎞
⎠

1−a
q

�GN (N, p,q,r,μ ,θ ,s)

⎛
⎝∫

RN

|∇U |p dx

⎞
⎠

a
p
⎛
⎝∫

RN

|U |q
|x|N+θd−Nd dx

⎞
⎠

1−a
q

.

Hence, we must have
∫

RN
|∇U |p dx =

∫
RN

∣∣∣ x
|x| ·∇U

∣∣∣p dx which is impossible since U is

nonradial.
Nevertheless, we will set up improved versions of the CKN inequalities in some

special cases using the convex combination of the full gradient and its radial part
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Rα (u) . Our motivation is the results in [9, 17, 31, 32, 33] where the authors studied
the CKN inequalities in some special cases using suitable quasi-conformal mappings.
Moreover, for some certain 1-parameter families of inequalities, the best constants and
the optimizers for the CKN inequalities were calculated explicitly there. Their method
is that under convenient vector fields and for some particular families of parameters,
CKN inequalities can be transformed to simpler versions such as the Hardy–Sobolev
inequalities and the Gagliardo–Nirenberg inequalities. Since the sharp constants and
optimizers of those inequalities are easier to study, and are known in some particular
classes (see, for instance, [2, 6, 8, 10, 12, 16]), they could deduce the best constants and
extremizers for CKN inequalities in the corresponding regions.

Using the approach as in [33], our next aim is to show that

THEOREM 1.4. Assume that GN (N, p,q,r,μ ,θ ,s) is finite. Then for any smooth
function u, we have

⎛
⎝∫

RN

|u|r dx
|x|s

⎞
⎠

1/r

�d
1
r + p−1

p − 1−a
q − p−1

p (1−a)GN (N, p,q,r,μ ,θ ,s)

×
⎛
⎝∫

RN

(
R 1

d2
(u)
)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q dx

|x|θ

⎞
⎠

1−a
q

.

Moreover, the equality happens at V if and only if
( 1

d

) p−1
p V (|x|d−1x) is an optimizer

for GN (N, p,q,r,μ ,θ ,s) .

As a byproduct, we obtain the following results that studied in [9, 33]

COROLLARY 1.2. Assume that GN (N, p,q,r,μ ,θ ,s) is finite.

(1) If d > 1 , then for any smooth function u, we have

⎛
⎝∫

RN

|u|r dx
|x|s

⎞
⎠

1/r

�d
1
r + p−1

p − 1−a
q − p−1

p (1−a)GN (N, p,q,r,μ ,θ ,s)

×
⎛
⎝∫

RN

|∇u|p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q dx

|x|θ

⎞
⎠

1−a
q

.
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(2) If d < 1 , then for any smooth function u, we have

⎛
⎝∫

RN

|u|r dx
|x|s

⎞
⎠

1/r

�d
1
r + p−1

p − 1−a
q − p−1

p (1−a)−aGN (N, p,q,r,μ ,θ ,s)

×
⎛
⎝∫

RN

|∇u|p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q dx

|x|θ

⎞
⎠

1−a
q

.

Another interesting consequence of Theorem 1.4 is the symmetry and symmetry-
breaking phenomena of the Cafferelli-Kohn-Nirenberg inequalities that will be studied
in Section 3. More precisely, if we denote

CKN (N,μ ,θ ,s, p,q,r) = sup
u∈Dp,q

μ ,θ (RN)

⎛
⎝∫

RN

|u|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

|∇u|p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q dx

|x|θ

⎞
⎠

1−a
q

,

then one has

THEOREM 1.5. Assume that GN (N, p,q,r,μ ,θ ,s) is achieved by both radial and
nonradial optimizers. Then:

(1) If d > 1, CKN (N,μ ,θ ,s, p,q,r) is attained and its maximizers are radial.

(2) If d = 1 , then CKN (N,μ ,θ ,s, p,q,r) is achieved by both radial and nonradial
optimizers.

(3) If 0 < d < 1 , then extremal functions for CKN (N,μ ,θ ,s, p,q,r) , if exist, are
nonradial.

See [9, 33] for related results.

2. Hardy inequalities-proof of Theorem 1.1

Proof of Theorem 1.1. It is clear that we just need to show (C) ⇒ (B). Now sup-
pose that we have (C). Let u ∈C∞

0 (BR) , we set

U (r) =

⎛
⎝ 1
|SN−1|

∫
SN−1

|u(rω)|p dω

⎞
⎠

1
p

,
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we get

p |U (r)|p−2U (r)U ′ (r) =
1

|SN−1|
∫

SN−1

p |u(rω)|p−2 u(rω)
∂u
∂ r

(rω)dω .

Hence,

p |U (r)|p−1 ∣∣U ′ (r)
∣∣� p |U (r)|p−1

⎛
⎝ 1
|SN−1|

∫
SN−1

∣∣∣∣∂u
∂ r

(rω)
∣∣∣∣
p

dω

⎞
⎠

1
p

and

∣∣U ′ (r)
∣∣�
⎛
⎝ 1
|SN−1|

∫
SN−1

∣∣∣∣∂u
∂ r

(rω)
∣∣∣∣
p

dω

⎞
⎠

1
p

.

So

∫
BR

V (|x|) |∇U (x)|p dx =
∣∣SN−1

∣∣ R∫
0

V (r)
∣∣U ′ (r)

∣∣p rN−1dr

�
∣∣SN−1

∣∣ R∫
0

V (r)
1

|SN−1|
∫

SN−1

∣∣∣∣∂u
∂ r

(rω)
∣∣∣∣
p

rN−1dωdr

=
R∫

0

∫
SN−1

V (r)
∣∣∣∣∂u
∂ r

(rω)
∣∣∣∣
2

rN−1dωdr =
∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣
p

dx.

On the other hand,

∫
BR

W (|x|) |U (x)|p dx =
∣∣SN−1

∣∣ R∫
0

W (r) |U (r)|p rN−1dr

=
∣∣SN−1

∣∣ R∫
0

W (r)
1

|SN−1|
∫

SN−1

|u(rω)|p rN−1dωdr

=
R∫

0

∫
SN−1

W (r) |u(rω)|p rN−1dωdr =
∫
BR

W (|x|) |u|p dx.

Applying (C) for the radial function U , we obtain∫
BR

V (|x|) |∇U (x)|p dx �
∫
BR

W (|x|) |U (x)|p dx.

That is ∫
BR

V (|x|)
∣∣∣∣ x
|x| ·∇u

∣∣∣∣
p

dx �
∫
BR

W (|x|) |u|p dx.
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3. Caffarelli-Kohn-Nirenberg inequalities with radial derivative

Let d > 0. As in [33], we define the vector-valued function LN,d : R
N \ {0} →

R
N \ {0} :

LN,d(x) := |x|d−1x

and the mapping DN,d,p , p > 1 :

DN,d,pu(x) :=
(

1
d

) p−1
p

u(LN,d(x)). (3.1)

It was showed that the Jacobian matrix of this function LN,d is

JLN,d = |x|d−1
IN +(d−1) |x|d−3

⎛
⎜⎜⎜⎝

x2
1 x1x2 . . . x1xN

x2x1 x2
2 . . . x2xN

...
...

. . .
...

xNx1 xNx2 . . . x2
N

⎞
⎟⎟⎟⎠ .

and
det(JLN,d ) = d|x|N(d−1). (3.2)

Moreover, under the transform DN,d,p , it was established in [33] that: for continuous
function f , we have

∫
RN

f

(( 1
d

) p−1
p u(x)

)
|x|t dx = d

∫
RN

f
(
DN,d,pu(x)

)
|x|N+td−Nd dx.

In particular, we obtain that u ∈ Ls
(

dx
|x|t
)

if and only if DN,d,pu ∈ Ls
(

dx
|x|N+td−Nd

)
. It

was also proved that if ∇u ∈ Lp
(

dx
|x|μ
)

, then ∇DN,d,pu ∈ Lp
(

dx
|x|d(p+μ−N)+N−p

)
and

∫
RN

|∇DN,d,pu(x)|p
|x|d(p+μ−N)+N−p

dx �
∫

RN

|∇u|p dx

|x|μ . (3.3)

In order to achieve our result, we will first improve (3.3) as follows:

LEMMA 3.1. If R 1
d2

u ∈ Lp
(

dx
|x|μ
)

, then ∇DN,d,pu ∈ Lp
(

dx
|x|d(p+μ−N)+N−p

)
. More-

over, ∫
RN

|∇DN,d,pu(x)|p
|x|d(p+μ−N)+N−p

dx =
∫

RN

(
R 1

d2
u

)p dx

|x|μ .
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Proof. By direct calculations, we have

∂DN,d,pu

∂xi
(x) =

(
1
d

) p−1
p
(
|x|d−1 ∂u

∂xi
(|x|d−1x)+Ai

)
,

for i = 1,2, ...N , where

Ai :=
N

∑
j=1

(d−1) |x|d−3xix j
∂u
∂x j

(|x|d−1x).

Hence, we obtain

|∇DN,d,pu(x)|2

=
N

∑
i=1

(
∂DN,d,pu

∂xi
(x)
)2

=d−2 p−1
p

[
N

∑
i=1

|x|2(d−1)
(

∂u
∂xi

(|x|d−1x)
)2

+
N

∑
i=1

2Ai|x|d−1 ∂u
∂xi

(|x|d−1x)+
N

∑
i=1

A2
i

]
.

Direct computations show

N

∑
i=1

|x|2(d−1)
(

∂u
∂xi

(|x|d−1x)
)2

= |x|2(d−1)
∣∣∣∇u(|x|d−1x)

∣∣∣2 ,

N

∑
i=1

2Ai|x|d−1 ∂u
∂xi

(|x|d−1x) = 2(d−1) |x|2d−2

∣∣∣∣ x
|x| ·∇u(|x|d−1x)

∣∣∣∣
2

,

N

∑
i=1

A2
i = (d−1)2 |x|2d−2

∣∣∣∣ x
|x| ·∇u(|x|d−1x)

∣∣∣∣
2

.

Combining them together, we obtain

|∇DN,d,pu(x)|2 = d−2 p−1
p |x|2(d−1)

(∣∣∣∇u(|x|d−1x)
∣∣∣2 +

(
d2−1

)∣∣∣∣ x
|x| ·∇u(|x|d−1x)

∣∣∣∣
2
)

.

Using the change of variables again, we get

∫
RN

|∇DN,d,pu(x)|p
|x|d(p+μ−N)+N−p

dx

=
1
d

∫
RN

|∇DN,d,pu(x)|p
|x|p(d−1) ||x|d−1x|μ d|x|N(d−1)dx

=
1
d

∫
RN

d1−p

(∣∣∇u(|x|d−1x)
∣∣2 +

(
d2−1

)∣∣∣ x
|x| ·∇u(|x|d−1x)

∣∣∣2)
p
2

||x|d−1x|μ d|x|N(d−1)dx
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=
∫

RN

(
1
d2 |∇u(y)|2 +

(
1− 1

d2

)∣∣∣∣ y
|y| ·∇u(y)

∣∣∣∣
2
) p

2 dy

|y|μ

=
∫

RN

(
R 1

d2
u

)p dx

|x|μ .

We are now ready to provide a proof for Theorem 1.4.

Proof of Theorem 1.4. Denote

ICKN (N,μ ,θ ,s, p,q,r) = sup
u∈Dp,q

μ ,θ (RN)

⎛
⎝∫

RN

|u|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

(
R 1

d2
u

)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q dx

|x|θ

⎞
⎠

1−a
q

.

By Lemma 3.1, it is easy to see that

⎛
⎝∫

RN

|v|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

(
R 1

d2
v

)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|v|q dx

|x|θ

⎞
⎠

1−a
q

=

⎛
⎝d1+ p−1

p r
∫

RN

∣∣DN,d,pv
∣∣r

|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

∣∣∇DN,d,pv
∣∣p dx

⎞
⎠

a
p
⎛
⎝d1+ p−1

p q
∫

RN

∣∣DN,d,pv
∣∣q

|x|N+θd−Nd dx

⎞
⎠

1−a
q

.

As a consequence

ICKN (N,μ ,θ ,s, p,q,r) = d
1
r + p−1

p − 1−a
q − p−1

p (1−a)GN (N, p,q,r,μ ,θ ,s) .

Also, V is a maximizer for ICKN (N,μ ,θ ,s, p,q,r) if and only if U = DN,d,pV is an
optimizer for GN (N, p,q,r,μ ,θ ,s) .

3.1. The case d > 1

We will also assume that GN (N, p,q,r,μ ,θ ,s) can be achieved by radial max-
imizers. In this case, we will show that CKN (N,μ ,θ ,s, p,q,r) can be attained, its
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extremal functions must be radially symmetric and

CKN (N,μ ,θ ,s, p,q,r) = d
1
r + p−1

p − 1−a
q − p−1

p (1−a)GN (N, p,q,r,μ ,θ ,s) .

THEOREM 3.1. Assume that d > 1 and GN (N, p,q,r,μ ,θ ,s) can be attained
by radial maximizers. Then CKN (N,μ ,θ ,s, p,q,r) can be attained. Moreover its
extremal functions must be radially symmetric and

CKN (N,μ ,θ ,s, p,q,r) = d
1
r + p−1

p − 1−a
q − p−1

p (1−a)GN (N, p,q,r,μ ,θ ,s) .

Proof. Indeed, let U0 be the radial optimizer for GN (N, p,q,r,μ ,θ ,s) and let
V0 = D−1

N,d,pU0 , that is U0 = DN,d,pV0 . Since V0 is also radial, we obtain:

(∫
|V0|r dx

|x|s
)1/r

⎛
⎝∫

RN

|∇V0|p dx

|x|μ

⎞
⎠

a
p (∫

|V0|q dx
|x|θ

) 1−a
q

=

(∫
|V0|r dx

|x|s
)1/r

⎛
⎝∫

RN

(
R 1

d2
(V0)

)p dx

|x|μ

⎞
⎠

a
p (∫

|V0|q dx
|x|θ

) 1−a
q

=d
1
r + p−1

p − 1−a
q − p−1

p (1−a)

⎛
⎝∫

RN

|U0|r
|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

|∇U0|p dx

⎞
⎠

a
p
⎛
⎝∫

RN

|U0|q
|x|N+θd−Nd dx

⎞
⎠

1−a
q

.

Also, for any v , we get

d
1
r + p−1

p − 1−a
q − p−1

p (1−a)

⎛
⎝∫

RN

∣∣DN,d,pv
∣∣r

|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

∣∣∇DN,d,pv
∣∣p dx

⎞
⎠

a
p
⎛
⎝∫

RN

∣∣DN,d,pv
∣∣q

|x|N+θd−Nd dx

⎞
⎠

1−a
q
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=

⎛
⎝∫

RN

|v|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

(
R 1

d2
(v)
)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|v|q dx

|x|θ

⎞
⎠

1−a
q

�

⎛
⎝∫

RN

|v|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

|∇v|p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|v|q dx

|x|θ

⎞
⎠

1−a
q

.

Hence V0 is an optimizer for CKN (N,μ ,θ ,s, p,q,r) and ICKN (N,μ ,θ ,s, p,q,r) . As
a consequence

CKN (N,μ ,θ ,s, p,q,r) = ICKN (N,μ ,θ ,s, p,q,r)

= d
1
r + p−1

p − 1−a
q − p−1

p (1−a)GN (N, p,q,r,μ ,θ ,s) .

Now, let V be a maximizer for CKN (N,μ ,θ ,s, p,q,r) :

CKN (N,μ ,θ ,s, p,q,r) =

⎛
⎝∫

RN

|V |r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

|∇V |p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|V |q dx

|x|θ

⎞
⎠

1−a
q

�

⎛
⎝∫

RN

|V |r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

(
R 1

d2
(V )
)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|V |q dx

|x|θ

⎞
⎠

1−a
q

� ICKN (N,μ ,θ ,s, p,q,r) .

Hence V must be radially symmetric.

3.2. The case 0 < d < 1

In the case 0 < d < 1, we have∫
RN

(
R 1

d2
v

)p dx

|x|μ � 1
dp

∫
RN

|∇v|p dx

|x|μ .

Hence

CKN (N,μ ,θ ,s, p,q,r) � 1
da ICKN (N,μ ,θ ,s, p,q,r)

= d
1
r + p−1

p − 1−a
q − p−1

p (1−a)−aGN (N, p,q,r,μ ,θ ,s) .
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Now, if we also assume that GN (N, p,q,r,μ ,θ ,s) can be attained by both radial
and nonradial maximizers, then we will show that optimizers for CKN (N,μ ,θ ,s, p,q,r) ,
if exist, are not radial. In other words, the symmetry breaking phenomenon happens.

THEOREM 3.2. Assume 0 < d < 1 and GN (N, p,q,r,μ ,θ ,s) can be attained by
both radial and nonradial maximizers. Then optimizers for CKN (N,μ ,θ ,s, p,q,r) , if
exist, are not radial.

Proof. Indeed, let us assume that CKN (N,μ ,θ ,s, p,q,r) can be attained by a
radial maximizer V . Then we will show that U = DN,d,pV is a maximizer for
GN (N, p,q,r,μ ,θ ,s) . Indeed, noting that since GN (N, p,q,r,μ ,θ ,s) can be attained
by radial maximizers, we have

GN (N, p,q,r,μ ,θ ,s)

= sup
u∈Dp,q

0,N+θd−Nd(RN):u is radial

⎛
⎝∫

RN

|u|r
|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

|∇u|p dx

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q
|x|N+θd−Nd

dx

⎞
⎠

1−a
q

.

Now, for any radial function u , we have with the radial function v = D−1
N,d,pu , that is

u = DN,d,pv , that

d
1
r + p−1

p − 1−a
q − p−1

p (1−a)

⎛
⎝∫

RN

|u|r
|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

|∇u|p dx

⎞
⎠

a
p
⎛
⎝∫

RN

|u|q
|x|N+θd−Nd dx

⎞
⎠

1−a
q

=

⎛
⎝∫

RN

|v|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

(
R 1

d2
(v)
)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|v|q dx

|x|θ

⎞
⎠

1−a
q

=

⎛
⎝∫

RN

|v|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

|∇v|p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|v|q dx

|x|θ

⎞
⎠

1−a
q

�

⎛
⎝∫

RN

|V |r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

|∇V |p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|V |q dx

|x|θ

⎞
⎠

1−a
q
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=d
1
r + p−1

p − 1−a
q − p−1

p (1−a)

⎛
⎝∫

RN

|U |r
|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

|∇U |p dx

⎞
⎠

a
p
⎛
⎝∫

RN

|U |q
|x|N+θd−Nd dx

⎞
⎠

1−a
q

.

As a consequence

CKN (N,μ ,θ ,s, p,q,r) =

⎛
⎝∫

RN

|V |r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

|∇V |p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|V |q dx

|x|θ

⎞
⎠

1−a
q

=

⎛
⎝∫

RN

|V |r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

(
R 1

d2
(V )
)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|V |q dx

|x|θ

⎞
⎠

1−a
q

= d
1
r+

p−1
p −1−a

q −p−1
p (1−a)

⎛
⎝∫

RN

|U |r
|x|N+sd−Nd dx

⎞
⎠

1/r

⎛
⎝∫

RN

|∇U |pdx

⎞
⎠

a
p
⎛
⎝∫

RN

|U |q
|x|N+θd−Nd

dx

⎞
⎠

1−a
q

= d
1
r + p−1

p − 1−a
q − p−1

p (1−a)GN (N, p,q,r,μ ,θ ,s)
= ICKN (N,μ ,θ ,s, p,q,r) .

Now, let W be a nonradial optimizer for GN (N, p,q,r,μ ,θ ,s) . Hence Z = D−1
N,d,pW is

a nonradial optimizer for ICKN (N,μ ,θ ,s, p,q,r) . Then

ICKN (N,μ ,θ ,s, p,q,r) =

⎛
⎝∫

RN

|Z|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

(
R 1

d2
(Z)
)p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|Z|q dx

|x|θ

⎞
⎠

1−a
q
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<

⎛
⎝∫

RN

|Z|r dx
|x|s

⎞
⎠

1/r

⎛
⎝∫

RN

|∇Z|p dx

|x|μ

⎞
⎠

a
p
⎛
⎝∫

RN

|Z|q dx

|x|θ

⎞
⎠

1−a
q

� CKN (N,μ ,θ ,s, p,q,r)

and we get a contradiction.

3.3. Some special cases

When N + sd−Nd = N + θd−Nd = 0, then we have that GN (N, p,q,r,μ ,θ ,s)
can be attained by both radial and nonradial optimizers (see [14, 15, 33, 46]). Hence in
this case we have: (1) If d > 1, CKN (N,μ ,θ ,s, p,q,r) is attained by radial maximizers
only. (2) If d = 1, CKN (N,μ ,θ ,s, p,q,r) can be achieved by both radial and nonradial
optimizers and (3) If 0 < d < 1, extremal functions for CKN (N,μ ,θ ,s, p,q,r) , if exist,
are nonradial.

Moreover, in the following very special case:

1 < p < p+ μ < N, θ =
Nμ

N− p
= s < N

1 � q < r <
Np

N− p
; a =

[(N−θ )r− (N− s)q] p
[(N−θ ) p− (N− μ − p)q]r

r = p
q−1
p−1

,

then by the result of [14, 15]:

CKN (N,μ ,θ ,s, p,q,r)
=ICKN (N,μ ,θ ,s, p,q,r)

=
(

N− p
N− p− μ

) 1
r + p−1

p − 1−a
q − p−1

p (1−a)

×
(

q− p

p
√

π

)a( pq
N (q− p)

) a
p
(

δ
pq

) 1
r

⎛
⎝ Γ

(
q p−1

q−p

)
Γ
(

N
2 +1

)
Γ
(

p−1
p

δ
q−p

)
Γ
(
N p−1

p +1
)
⎞
⎠

a
N

with δ = Np−q(N− p) . Moreover, all the maximizers have the form

V0 (x) = A
(
1+B |x|N−p−μ

N−p
p

p−1

)− p−1
q−p

for some A ∈ R, B > 0.

Similarly, in the class

1 < p < p+ μ < N, θ =
Nμ

N− p
= s < N
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1 � q < r <
Np

N− p
; a =

[(N−θ )r− (N− s)q] p
[(N−θ ) p− (N− μ − p)q]r

q = p
r−1
p−1

, r > 2− 1
p
,

we have with δ = Np− r (N− p)

CKN (N,μ ,θ ,s, p,q,r)

=
(

N− p
N− p− μ

) 1
r + p−1

p − 1−a
q − p−1

p (1−a)

×
(

p− r

p
√

π

)a( pr
N (p− r)

) a
p ( pr

δ

) 1−a
q

⎛
⎝ Γ

(
p−1
p

δ
p−r +1

)
Γ
(

N
2 +1

)
Γ
(
r p−1

p−r +1
)

Γ
(
N p−1

p +1
)
⎞
⎠

a
N

.

Also all the maximizers have the form

V0 (x) = A
(
1−B |x|N−p−μ

N−p
p

p−1

)− p−1
r−p

+
for some A ∈ R, B > 0.

3.4. Proof of Theorem 1.2

Proof of Theorem 1.2. We will follow [12]. First, we note that

∫
RN

∣∣∣∣∣ (R0 (u))x

|x|b+1 + t
x

|x|a+1 u

∣∣∣∣∣
2

dx

=
∫

RN

|R0 (u)|
|x|2b

2

dx+ t2
∫

RN

|u|2
|x|2a dx+2t

∫
RN

u
x ·∇u

|x|a+b+1 dx � 0 for every t ∈ R.

If we choose

t = −

∫
RN

u
x ·∇u

|x|a+b+1 dx

∫
RN

|u|2
|x|2a dx

,

then

∫
RN

∣∣∣∣∣∣∣∣∣∣∣
(R0 (u))x

|x|b+1 −

∫
RN

u
x ·∇u

|x|a+b+1 dx

∫
RN

|u|2
|x|2a dx

x

|x|a+1 u

∣∣∣∣∣∣∣∣∣∣∣

2

dx=
∫

RN

|R0 (u)|
|x|2b

2

dx−

⎛
⎝∫

RN

u
x ·∇u

|x|a+b+1 dx

⎞
⎠

2

∫
RN

|u|2
|x|2a dx

.
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In other words,⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠
⎛
⎝∫

RN

|R0 (u)|
|x|2b

2

dx

⎞
⎠−

⎛
⎝∫

RN

u
x ·∇u

|x|a+b+1 dx

⎞
⎠

2

=
1∫

RN

|u|2
|x|2a dx

∫
RN

∣∣∣∣∣∣
⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠ (R0 (u))x

|x|b+1 −
⎛
⎝∫

RN

u
x ·∇u

|x|a+b+1 dx

⎞
⎠ x

|x|a+1 u

∣∣∣∣∣∣
2

dx

Also, by integration by parts, we get

∫
RN

u
x ·∇u

|x|a+b+1 dx = −
∫

RN

u
x ·∇u

|x|a+b+1 dx− [N−a−b−1]
∫

RN

|u|2
|x|a+b+1 dx.

That is ∫
RN

u
x ·∇u

|x|a+b+1 dx = −N−a−b−1
2

∫
RN

|u|2
|x|a+b+1 dx.

Hence⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠
⎛
⎝∫

RN

|R0 (u)|2
|x|2b

dx

⎞
⎠−

⎛
⎝ |N−a−b−1|

2

∫
RN

|u|2
|x|a+b+1 dx

⎞
⎠

2

=

∫
RN

∣∣∣∣∣∣
⎛
⎝∫

RN

|u|2
|x|2a dx

⎞
⎠ (R0 (u))x

|x|b+1 −
⎛
⎝N−a−b−1

2

∫
RN

|u|2
|x|a+b+1 dx

⎞
⎠ x

|x|a+1 u

∣∣∣∣∣∣
2

dx

∫
RN

|u|2
|x|2a dx

� 0.

Also, by [7], it is clear that |N−a−b−1|
2 is sharp.

3.5. Proof of Theorem 1.3

Proof of Theorem 1.3. We will first transform the integrals over R
N to integrals

over the cylinder C = S
N−1 ×R as follows: set

v(t,ω) = e−t N−2−2b
2 u

(
e−t ,ω

)
we get

∫
RN

|u|2
|x|2a dx =

∞∫
0

∫
SN−1

|u|2 (r,ω) rN−1−2adωdr =
∫
C

|v|2 (t,ω)e2(a−b−1)t dμ ,
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∫
RN

|∇u|2
|x|2b dx =

∞∫
0

∫
SN−1

[
|ur|2 (r,ω)+

1
r2 |∇ωu(r,ω)|2

]
rN−1−2bdωdr

=
∫
C

|∇ωv(t,ω)|2 + |vt |2 (t,ω)+
(

2b+2−N
2

)2

|v|2 (t,ω)dμ

and

∫
RN

∣∣∣ x
|x| ·∇u

∣∣∣2
|x|2b

dx =
∞∫

0

∫
SN−1

|ur|2 (r,ω)rN−1−2bdωdr

=
∫
C

|vt |2 (t,ω)+
(

2b+2−N
2

)2

|v|2 (t,ω)dμ .

Now assume that u is a nonradial optimizer of (1.4). Then v is also nonradial. Hence,
if we now decompose v in terms of spherical harmonics

v =
∞

∑
k=0

vk =
∞

∑
k=0

fk (t)φk (ω) ,

there exists some k � 1 such that fk (t) is not identical to 0.
We observe that∫

C

|∇ωv(t,ω)|2 + |vt |2 (t,ω)+
(

2b+2−N
2

)2

|v|2 (t,ω)dμ

=
∞

∑
k=0

∫
R

[∣∣ f ′k∣∣2 (t)+

(
λk +

(
2b+2−N

2

)2
)
| fk|2 (t)

]
dt

and ∫
C

|vt |2 (t,ω)+
(

2b+2−N
2

)2

|v|2 (t,ω)dμ

=
∞

∑
k=0

∫
R

[∣∣ f ′k∣∣2 (t)+
(

2b+2−N
2

)2

| fk|2 (t)

]
dt.

Now, if we set

V (t,ω) =

(
∞

∑
k=0

| fk|2 (t)

) 1
2

and U (r,ω) = r
2b+2−N

2 V (− lnr,ω) ,

then we have

∞

∑
k=0

∣∣ f ′k∣∣2 (t) �

(
∞

∑
k=0

f ′k (t) fk (t)

)2

∞

∑
k=0

| fk|2 (t)
= |Vr|2 (t,ω)
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and ⎛
⎝ ∞

∑
k=0

∫
R

[∣∣ f ′k∣∣2 (t)+
(2b+2−N

2

)2 | fk|2 (t)
]
dt

⎞
⎠
⎛
⎝ ∞

∑
k=0

∫
R

e2(a−b−1)t | fk|2 (t)dt

⎞
⎠

⎛
⎝ ∞

∑
k=0

∫
R

e(a−b−1)t | fk|2 (t)dt

⎞
⎠

2

�

⎛
⎝∫

R

|Vr|2 (t,ω)+
(

2b+2−N
2

)2 |V |2 (t,ω)dt

⎞
⎠
⎛
⎝∫

R

e2(a−b−1)t |V |2 (t,ω)dt

⎞
⎠

⎛
⎝∫

R

e(a−b−1)t |V |2 (t,ω)dt

⎞
⎠

2

=

⎛
⎝∫

RN

|U|2
|x|2a dx

⎞
⎠
⎛
⎝∫

RN

|∇U|2
|x|2b dx

⎞
⎠

⎛
⎝∫

RN

|U|2
|x|a+b+1 dx

⎞
⎠

2 �
( |N−a−b−1|

2

)2

.

As a consequence, all the equalities must happen in all the above inequalities. Hence
there exists some α such that

f ′j (t) = α f j (t)

for all j � 0 such that f j (t) is not identical to 0. That is

f j (t) = Cje
αt for some Cj 	= 0.

Hence V (t) =

(
∞

∑
k=0

| fk|2 (t)

) 1
2

=

(
∞

∑
k=0

|Ck|2
) 1

2

eαt . On the other hand, U must be an

optimizer for (1.5) and so by [7], U (t) = Dexp
(

s
b+1−at

b+1−a
)
, s 	= 0. Thus, V (t) =

U (e−t)et 2b+2−N
2 = Dexp

(
se−t(b+1−a)

b+1−a

)
et 2b+2−N

2 which is impossible.

In conclusion, optimizers for (1.4) must be radially symmetric.
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