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ON THE REVERSE HARDY-TYPE INTEGRAL INEQUALITIES IN THE
WHOLE PLANE WITH THE EXTENDED RIEMANN-ZETA FUNCTION

MICHAEL TH. RASSIAS, BICHENG YANG AND ANDREI RAIGORODSKII

(Communicated by J. Pecari¢)

Abstract. In the present paper, using weight functions we obtain some equivalent conditions of
two kinds of the reverse Hardy-type integral inequalities with a nonhomogeneous kernel in the
whole plane. The constant factors, which are related to the extended Riemann zeta function, are
proved to be the best possible. In the form of applications, a few equivalent conditions of two
kinds of the reverse Hardy-type integral inequalities with the homogeneous kernel in the whole
plane are deduced. We also consider some particular cases.

1. Introduction

If f(x)vg()) > O,
<,/0 ( ) < <,/0 ( ) =

then we have the following Hilbert integral inequality with the best possible constant
factor m (see [1]):

/Ow/ow%g)(]y)dxdy<ﬂ(/omf2(x)dx/0mg2(y)dy)%. (1)

Recently, by using weight functions, several generalizations of (1) were obtained in
two books [2], [3]. Some Hilbert-type inequalities with the homogenous kernels and
nonhomogenous kernels were established in [4]-[9]. In 2017, Hong [10] also presented
an equivalent condition between Hilbert-type inequalities with a homogenous kernel
and some parameters. Some other kinds of Hilbert-type inequalities were obtained in
[11]-[18]. Most of these inequalities are constructed in the quarter plane of the first
quadrant.

In 2007, Yang [19] established the following Hilbert-type integral inequality in the
whole plane:

/: /: %dw e @ %) (/_ie_mf ’ (x>d’“/_ie_”gz (y>dy) % ,(2)
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where the constant factor B(%, %) is the best possible (A > 0, B(u,v) stands for the
beta function) (see [35]). He et al. [20]-[33] proved some new Hilbert-type integral
inequalities in the whole plane with the best possible constant factors.

In this paper, we obtain a few equivalent conditions of two kinds of the reverse
Hardy-type integral inequalities with a nonhomogeneous kernel in the whole plane.
The constant factors related to the extended Riemann zeta function are proved to be the
best possible. In the form of applications, a few equivalent conditions of two kinds of
the reverse Hardy-type integral inequalities with a homogeneous kernel in the whole
plane are deduced (see also [34]). We also consider some particular cases.

2. Two lemmas and an example

EXAMPLE 1. Setting

|In|xy||P
h(xy) := (x,y €R),
(max{[xy[, 1})* =y — 1
and then p
1
In]u] .

u)=
()= G, 1) T 1]
for B,0 > 0,4 € R, it follows that

U InufPuc—! 1 1
kM — / |
(0) o (max{u,1})A-1 \u+1 * lu—1| du

1 1 1
= — B o1
/ (—Inu) ( 1 + = ) du

u%= 1
2/ —Inu)P du—2/ (—Inu)P Y w?¥Fo-lqy,

By the Lebesgue term by term integration theorem (cf. [37]), we have

(o) =2 / —Inu)Puolgy =2 7/ e vay
) kg() 0 (=Inw) ,ZE)(ZIH—G)ﬁ“ 0

_T(B+1)

S {B+1.5) Ry, ©)

where , |
{(s,a) = IZBW (Re(s) > l;a>0)

is the extended Riemann zeta function. Note that {(s,1) =X | %, Re(s) > 1 is the
Riemann zeta function (cf. [35]).

Similarly, for § > 0,0 < A, we find

oo B, o0-1 1 1
2) o |Tnu|Pu
K=(o): /1 (max (e AT \ae 1 1)
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U InulPutr—o-1 1 1
=/ + du
o (max{u, 1A \u+1 |u—1]|

_ Lﬁz;l)g(ﬁﬂ,’l;g)em. 4)

In the sequel, we shall always have that 0< p<1, p+;1—1, 01, 0,4 € R=(—00,00),
B >0, and M,M, > 0.

LEMMA 1. If 6 > 0 and for any nonnegative measurable functions f(x), g(y) in
R, the following inequality

SN D
fs l/ (ma (o], 1)~ 1|] N

> | [t [Tt tgn]T o)

holds true, then we have

o1=0 and KV (c) > M,.

Proof. If 01 < o, then for n € N, we set the following two functions:

L
)T o< Iy <1
a(x) 1= ,
Sa®) { 0,[x] > 1

00<\y\<1
gn(y) =

peT =1

and derive that

i | [ ot a H/ pir-o0 ety

b !
= [/ ‘x‘Pl o) 1|x|P )dx] % |:/ | |q1 o) 1\y\qcl qn )dy
-1 slyl=1}
1 1
= (2/1x11dx> ’ (2/°° —i=lg )" =2
- " y ndy| =2n.
0 1
We obtain

bl ‘IH‘XYH Ja(x)
h _/ gnly l/ (max{|xy|, 1})*1|xy — |dx] “

[ B ot
= dx| (=y)'""e T d
/. l/ max (ol 1T -1 T
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L

1
y

| B0+
ol Pl T oy,
(max{Jl, THA Ty — 1

o)
- [ [/ )+ h(xy >>|x|"+»51dx]y"w%1dy
= 7| et oo ay ©
and then by (5) we have
0 (GJFL)%
pnj oc—0o1+

1 (o}
- [/ <h<—u>+h<u>>|u|<"+ﬁn>ldu} oo ay
_1 1

= I] ZMIJI = 2M1n.

-

(7

1
Since {(h(—u)+h(u))u® ! =, (u€(0,1)) is a nonnegative and increasing se-
quence, by Levi’s theorem (cf. [37]), it follows that

kW (G—!— an) = /Ol(h(—u)—kh(u))umrl’_l"_ldu

1
- / (h(—1) + h(u))u®'du = KV () (n — o),
0
and thus by (7) we get that

(1)
2K (o) > o,
O — O]

oo

which is a contradiction.

If o1 > o, then for n > m (n € N) we set the following two functions:

Fl = { OO<|x|<l
[

L1

L
Gay) = P o< <
0,[y[>1

and derive that

1 1

o= | [ ot a0 gay|
- 1 1 1
_ [2/1 xp(lo)lxp<o,}nl>dx]” {2/0 yq<1ol)1yq<ol+‘,',,1>dyr
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1 1
o Y 1 a
= (2/ x_%_ldx)p (2/ y%_ldy>q =2n.
1 0

We obtain
1 ~
7l |In[xy| P g (y)
I = 3 dy|d
= [ [/X (max{ [y, 1})*~ 1|xy T
-1
_/ / [In P[] ay| (o F 1
L (max{ xy[, 1)y — 1]
+/ /; [In ey By ! dy| x° L ax
~ 1 (max{ py[, 1)y — 1

—xy) + h(xy >>|y|"'+q'nldy] Xy

- [
— /100 [/1 (h(—u) + h(u))ulg”qlnld”] ©o=o) =gy, ®)

and then by Fubini’s theorem (cf. [37]) and (5), it follows that

2K()<61+ 1>; - [/ll(h(—u)+h(u))lucl+ d}/1 o1y

qn Gl—G—F—
1 !
N A
=] = n d
= &0 l/ max (ol A o — 11| ¥
> MyJy = 2Min. 9)

Since o +Ln o, we have that
(1) 1 ! o1+ A1
0 <& o1+ :/ (h(—1) + h() Ju®F 7 du
0

1
< / (h(—1) + h(u))u®~'du = KV (G) < o,
0
and then by (9), for n — oo, it follows that
2k (o)

0o —O

b

which is a contradiction.
Hence, we conclude that o1 = ©.
For 0, = o, we reduce (7) as follows:

1
kW (G—l— L) = / (h(—u) +h(u))u0+l’_1"_ldu > M,.
0

pn

Still by Levi’s theorem, for n — oo, we have K(V)(6) > M.
This completes the proof of the lemma.
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LEMMA 2. If 6 < A and for any nonnegative measurable functions f(x),

in R, the following inequality

- |1n |xy||P f(x)dx
/_Ng(y) l/{x;l’d?){} (max{|xy|, 1})/1—1|xy— 1|‘| dy

>t [ [ =0 oy H/ pirt-o01ge(y)ay

holds true, then we have

o1 =0 and K(z)(O') >M,.

g(y)

(10)

Proof. If ) > o, then for n € N we set two functions f,(x) and g,(y) as in

Lemma 1 and find

1

o= | [t a7 bt o]~ 2n

‘We obtain

- [ In [y |8 f, (x)dx
L :=/ an(y) / dy
oo {whf> 4} (max{|xyl, 1}>“\xy—1\
0 [In ey [P x| 7~ dx o+ o1
= — an
I [/{—} (max (] 1)1~ wxy—u e
! [In Jey|[P[x[® 7~ dxc or+L-1
L o
0 [{x:lxlzi} (max{|xy|, 1})*~ 1\xy—1\
1 1
= [T| ], () a7 x| 5y
0 M=t}

= [ e 1du] @-0)d-lgy,

and then by (10), it follows that

@) 1 1 ~ ~
2K 00— — | ——— =L > MyJ; =2Mn.
pn —o+1

(1)

1
Since {(h(—u)+h(u))u® ! = (u € (1,%0)) is a nonnegative and increasing func-

tion sequence, by Levi’s theorem (cf. [37]), it follows that

K® (a—i> = /lm(h(—u)m(u))u“v%*ldu

pn
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- /100(’1(—”) +h(u)u® du=KP(0)(n — o),

and then by (11), we deduce that

2K (o)
o —O ’
which is a contradiction.
If 01 < o, then for
1
(neN),

nz - ———
" (o—o01)lq|
we set two functions f;,(x) and g,(y) as in Lemma 1 and deduce that

hi= | [ et a H/ bl tggly)ay|” =2n

‘We obtain

= In|xy|[P g, (y)dy
1222/ fn(x)/ 1 [tn o] /1(71) dx
oo {1} (max{|xyl, 1}) ey —1]
Bly[Ot g~
_/ / [Inxy[[P ]y qu dy ()™
==Ly (max{|xy|, 1}) Ixy—ll
+/1 / [Infy] Py dy ]xmr,,'nldx
0o |/

vz} (max{|xyl, LA xy — 1
1
= [, () I ey
0 LJ/{ly=1y

N R O e e
{uslu[>1}

and then by Fubini’s theorem (cf. [37]) and (8), it follows that

1 1
2K2<Gl——)71
qn) c—o1+

—/ o-0rts ldx/ (h(—u) + h(u)|u® 7 du
ulul>1}

[ In ey [P i (x)dx
=hL= / gn(y / dy
l fwiel> ) (max{]ay], 11)A oy — 1
= M2J1 :2M2n.

Since o] — qin < o0, we have

0 < K¥(o —ql—n) :/IN(h(—u)—i-h(u))ug' a

531

(12)



532 M. TH. RASSIAS, B. YANG AND A. RAIGORODSKII
< / (h(—1) + h(u))u®~'du = K@) (G) < oo,
1

and then by (12), for n — oo, it follows that

1

o > 2K ()
O — O]

= oo,
which is a contradiction.

Hence, we conclude that 01 = ©.

For o, = o, we reduce (11) as follows:

@ (g LYo [Tin— o k-1
K (a pn>_/1 (h(—10) + h(u))u® 7 du > Mp. (13)

1
Since {(h(—u)+h(u))u® ! ~_ (u € [1,00)) is a nonnegative and increasing func-
tion sequence, still by Levi’s theorem (cf. [37]), we have
K@) = [ tim(h(—u)+h(u)u® ' du

1 n—ee

oo

= lim | (h(—u)+h(u)u® 7 du> M.

n—eo [1

This completes the proof of the lemma.

3. Reverse Hardy-type integral inequalities of the first kind

THEOREM 1. If ¢ > 0, then the following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0< / Ix|PU=9) =1 P (x)dx < oo,

we have the following reverse Hardy-type integral inequality of the first kind with a
nonhomogeneous kernel.:

N R T e R
J = {/_wyl’ [/_1 (max{|xy|,1})l—1xy_1] d}’}

[

1
> M, U xp(l_c)_lfp(x)dx}’ . (14)
(ii) For any g(y) > 0, satisfying

0< L 1001 ed(p)dy < oo,



REVERSE HARDY-TYPE INTEGRAL INEQUALITIES 533

we have the following reverse Hardy-type integral inequality of the first kind with a
nonhomogeneous kernel:

1

. 3l

ho= 3 [ et / ol Peay  |° 1"
— = (max{ eyl THAHay — 1]

Il

> My U [yt q(y)dyr~ (15)
(iii) For any f(x),g(y) > 0, satisfying
0< / x|PU=9) =1 P (x)dx < 00 and 0 < / |y|9U =90~ 1gd(y)dy < oo,

we have the following inequality:

[ ¥ ol F(x)dx
I:= /_wg(Y) [/1 (max{|xy|71})llxy_1] dy

Il

> M, [/ e[PU=9)=1 P (1) ] [/ |y[ati=on=1 ‘f(y)dyr. (16)
(iv) 61 = 0, and KV (o) > M.

If Condition (iv) holds true, then the constant factor My = K(c) (€ R.) in
(14), (15) and (16) (for o1 = © ) is the best possible.

Proof. (i) = (iii). By the reverse Holder inequality (cf. [36]), we have

_ o—% [ |ln|xy||ﬁf(x)dx >0l
= l|y| HY (max{|xy|,1}>z—lxy_1]<y g)) dv

]

>J[/ [y[ati-on -1 q(y)dyr. (17)

Then by (14), we derive (15).
(ii) = (iii) . By the reverse Holder inequality (cf. [36]), we have

I oot [ [Inlxyl[Pe(y)dy
1= [ (ese) ('X' I <max{|xy|,1}>“|xy—1|>d"

x|

> | [ ot as| (8)

Then by (14), we deduce (16).
(iii) = (iv). By Lemma 1, we get that 6, = &, and K" (c) > M.
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(iv) = (i). We obtain the following weight function: For y # 0,

B |In |xy|[B|x|°dx

wi(o,y) = [y[°
W (maX{IxyI LAy — 1
= l° 4 h(xy)(—x)°'dx + [y]° O‘y‘h(xy)xcf—ldx
]
1
= 1 [ e b1 [ e
0

B _
= 17 [ P (i) + Al
1
- / (h(—10) + h(u))u®'du = KV (o), (19)
0
By the reverse Holder inequality with weight and (19), we have

/,i o] Brdx ]
=t (max{ bey[, 1)1y — 1|

]

1 p
B o |y|(6—1)/p |x|(6—1)/q
[ B | e

1 p—1
Bl "7 (x) o (!
> -1 h(xy) |x|(c=Dr/q dx -1 h( )\y\(cfl)q/z?
[ \y\
1
_ [N yl°~ ' P q(1-0)-1 p=1
- / ) e (s o1 (0.3 190=)
= o1
= K@)t [T e AT 20)

Il

If (20) assumes the form of equality for some y € R\{0}, then (cf. [36]) there
exist constants A and B, such that they are not all zero, and

‘x‘o—l
ly|(e—=Da/p

We suppose that A # 0 (otherwise B=A = 0). It follows that

a.e. in R.

o) B .
P = ) e e iR,

which contradicts the fact that

0</ Ix|PU=9) =1 P (x)dx < oo,
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Hence, (20) takes the form of strict inequality.
For o1 = o, by the above results and Fubini’s theorem (cf. [37]), we have

. oo L o—1 %
J > (KO (a) { / [ [ o) 2 >dx] dy}
L

1 * % ot !
= (K" (o)) { / [ [ hW)ﬁdy] / ’”(x"’x}
SN il X

~ ko)t | [~ antoirt e

=K<”(o>[/°° P00 ]

L

Since K(V)(6) > M;, we have

L

1>K<1>(G)U x[P=9)=1 £P (x)a ]lel[/ P01 £ (x)d ] :

namely, (14) follows.
(iv) = (ii). Similarly, for o1 = o, and K()(c) > M), by the reverse Holder
inequality, we have

=]

/% inpolPe()dy | _ (KW(@)! rar 678 0)

- () S gy,
= (max{xyl, )Ty — 1] o1 Jor Py nar
from which we can deduce (15).

Therefore, conditions (i), (i), (iii) and (iv) are equivalent.

When Condition (iv) is satisfied, if there exists a constant M; > K1) (o), such that
(16) is valid, then for K(V)(c) > M; the constant factor M; = K(V)(5) in (16) is the
best possible.

The constant factor M; = K1) (c)(€ Ry) in (14) is still the best possible. Oth-
erwise, by (17) (for 01 = o), we can conclude that the constant factor M| = K (1)(6)
in (16) is not the best possible. Similarly, by (18) (for 6] = ¢), we can prove that the
constant factor M; = K1) (o) in (15) is the best possible.

In particular, for 0 = 0] = ;—) > 0 in Theorem 1, we have

COROLLARY 1. The following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0< / |72 fP (x)dx < oo,
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we have the following inequality:

=l nw|frx)d T S >
{/oo /;‘1‘ (max|{|ric|;|y|1|})];(x2x§;—1] dy} > M (/wxp_zfp(x)dx) 2D

Iy
(ii) For any g(y) > 0, satisfying

0< / gl(y)dy < e,

we have the following inequality:
1

oo % nlx B q % - L
{/m|x|q2 V_l (max|{1x|y|f}|1|};gl(i?|?;_l|] dx} > M, (/mgq(y)dy> (22)

I

(iii) For any f(x),g(y) > 0, satisfying
0< / [x|P~2 fP (x)dx < oo and 0 < / gl(y)dy < oo,
we have the following inequality:

« T rh bl pd
KD [/1 mas{lol. 1o~ 1|] ®

]

>M1</ I[P~ £7 (x) ) (/ g4 ) (23)

(iv) KD(3) > M.
If Condition (iv) holds true, then the constant

M; =k (%) :%C@H,%)

in (21), (22) and (23) is the best possible.

Setting
1

v 6=5(3) 2

in Theorem 1, and then replacing Y by y, we obtain the following corollary:

y:

COROLLARY 2. The following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0</ Ix|PU=9) =1 P (x)dx < oo,
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we have the following inequality:

“ g [ mplPrwas )
{/w e l/y (max{|x/y,1}>»—1|x/y_1|] dy}

>ty | [ o ] 1)

(ii) For any g(y) > 0, satisfying

0 </ 10O g4 (y)dy < oo,

we have the following integral inequality:

S B R A
{/ ' V <max{|x/y|,1}>“|x/y—1|] d}

x|

1

> My [ / [yjett+oy le(y)dy] - (25)
(iii) For any f(x),G(y) = 0, satisfying
0< /_o; x|PU=9) =1 P (x)dx < o0 and 0 < /_qu(HGl)_le(y)dy < oo,
we have the following inequality:

o bl [1n |x/y[[P £ (x)dx
/,MG(y) [/M (max{|x/y|, I})*~!|x/y — 1] ‘

<M [/ PO £P (x)d } [/ [yjed+o) 1G‘f(y)dyr. (26)

(iv) 61 = 6, and KV (o) > M.
If Condition (iv) is satisfied, then the constant M; = K\")(5) (€ Ry) in (24), (25)
and (26) (for o1 = 0 ) is the best possible.

Setting g(y) = y*G(y) and y = A — o in Corollary 2, we derive the following:

COROLLARY 3. The following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0</ Ix|PU=9) =1 P (x)dx < oo,
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we have the following reverse Hardy-type integral inequality of the first kind with a
homogeneous kernel:

= I gyl redx |7 ’
{/J”” VM <max{|x|,|y|}>l—1|x—y|] dy}

1

> M, [ / T ypti-o)-1 fp(x)dx} " 7)

(ii) For any g(y) > 0, satisfying
0< / VI g (y)dy < o,

we have the following reverse Hardy-type integral inequality of the first kind with a
homogeneous kernel:

“ ot | [ IinbplPe0)dy }
{/J ! [/m (max{|x|7|y|}>z—1|x_y|] ¢

1
Ll q
> M, [ /_ |y|q“‘“>‘1gq(y)dy] : (28)

(iii) For any f(x),g(y) > 0, satisfying
0 </ x| P10 fP (x)dx < 0o and 0 </ |20 gl (y)dy < o,

we have the following inequality:

- L I /y] [P £ (x)dx
/_Ng(y) l/—y (max{lxl»lyl})l‘llx—ﬂ] ”

1 1
I B T )

(iv) u+0o=2A, and KV (o) > M.
If Condition (iv) holds true, then the constant M| = K(l)(c) (e Ry) in(27), (28)
and (29) is the best possible.

In particular, for A = 1,0 = 1%7[.1 = }1 in Corollary 3, we derive the corollary
below:

COROLLARY 4. The following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0< / |72 fP (x)dx < oo,
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we have the following inequality:

=T el Prax] 7 S ;
{/wyp [/MT dy > M, (/wxp fp(x)dx) . (30)

(ii) For any g(x) > 0, satisfying

0< [ ity <,

we have the following inequality:

o il |1 Botpay]” 7 = 0
{/w ]9 V [Tn /P80y nWilf(y) y] dy} > M, (/w yq‘zgq(y)dy) . (3D
(iii) For any f(x),g(y) > 0, satisfying

O</o°fp(x)dx<oo and 0</wgq(y)dy<oo7

we have the following inequality:

o I [x/y||B f(x)dx
/_Ng(y) [/_y T] &y

s ([ 2rwan)” ([ peeoin) @

HEg (B+1,55) =M.
If Condmon (iv) holds true, then the constant

B+1)

()

in (30), (31) and (32) is the best possible.

M, =

4. Reverse Hardy-type integral inequalities of the second kind
In view of Lemma 2, we obtain the following weight function: For y # 0,

[ In ey [P x|
1y (max{xy[, 1})*~xy — 1|

— /lm(h(—u) +h()u® du = K (o),

and similarly, we get the theorem below.

w(0,y) = Iyl"/
(x>
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THEOREM 2. If ¢ < A, then the following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0< [ WPy < o,

we have the following reverse Hardy-type integral inequality of the second kind with a
nonhomogeneous kernel:

S ol f@ax 177
{/—m'y'p l/{xm ' <max{|xy|,1}>“|xy—1|] dy}

>M2[/M|x|1’1“ LfP(x)d. ] : (33)
(ii) For any g(y) > 0, satisfying
0< [ plHt- gy < oo

we have the following reverse Hardy-type integral inequality of the second kind with a
nonhomogeneous kernel.:

1
g 31
® ool [1n |xy|[Pg(y)dy ’
x| 1 dx
—oo {ily> &y (max{|xy[, 1})*~Hxy — 1|

>Mz[/ [yfat=on-t q(y)dy]q- (34)

(iii) For any f(x),g(y) > 0, satisfying
0< [ -0t () < o and 0< [ pl#1-90lgi(y)dy <

we have the following inequality:

- i £ (o)
|0 l/{ o) max{ oy, L)1y — 1] ¢

1
> M, [ / |xlf’“°“f"(x)dx] ’ [ / y‘f“"l“g‘f(y)dy} " (35)
(iv) 61 =0, and K?(c) > M>.

If Condition (iv) holds true, then the constant M, = K(2)(G) in (33), (34) and (35)
(for o1 = ©) is the best possible.

In particular, for 0 = 0] = - in Theorem 2, we derive the corollary below:
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COROLLARY 5. If 1% < A, then the following conditions are equivalent:

(i) For any f(x) > 0, satisfying
0< / x[P72 P (x)dx < oo,

we have the following inequality:

- P rwar )7
{/—w [/{x;lxl Ly (max{|xy[, 1})*~ 1Ixy—lll dy}

> M, (/N xp_zfp(x)dx) ’

(ii) For any g(y) > 0, satisfying

0< / g1(y)dy < oo,

we have the following inequality:

1
g L1
® a2 [1n |xy|[P g (y)dy ‘
x| 1 dx
—oo {slyi> &} (max{|xy[, 1})*~ ey — 1

> M, (/Zg"(y)dy);-

(iii) For any f(x),g(y) > 0, satisfying

0< / [x|P~2 P (x)dx < oo and 0 < / gl(y)dy < oo,

we have the following inequality:

- [In |xy||P f(x)dx
/_wg()’) [/{XIXI 1) (max{|Xy| 1})1—1)@;—1]61}’

>M2</ x|P72£P (x) ) (/ g dy)

(iv) K?(3) > M,.

If Condition (iv) holds true, then the constant factor

My =K (%) = %C (B+1,%)

in (36), (37) and (38) is the best possible.

541

(36)

(37)

(38)
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7 00=5(3) 7

in Theorem 2, and then replacing Y by y, we get the corollary below:

Setting

y:

COROLLARY 6. If ¢ < A, then the following conditions are equivalent:

(i) For any f(x) > 0, satisfying
0< [ =1 () < oo

we have the following inequality:

S bl rwar 17,1
{/wy : l/{qum} (max{lx/le})A‘”x/y‘1|] dy}

>t | [ ot o

(ii) For any g(y) > 0, satisfying

0< [l tgiy)dy < .

we have the following integral inequality:

- nfa /1P Glr)dy ]q x}é
{/J' lﬁw»ﬂmwwmvuﬂﬁWw4|d

1
> M [/ |y|atiton) 1Gq(y)dy]q

(iii) For any f(x),G(y) > 0, satisfying

0</ |PU=9)=1 £ (¥)dx < oo and 0</ Y|70+00-1Ga(3)dy < oo,

we have the following inequality:

. |1n |x/y| [P f(x)dx
/_m G(y) [/{x;x}lyl} (max{|x/y[,1})*!|x/y — 1]

ot | [ ot a7 e tora)

(iv) 61 =0, and K?(c) > M>.

dy

(39)

(40)

(41)

If Condition (iv) holds true, then the constant M> = K (o) in(39), (40) and (41)

(for o1 = ©) is the best possible.
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For g(y) =y*G(y) and u = A — o in Corollary 6, we obtain the corollary below:

COROLLARY 7. If ¢ < A, then the following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0< / |x|PU=9) =1 £P (x)dx < oo,

we have the following reverse Hardy-type integral inequality of the second kind with a
homogeneous kernel:

" e [Infx/y] 1P (x)dx ] };
{/wy V{x;@,y,} (max ol 11—

> My [ / T ypti-o)-1 fP(x)dx] " (42)

(ii) For any g(y) > 0, satisfying
0< / V7 g (y)dy < o,

we have the following reverse Hardy-type integral inequality of the second kind with a
homogeneous kernel:

" e mpeylPeidy 17 )
{/_J | [/{y;y%)d} <max{|x|,|y|}>“x—y] ¢

1
il q
> M, [/ Iyl"“““gq(y)dy} . (43)

(iii) For any f(x),g(y) > 0, satisfying
0< / x|PA=9) =L £P (x)dx < o0 and 0 < /_ y|90=H =16l (y)dy < oo,

—oo

we have the following inequality:

- 05/ y11P (x)
[ </{x;x>m} (max{|x|,|y|}>“x—y> “

1
A I T ) P

(iv) u+0=2A, and K? (c) > M>.

If Condition (iv) holds true, then the constant M> = K (o) in(42), (43) and (44)
is the best possible.
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In particular, for A = 1,0 = 1

M= }—) in Corollary 7, we obtain the corollary
below:

COROLLARY 8. The following conditions are equivalent:
(i) For any f(x) > 0, satisfying

0</wfp(x)dx<oo,

we have the following inequality:

1
o B p ? - %
/ / [npe/ I FG)dx ) =y, (/ fp(x)dx) L @s)
oo \ =Dyl eyl -
(ii) For any g(y) > 0, satisfying
0< /_Ng‘f(y)dy < oo,

we have the following inequality:

1
o B “ 74 - !
oo \ Sy o1} =yl .

(iii) For any f(x),g(y) > 0, satisfying

O</ fP(x)dx < oo and 0</ g1(y)dy < oo,

we have the following inequality:

* n|x/y||B f(x)dx
[ e </{x;x>|y|} = /)};'—5( - )dy
> M, (/pr(x)dx) % (/qu(y)dy) é . 47)

(iv) LB+ 1,5) > My,
If Condmon (iv) holds true, then the constant

o TEE (5 1)

in (45), (46) and (47) is the best possible.
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