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Abstract. In this paper we prove some Hermite-Hadamard, Fejer and Sherman type inequlities
for generalizations of superquadratic functions and convex functions. These results, under a
monotonicity condition, lead to refinements of the Hermite-Hadamard, Fejer and Sherman in-
equalities of non-negative convex functions. Also, the obtained inequalities are discussed about
and compared with some recent generalizations of weighted Hermite-Hadamard inequalities.

1. Introduction

The Hermite-Hadamard inequality says that for any convex function f:/ — R, [
an interval, and for a,b €

1(25) <t om0

holds, and the Fejer inequality reads

(E52) [ [ oo L5001

when f is convex and p : [a,b] — R is non-negative, integrable and symmetric around

the midpoint x = ““’ . The Sherman inequality shows that
Zazf Xi) = Z if ()
j=1
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holds for any convex function f on Ry andfor x anda € R’} , y and b € R’} where
y =xS and a=bST for some n x m column stochastic matrix S = (s;;).

Numerous publications deal with convex functions, their properties and applica-
tions. In particular we refer to the classical 1964 book “’Inequalities” by Hardy, Little-
wood and Polya [7], the 1992 book “Convex functions, partial ordering and statistical
applications” by Pecari¢, Proschan and Tong [17] and to the 2006 book and its 2018
second edition ”Convex functions and their applications - a contemporary approach” by
Niculescu and Persson [16]. Out of dealing with the classical convex functions evolved
many generalizations and refinements of this notion.

In this paper we prove some of Hermite-Hadamard and Sherman type inequlities
for superquadratic functions, convex functions and their generalizations. These results,
under a monotonicity condition, lead to refinements of the Hermite-Hadamard, Fejer
and Sherman inequalities of non-negative convex functions.

The obtained inequalities are also compared with the results dealt with in [10]
about weighted generalizations of Hermite-Hadamard and Fejer type inequalities.

We state some definitions and lemmas that we use in the sequel.

DEFINITION 1. A function ¢ : [0,B) — R is superquadratic provided that for all
x € [0,B) there exists a constant Cy (x) € R such that the inequality

() =@ (x)+Cop(x) (y=x)+ ¢ (ly—x) (1.1)

holds for all y € [0,B), (see [1, Definition 2.1], there [0,e) instead [0,B)).

LEMMA 1. [1, inequality 1.2] The inequality

Jowrane =o( [ra)+ fo(|re- [ ran)ans

holds for all probability measures L and all non-negative, — integrable functions f
if and only if @ is superquadratic.

LEMMA 2. [1,Lemma 2.1] Let ¢ be a superquadratic function with Cy (x) as in
Definition 1.

(i) Then ¢ (0) <0.
(ii) If ¢ (0) = ¢ (0) =0, then Cop(x) = @ (x) whenever ¢ is differentiable on
0,B).

i

(iii) If @ >0, then @ is convex and ¢ (0) = ¢ (0) =0.

LEMMA 3. [1, Lemma 3.1] Suppose ¢ : [0,B) — R is continuously differentiable
and @ (0) < 0. If ¢ is superadditive or ¢ (x)/x is non-decreasing, then ¢ is su-
perquadratic and Cy (x) = @ (x) with Cy (x) as in Definition 1.
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DEFINITION 2. A function ¢y : [0,B) — R is N-quasisuperquadratic if ¢y (x) =
x¥ ¢ (x) where ¢ is superquadratic.

In Lemma 4 we get a Jensen type inequality:

LEMMA 4. [4, Lemma 3] Let ¢y (x) = xN ¢ (x), where @ (x) is superquadratic
on [0,B), that is ¢y is N -quasisuperquadratic. Then

on (1) —on () =@ ()Y =@ (1) 2" = @ (x) (N —a") +Cp (1)) (v =)+ @ (ly =)
(1.2)
holds for x € [0,B), y € [0,B), Cy (x) asin(1.1).
Also, Jensen type inequality for N -quasisuperquadratic functions

Lovurnduts) —ov@ = [ o) ()" au - 9@
Q
>/Q[C¢<x>fN<s><f<s>—x>+f ()9 (1 (5) — )] du s)

holds, where f is any non-negative L -integrable function on the probability measure
space (Q, 1) and X = [, fdu > 0.

LEMMA 5. [5,Lemma 1] Let ¢ be a differentiable function on an interval I C R,
and let x,y € I. Then, for N=0,1,2,...,

0 (x) O =) + ' ()" (r - ) (1.3)
N !
= (Mo () =1+ =" X (Vo )
k=1

N
= (Mo() -+ -0 ("Z_y <p<x>) .
In particular, for N = 1 we have that
¢ (V=1 + 0 (X)y(r—x) = (x@ &) v —x)+ ¢ () (y—x)*.

DEFINITION 3. [2] A function ¢y : [0,B) — R is N-quasiconvex, where N € R,
provided that for all x € [0,B) ¢y (x) =x"¢ (x), where @ is convex on [0,B).

REMARK 1. From (1.2) in Lemma 4 and (1.3) in Lemma 5 in the case that ¢ is
superquadratic differentiable and satisfies Cy (x) = ¢ (x) the inequality

_ VN
o ()= ow () > 04 (1) =9+ (=) (xz_i

ox

holds, where ¢y (x) = xV¢ (x) and N is an integer.
Also it is obvious that differentiable N -quasiconvex function satisfies

xNyN )

<p<x>) oly—x) (14

o )~ () > 0 () =) + 6~ 5 (5 (L5)

-y
where ¢y (x) =xV ¢ (x), @ is convex and N is an integer (see [2, Lemma 1]).
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THEOREM 1. [6, Theorem 8] Let ¢ : [0,B) — R be a superquadratic function and

let 0 <a<b<B, then
a+b 1 b
< 1.
5 Ddx b—a/a o (x)dx (1.6)

a+b N 1 /” 3
¢ 2 b—aa(p *

pl)to®) 1 p
< PR [[e-vet- ot aeb-n)ax

In Section 2 we generalize the above Theorem 1 and obtain Hermite-Hadamard
type inequalities for N -quasisuperquadratic functions.

In Section 3 we generalize for N -quasisuperquadratic and N -quasiconvex func-
tions the following Sherman inequality and Sherman type inequality.

The Sherman inequality says:

THEOREM 2. [I8] Let f: R, — R be convex on Ry, x = (x,...,x,) € R,
Yy=01m) ERY, a=(ay,...,an) €RY, and b= (by,...,by,) € R

Assume that y = xS and a=bST for some n x m column stochastic matrix S =
(S,‘J') . Then,

m

Zalf xi)= Y bif(yj)-

j=1
Sherman type inequality for superquadratic functions is:
THEOREM 3. [14] Let f:R. — R be superquadratic function and X = (x1,...,X,)
eRY, y=1,ym) €ERY, a=(a1,...,a,) €R’}, and b = (by,...,by,) € RY.

Assume that y = xS and a =bST for some n x m column stochastic matrix S =
(S,‘J') . Then,

ijf ¥i) +i2b S,Jf(’x, yl’) < éaif(xi)

i=1j=
holds.

In the sequel we use the standard notation (-,-) for the inner product.
From Theorem 3 the following Sherman type inequality proved in [11, Theorem
1] reads:

THEOREM 4. Let ¢ : Ry — R be a superquadtatic function. Let

P= (p17~~~>pm)€R$+7 q:(CIh»CIm)GR’L a:(ah...,am)GR’j:
rj = (rlj,...,rmj) S R’i, j=1,...n, b Z(bl,...,bn) S Ri

F, .
Then, for a; = 1b Lp' i=1,....m:

Sun () (328) > B 8o
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Inequality (1.7) is called also the Csiszar-Korner inequality for ¢ -divergence when
¢ is a superquadratic function (see [15]).

The papers [8], [9], [11], [12], [13] and [15], published lately, deal with various
extensions of the Sherman inequality applied to some types of f-divergences such as
Kullback-Leibler, Csiszdr, Tsallis and other types of f-divergences, and derived new
estimations of the Shannon and Rényi entropies (see also the referenses of these papers
for definitions and other results).

In Section 4 we compare different types of Hermite-Hadamard and Fejer inequal-
ities for monotonic weight functions which appear in [10] resulting from functions ¢

and g such that % is non-decreasing.

2. N-quasisuperquadracity, N -quasiconvexity and new Hermite-Hadamard and
Fejer type inequalities

Theorems 5 and 6 in this section deal with Hermite-Hadamard and Fejer type
inequalities. Theorem 5 generalizes Theorem | for N-quasisuperquadratic functions
wy where yy (x) = xV ¢ (x). The proof uses Lemma 4 for f (x) =x and du = ;-dx
on the interval 0 < a < b < B. It combines the techniques used in Theorem 1 proved in
[6, Theorem 8] which deals with superquadratic functions with the technique employed
to prove Remark 2 quoted in the end of this section (that appears in [2, Theorem 1])
which deals with N -quasiconvex functions. It reads:

THEOREM 5. Let Wy : [0,B) — R, 0 < B < o0 be a differentiable N -quasisuper-
quadratic function that satisfies wy (x) = xN¢o (x), N =0,1,2,..., where ¢ is su-
perquadratic, such that for 0 < a < b < B, for Cy (x) = (p/ (x) (Cp asin(1.1)), and
for non-negative integrable and symmetric function p on |a,b|, the inequalities

"y ) p () @
> Yy (a;b) abp(x)dx+ ah (x—a;rby (% (xz:j](P(X)) xa;h)l)(x)dx
+ ubﬂ<p<x—“;b'>p(x)dx7
and
b
[y () p () dx (22)
< WD) ) i [ [(x—a)(b—x)%(bz:ﬂ(x))
+(x—a)2(b_x)%(’CZ:ZNMX))];;()CW

aVv+ N b
_m/a (b—x)p(x—a)+(x—a)o(b—x))p(x)dx
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hold.
In the special case when N =1 and p (x) =1 on [a,b], we get that

a+b (a+b (b—a)2 1 b a+b
W1<7)+(P< 2 ) 2 +b_a/ax<p<x— 2 Ddx -
1 b
<— [ wwar
b
. wa);w(b)_bia/u ¢'(x) (x—a) (b—x)dx

Sath | )z/ah((b—x)w(x—a>+(x—a><p(b—x>>dX~

2 (b-a

In the special case that N = 0 we get inequality (1.6).

Proof. Inequality (2.1) follows from inequality (1.4) in Remark 1 satisfied by N-
quasisuperquadratic functions where by replacing in (1.4) y by x, x by x= #, and
du = ﬁdx and multiplying (1.4) with the non-negative integrable symmetric p and
then integrating on the interval [a,b].

To prove (2.2) we use again the basic inequality (1.4). By multiplying inequality
(1.4) first by o and then by B where 0 < o < 1, or+ 3 = 1, we get by choosing first
y=y; and then y =y, that ¥ = ay; + y> and when ¢ is superquadratic on x € [a,b],

ayy (v1) +Byn (v2) — v (%)
0 (xN_y[lv(p(x)> Lz + Bo® (y1 — y2)? % (

> af?(y1 —y2)* =—
= ﬁ (yl y2) ox x—y1

+oyY @ (Bly1 —yal) + ByY ¢ (etyr — yal)

holds.
By a first choice

-y

X—=Y2

) (x)> o=z

_OTX B X4 ca<x<h, yi=a y=b
b—a b—a
we get that
- X x—a,
X=oy + By b a+b_ab—x
and
b— X —
bT‘I/N (a)+ bTWN (D) —ww (x) (2.4)
(x—a)(b—x) 9 (=N —a¥ (x—a)(b—x)* 9 [NV
> — _
- b—a dx\ x—a o))+ b—a dx\ x—b ¢ )
b—
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and by a second choice which is

azz:z, :2:27 0<a<x<b, yi=a, y=D>
we get that
I=oy+Bpn=y a+2%b:a+b—x
and therefore the inequality
z:alyN(a)—l—l]j:xu/N(b)—u/N(a—I—b—x) (2.5)

holds.
Adding (2.4) and (2.5) we get that

i (a) + y (b) (2.6)
X—a 2 —X o
e )]

> _ il
> Yy (x)+yn(@a+b—x)+ b —a o

+

= Eba—X)2 9 (f’; :ZNq,(x)) s
+(x—a)2(b—x) J (xN_quo(x)) [F=a+b—x

b—a ox\ x—b

x—a)(b—x)? 3 [ —dV

+( b>£a ) ﬁ( a (p(f)) ‘X:a-‘rb—x
aV + N
b—a

X —

+

(b=x)@(x—a)+(x—a)p(b—-x))

holds.
Multiplying (2.6) with the non-negative symmetric function p and integrating we
get that

a+tb
5 b

=/ yw () p () dx+ [y (x)p(x)dx

= (ww (%) p () + yv (@ +b —x)p(a+b—x))dx



566 S. ABRAMOVICH

< (u (@) + <b>>/ p(x)ds

/‘42r )2i XN (1
(x—a ox\ x—a px
ath
T zi XN bN
Cbh— a/a J(b=x) 8x<x b )p
atb
T 28 .XN
Cbh— a/a )(b- x>£<)_c a )Hjxp
% , d [ — bN
), x a)ﬁ T—b |xa+hxp
+bN

- / ((b )@ (x—a)p(x)+(x—a)e(b—x))p(atb—x)dx.

Therefore by using the symmetry of p around “%” , (2.2) holds. The proof is complete.
In the special case of N =1 and p (x) = 1, we can improve (2.3) and get:

THEOREM 6. Let ¢ : [0,B) — R be a differentiable 1-quasisuperquadratic func-
tion that satisfies ¢ (x) = x@ (x), where @ is superquadratic. Then for 0 < a < b < B
and for Cy (x) = 0 (x), Cy as in (1.2), the inequality

a+b  (a+b\ (b—a)? 1P
¢< 2 )J”p( 2 ) 12 +b—a/uxq)<
< [owar

b b b
CLTOW) b L,

a+b 1 b
_TW/Q (b—x) @ (x—a)+ (x—a) @ (b—x))dx,

xX— azibb dx (2.7)

holds.

Proof. From the identity

/(p xabx)dx—a—i—b/q) de/(Z)

we get together with (2.3), the right hand-side of the inequality (2.7) holds. This com-
pletes the proof of the theorem.

REMARK 2. Comparing the inequalities (1.4) with (1.5) in Remark 1 we get for

differentiable convex functions ¢ when N is an integer, similarly to (2.1), (2.2) and
(2.7), that for N-quasiconvex functions Yy (see [2, Theorem 1]):

/ "y () p () dx (2.8)
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> Yy (#) /abp(x)dx+/ab (x—azib>2 (% (xz:iv(ﬂ@)) Ixa+2h> p(x)dx
d

Fa- (b >§( - )

hold. For 1-quasiconvex functions ¢ and p(x) =1 the inequalities

Y
¢<a—;b>+(p/<a—£b) (b lza) 2.9)
b $(a)+¢(b) at+b 1 b
< b—a/a ¢ (x)dx < G + 3 b—a/a o (x)dx

hold.

3. Sherman type inequalities obtained from Jensen type inequalities for
N -quasisuperquadratic and N -quasiconvex functions

In this section we state and prove Sherman type inequalities for N -quasisuperquad-
ratic functions. As an immediate result we get Sherman type inequalities for superquad-
ratic and analogous result for convex and N -quasiconvex functions. These results gen-
eralize results proved in [11], [14], [15] and [18] using the technique of the proof in

[11].

THEOREM 7. Let ¢ : ;RJF — R be a differentiable superquadratic function on
[0,B) for which Cy (x) = ¢ (x), Cyp(x) asin(1.1). Let
pP= (Pl,n-,Pm) € Rﬁ-p q :(q17-~~75]m) € Rﬁ»
a=(a,...am) €ERY, b=(by,...,b,) e RY

rj=(rij,..,rmj) ERY, j=1,...n, % €[0,B), i=1,..m.
i

Denote

m m
<q7rj>:251i”ij; <p7rj>:2pirij7j:l7“‘vn'
i=1 i=1

Then, for the N -quasisuperquadratic function ¢, where ¢ (x) =xNo(x), N=
0,1,2..., and for a; = ¥_, b; <r”p’ i=1,...,m, the inequality

)
Za, ( ) Zlbq)(ép,l‘.zi) 3.1)
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568
N
2 qi —)_CN
> Y Pitij qi <q»rj> d (Pi) J _
> bj — — | =9 &)
Z2 J<M>( <p,r.f>> o\ )
/x./=<p‘rj>
n o m 1-N _N
pi 4;Tij qi <q7rj>
+ bi————o¢||——
;izl ’ <p7l'j> (p’ <p7rj> )
holds.

Proof. From the inequality (1.4) satisfied by N -quasisuperquadratic function ¢

it follows that:
D 0o (xi) — ¢ (%)
i=1
m a xN_xN m
> . 72 L L ¥ Ay R
> S & (S0 ) + Zao v,
where o; >0,i=1,...,m,

Replacing o by <p : ”> and x; by %7

n — 10 = 1, z:nZI oix;i = X.
i=1,...,m we get that X is replaced by

m, j=1,...,n and

o fonlf)

n we get by changing the order of

2 (&) (

Multiplying by b; and summing on j=1,...,

summation that
m n plrzj (ql> n <<q,l‘,>>
b; ) = b-(]) .
ZI/:I ’<p,r,> pi ,=21 ’ <P,rj>

2

C Y- irij [ 4qi T J ([« =3
> Zsz’ Py (q__<q rj>> %( X;—X (P(x)>/<q#r_,->
o

- j=li=1 ’ <P:rj> Di <p’r1>

N
Dilij qi
L () o
J=li=1 <P7r1> Di pi (p.rj)
and as it is given that a; = Zyzlbj%, i=1,...,m, we getthat (3.1) holds.
J
The proof of the theorem is complete.

qi <qarj>




INEQUALITIES FOR GENERALIZED SUPERQUADRATICITY 569

REMARK 3. In the special case that N=0 we get Theorem 4, ([11, Theorem 1])
which is Sherman type inequality for superquadratic functions, also called the Csiszar-
Korner inequality for ¢ -divergence when ¢ is a superquadratic function.

In the case that N = 1 we get that

ia@ (ﬂ) “S b <<q’r’:>> (3.2)

j=li=1

which is a Sherman type inequality for 1-quasisuperquadratic function.

If ¢ >0 on [0,B) then inequalities (3.1), and (3.2) are refinements of the Sherman
inequality for convex increasing functions on [0, B).

Moreover, if ¢ > 0 on [0,B), then the suprerquadratic function ¢ is also convex
and increasing and therefore in this case we get in (3.1), and (3.2) refinements of the
Sherman inequality for convex increasing functions on [0, B).

_pitij

By replacing in Theorem 7 ) by pij and ’1’ by Xxi, i=1,...om, j=1,...n
we get that:

COROLLARY 1. Let y:[0,B) — R, be a N -quasisuperquadratic function that is
v (x) =xNo (x), where @is superquadratic on [0,B).

Let X = (X1,...,Xp) ,X = (X1,...,%4) , Xi,y; € [0,B),i=1,....m,j=1,....n,a=
(at,...,am) €RY b= (by,...,b,) € R

If X =xP,a=bPT for some m x n column stochastic matrix P = (p; i), then

D aiy () = Y, bjw () (3.3)
=1 i=1
n m a xN x{\’ n m
>3 b; Y pij (i —%)° ErS ( — (3/)) + X b; Y piixt o (|xi— %)
=1 =1 J\ N =1 =

If @ is also non-negative then, as Qis also increasing

2 aiy (xi) = Y, by (%)) (3.4)
j=1
n m a xN_x{V n
= Eblzplj (x; xj)zﬁ <_j . (P(J_Cj)> +2b/2p,,va(p(}x,—xj|) >0
j=1 =1 J J T j=1 =1
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REMARK 4. Inequality (3.4) is a refinement of the Sherman inequality for differ-
entiable, non-negative increasing convex function y on [0,B).

As a special case of Corollary 1 for 1-quasisuperquadratic functions we get the
next result:

COROLLARY 2. Let y:[0,B) — R, 0 < B <  be a 1-quasisuperquadratic func-
tion, that is W (x) = x@ (x), where @ is superquadratic on [0,B), then

M§

aiy (x;) — Z bjy (X)) 3.5
]

—

Zb Zpl,(p xj xj —|—Zb Zp,,x, (’x,-—y_cj|).

i=1

If @ is also increasing then

S awn) - 3, by ) (6
i=1 j=1

> Zb ZPU‘P Xj) (xi —X;) +Zb Zpuxt (|xi_)_cj’)>0
j=1 =l

REMARK 5. By (3.6) we get a refinement of the Sherman inequality for the dif-
ferentiable, non-negative, increasing convex function y on [0,B).

EXAMPLE 1. By choosingin Theorem7, bj:=(p,r;), j=1,...,n, we getthat 4;
= Zyzlp,-r,-j =piR;, i=1,...,m where R; = Z?zlrip i=1,..,m. Denote R=(r;;),
i=1,..m, j=1,.

As Z 17 jpl(Z) ( I) pi® <;17’1> R; therefore under the same condition as in The-
orem 7, (3.1) under the new notation is

ipiRi(P (f{) -3 ()0 (23:;)

i=1 Jj=1
N
2 @)
UL qi <q7rj> J (p1> U =
= pitij| ——7——~ | == | —V——¢(&;
£ (nled) 5|V o s
P9 omy)
1 i q,r,'>
+ p! quvrz<p<q——< ’ )
,21,2 A\p (o)

Now we state analog to the results in the former theorem, this time for N -quasicon-
vex functions y (x) = x¥ ¢ (x) where N is an integer. The proof is omitted because it
is the same proof as the proof of Theorem 7 using (1.5) and Corollary 1 by excluding
the last term in each of (3.1)-(3.6).
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THEOREM 8. Let y: [0,B) — R, be a N-quasiconvex function, that is, y(x) =
Mo (x), where @is convex on [0,B).

Let X = (X1,...,Xp) ,X = (¥1,...,%) ,X;,X; € [0,B) ,i=1,...m,j=1,....n,a=
(at,....am) €RY b= (by,...,b,) € R}

If X =xP,a=bPT for some m x n column stochastic matrix P = (pij), then

m n n m P jN_x{V
Saiy(xi)— Y by (E) = Y by Y pij (i — %)) 7 ( e (P(xj)> (3.7)
i=1 =1

=1 =1 Xj—Xi
holds.
If @ is also non-negative and increasing then the inequalities
m n m a XN _xN
Daiy( Ebj‘l/ Xj)> ) b; Zpij(xi—xj)zf L —0(x)]| =0 (3.8)
i=1 j=1 =1 9% \ Xj—xi
hold.

REMARK 6. By (3.8) we get a refinement of the Sherman inequality for a differ-
entiable non-negative and convex function y on [0,B).

As a special case of Theorem 8 we get for 1-quasiconvex function the next result:

COROLLARY 3. Let y:[0,B) — R, 0 < B < o bea 1-quasiconvex function that
is ¥ (x) = x@ (x), where @ is convex on [0,B), then

n

Saw(xi) = Y biw () = Y b Y pie (%) (i—%)%. (3.9)
Far} i=1

j=1 =1

~

If @ is also increasing then
m

Say ) - Y biwE) = Y b Y piie (%) (i —%)* = 0. (3.10)
i=1 j=1 j=1

REMARK 7. For the differentiable increasing and convex function y, (3.10)is a
refinement of the Sherman inequality.

COROLLARY 4. For N =0 inequality (3.7) is the Sherman inequality.
Moreover, when p, q, a, b, and r; are as in Theorem 7, then for the N -quasicon-
vex function ¢ (x) = x" ¢ (x) where @ is convex

$a0(2)- W(E;‘;Zi)
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holds.
For N =0 we get the Csiszdr-Korner’s inequality for ¢ -divergence, (see [15]).

Similar to Example 1, and with the same notation there, we get from Theorem 8:

EXAMPLE 2.
m ql n <q,r,>
sz — | — , I
Zip <P< i) j=2,1<p rj>¢<<p,rj>>
n m 2 ai —xN
> (@ _lar)) 9 (,,) )
j;gip ! (Pz <p,rj> Qx, ;17;_21, qo(xj)

4. Comments on different Hermite-Hadamard and Fejer type inequalities

In [10] new generalizations for weighted Hermite-Hadamard inequalities are proved.
These generalizations leads us to compare these results with other results of theorems
we stated or proved here. In the three examples shown at the end of this section we
get conclusive results when comparing inequality (2.9) in Remark 2 with Theorem 10,
Theorem 12 with Theorem 10 and Theorem 12 with 11. However, comparing inequal-
ities derived from Theorem 9 with other inequalities we proved or stated here do not
give conclusive results.

First we quote Hermit,e—Hadamard and Fejer type inequalities resulting from func-

tions ¢ and g such that (i—, is non-decreasing that appear in [10] where the following
are proved:
THEOREM 9. [10, Corollary 2.3] Let ¢ : [a,b] — R be a differentiable function

and let g : [a,b] — (0,00) be an integrable function. If % is increasing then

1 b ¢(a)+ ()
W/“ ¢ (x)g(x)dx < — (4.1)

THEOREM 10. [10, Theorem 2.6] Let @ : [a,b] — R be a convex function and let
gt la,b] — (0,%0) be an integrable function. If ¢ and g are monotonic in the same

direction then
b a+b\ [t
[ owswar=o(“37) [ gwadx @2

THEOREM 11. [10, Theorem 2.11] Let ¢ : [a,b] — R be a convex function and
let g : [a,b] — (0,%0) be an continuous function. If the function ¢ and g are monotonic
in the opposite directions then

1 b ¢(a)+o(b) 1 G
W/“ @ (x)g(x)dx < R S— <§—m> 8¢
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where
a+b

2

X —

G:m/; ‘g(x)d)@

and

a+b
8= pa)+0(b)-20(“37).
In the following three corollaries we choose g to be g (x) = x that appears in the
three Theorems 9, 10, and 11. As g (x) > 0 in these theorems, we deal now with x > 0.

COROLLARY 5. Let ¢ : [a,b] = R, 0 < a < b be a differentiable function for

!
which (pT(x) is increasing. Then

1 b 1 b b b
b—a/u (P(x)dx:b—a/u O (x)xdx < (p(a);—(p( )a;— , (4.3)

where ¢ (x) =x¢ (x).

From Theorem 10 we get when g (x) =x > 0:

COROLLARY 6. Let ¢ : [a,b] = R, 0 < a<x<b bea convex increasing func-
tion. Then, for ¢ (x) = x¢ (x)

1 b 1 b b b b
b—a/a q)(x)dx:m/u (p(x)xdx}(p(a;_ )(a;— ):q)(a;_ ) (4.4)

Corollary 7 follows from Theorem 11 for g (x) = x > 0 and it says:

COROLLARY 7. Let ¢ :[a,b] = R, 0 < a < b, be a convex decreasing function
Sor which ¢ (x) =x¢ (x). Then

1 b 1 b
b—a/u ¢(X)dx=m/a O (x)xdx 4.5)
p@+ob) 1 [a+b\\a+h

g( 4 +§(P( 2 )) 2

Now we quote a theorem that deals with Fejer type inequality where the weight
function p in monotonic:

THEOREM 12. [3, Theorem 5] Let ¢ : [a,b] — R be a differentiable and convex
function. Let p: [a,b] — R be a non-negative, integrable and monotone function.

a) Let p (x) <0, a<x<band ¢(a) < ¢ (b). Then

/ab(p(t)p(t)dt < w/ahp(x)dx. 4.6)
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b) Let p,(x)>O, a<x<band (p(a)g(p(#). Then

w("“’) [ p@a< [ o pioar @7

2

) Ifp (x) =0, a<x<band ¢(a) > ¢ (b), then (4.6) holds.
d) pr/ x)<0,a<x<band ¢(a)= ¢ (#) , then (4.7) holds.

The three examples below give conclusive results when comparing the results from
[10] with other results in our paper.

EXAMPLE 3. The inequality (4.5) in Corollary 7 gives a better result than Theo-
rem 12(c) for the special case where ¢ besides being convex is also non-increasing and
¢ (x) = x0 (x). Indeed

bia/ubq)(x)dx: blTa/ab(P(x)xdxg (M"’%‘P (a;—b)) a—;b

(Ma);(p(b))a;@

<

EXAMPLE 4. Itis obvious that the left hand-side of the inequality (2.9) in Remark
2 for differentiable convex increasing ¢ where ¢ (x) = x¢ (x) is better than (4.4) in
Corollary 6 (Theorem 10 for g (x) = x) because

b b 2
[o@ar= = [Towar=0 (“lzib) o (“;b> 0= sy (“;b)
_ a+b a+b
(7))
EXAMPLE 5. Comparing (4.2) in Theorem 10 with (4.7) in Theorem 12 cases
b) and d) we see that we get the same inequalities for convex functions ¢ . However
Theorem 10 deals only with the functions ¢ and p which are monotonic in the same

direction and in Theorem 12 cases b) and d) ¢ and p are not necessarily monotonic in
the same direction.
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