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REVERSING BELLMAN OPERATOR INEQUALITY

MOHAMMAD SABABHEH, HAMID REZA MORADI AND SHIGERU FURUICHI

(Communicated by J. Mi¢i¢ Hot)

Abstract. The main aim of the present paper is to obtain several reverses of the operator Bellman
inequality. To this end, we employ Mond-Pecari¢ method to achieve a general inequality treating
the arithmetic mean and unital positive linear maps. In particular, we show that, for certain
scalars o, 3,

a(®(I—AV,B)"/? +BI < ® ((IfA)l/" vv(sz)l/P)

for the positive operators A, B, the normalized positive linear map ® and p > 1. As a conse-
quence, we get multiplicative and additive reverses of operator Bellman inequality. Further, we
show some inequalities involving concave and convex functions. In the end, we present a simple
proof of the scalar Bellman inequality and its reverses.

1. Introduction

Throughout this paper, A and B are positive operators on a Hilbert space 7, with
identity /. For convenience, we write A > 0 (respectively, A > 0) if A is a positive
(respectively, positive invertible) operator. In the sequel, we use m and M for positive
real numbers, and the order between operators is that in which A < B means B—A is
positive. The notation V,, will be used for the arithmetic mean, defined for two positive
operators A and B by AV,B = (1 —v)A+vB. A real valued function f :J — (0,e0)
is said to be operator concave if f(AV,B) > f(A)V,f(B) for 0 < v <1 and all self
adjoint operators A,B whose spectra are contained in the real interval J. A linear
map ©: B(H) — B(H) is said to be a normalized positive linear map if ®(A) >0
whenever A > 0 and ®(I) = I. For further details about the notations of this paper,
we refer the reader to [4]. In this context, #(J¢) is the algebra of all bounded linear
operators acting on 7 .

The following inequality is well known in the literature as the operator Bellman
inequality [6]

(cD(I—AVVB))l/P;cD((I—A)l/PVV(I—B)I/P) (1.1)
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for 0O<v<1l, p>1, 0<A,B< I and a normalized positive linear map ®. This
inequality was proved in [6] as an operator version of the scalar Bellman inequality [2]

1 1 1
n P n P n r
a’=Nal | + (b’ =X 07| <|(a+b)? =Y (ar+b)" | , (1.2)
k=1 k=1 k=1
for the positive numbers a,ay, b, by satisfying 37, af <aP and Y, bf < bP, where
p>1.
The proof of (1.1) was based on the operator inequality [6]

f(®(AV,B)) > @ (f(A)V,f(B)), (1.3)

valid for the operator concave function f :J C (0,e0) — (0, o), the normalized positive
linear map @ and the positive operators A, B whose spectra are contained in the interval
J.

We refer the reader to [5, 7] for further discussion of (1.1).

In this article, we prove a more elaborated reverse of (1.3), valid for concave func-
tions (not necessarily operator concave). This reverse-type inequality will be used to
find a reversed version of (1.1) and a reversed version of (1.2). Further, we present a
simple approach that can be used to prove the scalar Bellman inequality and its reverse.
The new approach will be useful in obtaining several refinements of these inequalities.

2. Main results

In the sequel, we present a general inequality by applying Mond-Pecari¢ method.
We refer the reader to [4] as a comprehensive reference of this method.
The following notations will be used in Theorem 1, for the positive numbers m, M
and the function f : [m,M] — R.
fM)—f(m)

ar M—m an f

Mf(m)—mf (M)
M—m ’

THEOREM 1. Let ® be a normalized positive linear map on B (), A,B €
B () be two positive operators such that ml < A,B < MI for some scalars 0 <
m<M.If f,g:[m,M] — [0,00) are continuous functions such that f is concave, then
fora given o0 > 0,

og (P(AV,B)) +BI< D (f(A)V.f (B)) 2.1
h = min t+br—og(t);.
where 3 in {af 5 g ( )}
The reverse inequality of (2.1) holds when f is a convex function.
Proof. According to the assumptions, we have, for any 7 € [m,M],

f)= ast+by.
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A standard functional calculus argument implies
f(A)>apA+bsgl and  f(B) > arB+byl.
Consequently, we infer for any v € [0,1],
(1=v)f(A) = (1=v)asfA+(1—v)bsl and vf(B)>vasB+vbyl,

and hence
fA)V.f(B) > ar(AV,B) + byl

It follows from the linearity and the normality of @ that
D(f(A)V,f(B)) = as®(AV,B) + byl.
Whence
D(f(A)V,f (B))—ag(®(AV,B)) > a®(AV,B)+ bl — ag (P (AV,B))
> telaiﬂ/[] {aj+br—ag(t)}1

which implies the desired inequality (2.1).
A reverse of the operator Bellman inequality (1.1) is obtained by taking f () =
g(t)=(1—1)"? on (0,1) with p > 1 in Theorem 1.

COROLLARY 2.1. (Reverse of operator Bellman inequality) Let A,B € B ()
be two positive invertible operators such that 0 < ml < A,B < MI <1, and ® be a
normalized positive linear map on B (). Then for a given o > 0,

a(®(1—AV,B)'/? + BI < @ ((I—A)l/p VV(I—B)I/”>

where p>1,ve|0,1] and

B= min {(1—M)1/p —(1—m)"/? Z+M(1—m)1/1’ —m(1-M)"/? (1) }
t€lm,M] M—m M—m
We remark that a similar result as in Corollary 2.1 was shown in [1, Corollary
2.8]. However, the advantage of our result is that the inclusion of a free constant o.
This allows obtaining a multiplicative reverse, by choosing appropriate o and f in
Corollary 2.1. This is our next result.

COROLLARY 2.2. Let A,B € A () be two positive invertible operators such
that 0 <ml < A,B< MI <1, and ® be a normalized positive linear map on %8 ().
Then

a(d(I—AV,B)? <o <(I—A)1/p VV(I—B)I/”>
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where p>1,ve|0,1] and

{ 1 ((I—M)l/p—(l—m)l/pH_M(l—m)l/p—m(l—M)l/p)}.

o= min

relmM] | (1—1)"/P M—m M—m
Additionally,
(@ (I—AV,B)/? +BI< @ ((I—A)l/p VV(I—B)I/I’>
where

B= min

te[m,M) M—m M—m

1/ 1/ 1/ 1/
{(I—M) Poem)' M) ) }
REMARK 2.1. Here we find the exact value of o appearing in Corollary 2.2. This
will help us better understand the operator Bellman inequality.
For simplicity, let

L (1=M)? — (1 —m)'/P - M(1—=m)"P —m(1—M)"/P 1
B M—m T M—m op)
and let )
t
flt)= (Clljt)ﬂ O<m<t<M<I.
To find o, we find min f(¢). Notice that
m<t<M

£e) = a—l—br—i—a(rrl— 1)t

(I—1)r*
Solving f’(¢) = 0, we obtain 7y = a“(ﬂ’;). Noting that a,r — 1 < 0, it is easily seen that
f attains its minimum at 7o, provided that m < 7o < M; which we show in this remark.
We will prove that m < #y and leave the similar proof of 7y < M to the reader. So, define
g(m) = 1t — m. Simplifying this using the above a,b, we obtain

(1 —m)"(m—M) )
(L=m)"—(1=M)" )"

el =~ (p1-m+

Calculus computations show that

h(M)
p=1)(m—=1)((1=m)" —(1-M)")>’

/

m)=

g (m) P
where

h(M) =(1=m)((1—m)" — (1= M)")*(p— 1)+ (1 = M)"((1 —m)(1 - M)’
+ (1 =m) (=1+m—mr+Mr)).
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H(M)=—(1-M)""H(M),

H(M) =2(1—m)(1=M)"+ (1 —m)" (=24+Mr(1+r) —m(=2+r+r).

Further
HM)=(1-m)r[1+r(1-—m)'=2(1-M)""].

Noting that r < 1 and m < M, it follows that H'(M) < 0. Since m < M, it follows
that H(M) < H(m) = 0, and hence h'(M) > 0. Consequently, 7(M) > h(m) = 0 and
g'(m) <0. This implies g(m) > lim ~ g(m) =0, showing that g > 0 and hence 7o > m.

Following similar computatlons one can show that 7o < M. We leave these com-
putations to the reader.

Now having shown that m < 9 < M, it follows that f attains its minimum on
[m,M] at 1. That is

R () B =

REMARK 2.2. To find 3 appearing in Corollary 2.2, we set

fO)=ar+b—(1—1)
for the same parameters as in Remark 2.1. Direct computations show that f attains its

minimum on [m,M] at
1
ﬁ
fo = 1— L )
jal

provided that 7 € [m,M]. In fact, tedious Calculus computations show that this is al-
ways the case. Consequently,

=P =1 ,L
—1 —1 -1,

B = f(to) = a+b—a(pla))r~" — (pla|) T =a+b— T(z?\al)
As an application of Corollary 2.2, we have the following scalar Bellman-type inequal-

ity.
COROLLARY 2.3. For 1 < i< n, let aj,b; be positive numbers satisfying 0 <
m < ai,bi <M < 1 for some scalars m,M. Then, for p > 1 and g < 1,
-1 < 1 1 !
2hay 20— (@+b))r < Y {(-a)r+ (1)},
i=1 i=1

where o is as in Corollary 2.2.
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Proof. For the given a;,b;, define the n x n matrices A = diag(a)) and B =
diag(b?). Apply the first inequality of Corollary 2.2 with v = % to get

(I —AVB)? < (I—A)PV(I— B)7,
where we have chosen @ to be the identity mapping. In particular, it follows that
1 1 1
of(I-AVB)? || < ||(I-A)rV(I—B)7|,

for any unitarily invariant norm || ||. Selecting the trace norm || ||;, we obtain

n

aZsl(I AVB)? ) 2 (1 APV — B)%),

where s, is the i/ singular value. This implies
n 1 n
a¥ (1-alVb!)? < Z{ (1—af)P V(1 —b7)p }

i=1 i=1

That is, noting concavity of the mapping # — ¢4,

which completes the proof.
The main observation in [3, Lemma 3.2] can be stated as follows.

COROLLARY 2.4. Let A,B € B () be two positive operators such that ml <
A,B < MI for some scalars 0 <m <M. If f:[m,M] — [0,%) is a concave function
and v € [0,1], then the ratio inequality

af(AV,B) < f(A)V,f(B) (2.2)
holds, where o¢ = min {af t+by } Additionally, the following difference inequality
reimm) L F0)
F(AV,B)+ BI< f(A)V.f (B) (2.3)

holds, where 3 = IIllIl {aft—f—bf f@)}.

t€m,
The reverse mequalmes in (2.2) and (2.3) hold when f is a convex function.

We conclude this paper, by presenting the following simple proof of (1.2) and
some reversed versions.
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PROPOSITION 2.1. Let ay, by be positive numbers such that Z ak 1 and Z bp
k=1
< 1, for p e R. Then, for 0 <v < 1,

1 1 L
4 n P n p
(1 (a Vb”) ;(1—24{’) VV<1—Zb§> , ifp>1 @24
k=1 k=1

and
1 1

1 1 L
n r n r n P
( 2 Vb”) <<1—2a§j> VV<1—2b£> , if p<L.
k=1 k=1 k=1

Proof. For 0 <v <1, let

f(V):<1
k

Since the summannds are linear in v, it is readily seen that f is concave if p > 1 and
is convex if p < 1. Then both inequalities follow from concavity/convexity of f.
Notice that when p > 1, the function x — x”,x > 0 is convex. Therefore, a}V,b} >
(axV,by)P. This observation together with (2.4) imply

1 1 1
n p n p n P
<I—Z(akvvbk)p> > (1—Zag> VV<1—2b§j> , ifp>1.
k=1 k=1 k=1

An elaborated proof of this inequality was given in [6] as an application of (1.1). Fur-
ther, in [6], it was shown that this last inequality is equivalent to (1.2).

Notice that convexity of the mapping x — x”,p > 1 allowed the passage from
avabf to (a;V,bi)P. Unfortunately, the same logic does not apply for p < 1. How-
ever, the following is a more elaborated convexity result. The proof follows immedi-
ately upon finding the second derivative of the given function.

»
i M:
L

1

(afV, bp)> ' .

M=

1

n

n
PROPOSITION 2.2. For the positive numbers ay, by satisfying 'Y, af, Y, by <1,
=1 k=1

where p € R, define the function

1

f(v)=<1 i(akak) )P, 0<v<l.

Then f is concave if p > 1, while it is convex if p <O.

From this, we have

(-

1 1

1 1 1
P n n P
(a;V,by) ) \< Za) (1_Zb£> , ifp<o.
1 =1 k=1

Mx
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Using this inequality and following the proof of [6, Theorem 2.5] imply the fol-
lowing reverse of (1.2).

COROLLARY 2.5. Let a,ay,b,by be positive scalars satisfying Yy _, af < aP and
i bf < bP, where p < 0. Then the following reverse of (1.2) holds

= |-

1 L
n P n P n
a’ =Y al | + (6" =D by =|(a+b)P =Y (ap+b)”
k=1 k=1 k=1
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