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A TRUDINGER-MOSER TYPE INEQUALITY AND
ITS EXTREMAL FUNCTIONS IN DIMENSION TWO

XIANFENG SU
(Communicated by M. Krni¢)

Abstract. Let Q be a smooth bounded domain in R, W," 2(Q) be the usual Sobolev space and
A(Q) be the first eigenvalue of the Laplace-Beltrami operator, say

M@= it / Vuldx.

uGWO Q), fqutdx=1

Using blow-up analysis, we prove that for real numbers o < A(Q) and 8 < 47, the supremum

sup / (64’“‘2 — Bu?)dx
Q

UeWL(Q), o [VulPdx—o fg dx<1"

can be attained by some function u € WOl 2(Q) with Jo |Vul?dx — o [qu*dx = 1. In the case
B =0, this is reduced to a result of Yang [24].

1. Introduction and main result

Let Q C R? be a bounded smooth domain, WO1 2(Q) be the usual Sobolev space.
The classical Trudinger-Moser inequality [27, 17, 16, 20, 15] states the following:

sup /ewzdx<+°°, vy <4r; (1)
uew (@), |Vul3<1 7

moreover, if ¥ > 47, all integrals in (1) are still finite, but the supremum is infinite. Let

(uj) be a function sequence in WOI"Z(Q) such that [|Vu;[[> =1 and u; — up weakly in
Wol’z(Q). It was proved by Lions [12] that for any ¢ < 1/(1 — ||Vuo||3), there holds

limsup /Q A g < oo, (2)

If uy # 0, (2) is stronger than (1). While if uy = 0, (2) gives no information than (1).
Nevertheless, Adimurthi-Druet [ 1] obtained that for any 0 < o0 < A(Q) =
: 2
inf ey (@), =1 V4112
sup / A aluld) gy < oo, 3)
uew2(Q), [Vul3<1 7
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This inequality was generalized by Yang [21, 22] and Zhu [28] to n-dimensional case
(n > 3), by Yang [23] to closed Rieman surface case, and by Lu-Yang [13] to the
version involving L -norm for any p > 1. A slightly stronger version of (3) was due
to Tintarev [19], say

sup / AT gy < +oo, Vo < A(Q), 4)
Q

12
ueWy = (Q), [lull1,o<1

where || - H%a = ||Vul|3 — o||ul|3. It was recently proved by Yang [24] that extremal
functions for the supremum in (4) exist. This result was extended by Nguyen [14] and
Yang-Zhu [26] to higher dimensional case. For related works, we refer the reader to
Yang-Zhu [25], Li-Yang [8], Li [9] and so on.

Let us briefly recall the history of the problem of extremal functions for Trudinger-
Moser inequality. The first result was due to Carleson-Chang [2], who obtained the
existence of extremal functions for the supremum in (1) in the case that Q is the unit
disc in R?, in fact in the n-dimensional case, ¥n > 2. This result was then generalized
by Struwe [18] to domains close to the ball in the sense of measure, by Flucher [5] and
Lin [11] to general bounded smooth domains. For manifold versions of (1) and their
extremal functions, we refer the reader to Fontana [6] and Li [10] respectively.

Let 0 < A(Q) and B be two real numbers. Obviously it follows from (4) that

sup /Q (64””2 - [3142> dx < +oo. 3)

1.2
MGW() (9)7 H”Hlﬁagl

Concerning the extremal functions for the above supremum, we have the following

THEOREM 1. Let Q C R? be a bounded smooth domain, A(Q) be define as in
(3). If oo < A(Q) and B < 4r, then the supremum

sup / (64”"2 — Bu?)dx
Q

12
ueWy (), [Jul1,a<1

can be attained by some function u* € Wol’z(Q) NCYHQ) with ||u*||1.¢ = 1, where || -
|1.a is defined as in (4).

Note that Theorem 1 is reduced to that of Yang [24]. The proof of Theorem 1
is based on the blow-up analysis, which was originally used by Carleson-Chang [2],
Ding-Jost-Li-Wang [4] and Li [10], in particular, we use an argument of Yang [24].
More precisely, on the one hand, by analyzing the asymptotic behavior of the maxi-
mizers for subcritical functionals (see Lemma 2 below), we derive an upper bound Cy
of the functional [ A gy — B [ou?dx under the assumption that blow-up occur; On
the other hand, by constructing a sequence of test functions, we prove that Cy is not
really an upper bound of the corresponding functional. Combining these two steps,
we conclude that blow-up can not occur and that the desired extremal functions would
exist.
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The remaining part of this paper is organized as follows: In Section 2, we prove
the existence of maximizers ug € WOl ’2(9) for subcritical functionals; In Section 3, we
investigate the behavior of the maximizers ug by using blow-up analysis; In Section 4,
using a result due to Carleson and Chang [2], we obtain an upper bound estimates of
the functional fg(e“’”‘2 — Bu?)dx under the assumption of blow-up analysis; In Section

5, we construct a family of test function to finish the proof of Theorem 1.

2. Maximizers for subcritical Trudinger-Moser functionals

In this section, we will show that maximizers for subcritical functionals exist. This
is based on a direct method in the calculus of variation. Let o¢ < A(Q) and 8 < 47 be
fixed. For simplicity, denote

Npe= swp [ (R puya
ueWy (Q), [lufl ¢ <1

Then we have

LEMMA 2. Forany 0 < € <4, there exists ug € WOI"z(Q) NCHQ) with |lue|1.q
=1 such that

[ (0 — Bud)ax = A ©)

Moreover, in the distributional sense ue satisfies the equation

Al/lg + Omg = —2’—81/[ (4” £)u€ + A,g(gﬂfe 8) in 97

ug >0 in Q, (7

—e)u? u%
=Ja (u%e(“” ez 4€tfg>dx.

Proof. For any 0 < € < 4m, we choose a sequence of functions u; € WO1 ’2(9)
such that [|u;][1,¢ <1 and

lim | (751 — Buf)dx = Ap (8)

Since o < A(Q), we get that u; is bounded in WO1 2(Q). Without loss of general-
ity, we assume u; — ue weakly in W01’2(Q), uj — ug strongly in LP(Q) for any
p > 1, and u; — ue almost everywhere in Q. Moreover, we have that [jug||1,q <
liminfjﬁm Huj”l.,a < 1. Note that

/|Vuj—Vug|2dx:/ \Vqudx—/ \Vue[*dx+o0j(1)
Q Q Q

:/ (\Vuj\z—au?)dx—/g(|Vug|2—ocu§)dx+0j(l)

<L luel|F o +o0;(1).
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(4m—e)u

Using the Lions’ inequality (2), we get e 7 is bounded in L*(Q) for some s > 1.

Since
|e(4n—£)u§ _6(471'78)14%‘ < (471._ 8) (e(4n—£)u§ +e (4m—e ”s) |u _ ug‘

and uj — ug strongly in LP(Q) forany p > 1 as j — o, we conclude that

lim (e(4” ey; — Bu )dx—/g( (4n—e)u ﬂug)

J7JQ

This together with (8) immediately leads to (6). Obviously ug Z 0. Suppose
1. Since B < 4r, we get

(4n—¢) “%2 2
Aﬁ7£ :/( (4m—e)u ﬁug)dx</ ( HMsHl,oc _ﬁ )dx\Aﬁ .
Q Q

H”«SH

which is a contradiction. Hence, we have |[ug||; o = 1. A straightforward calculation
shows ue satisfies the Euler-Lagrange equation (7). Applying elliptic estimates to (7),
we have u, € C1(Q). O

3. Blow-up analysis

In view of (7), we will prove that A¢ has a positive lower bound, which is necessary
in the subsequent analysis.

LEMMA 3. Let A¢ be as in (7), then

liminfA; > 0.
£—0

Proof. Forany u € W01’2(Q)

o <1, we get

/Q(e“””z—ﬁuz)dx:lim (6707 — Budx < lm [ (e 2% — Bu)a

e—0 e—0

This leads to

sup /Q(emm ﬁu) A[}F,:gn% Q( (4m—e)u ﬂug)
ueWy 2(Q), lull1 o<1

One can easily see that

/ ( (4rm—e)u ﬁu )dx _ A/} . < sup (647{1,{2 _ﬁu2)dx.
o WeWS2 (@), ul o<1 72

Using an elementary inequality r¢’ > ¢’ — 1 for t > 0, we have

1
Ae > /Q(e(47t e ﬂus)

4t —¢€
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Therefore

1
liminfA, > _—liminf (e“Te | — Bul)dx

e—0 T -0 JQ
L swp [ (¢~ a1 | >0
4w Q

12
ueWy (), [lull1,0<1

This ends the proof of the lemma. [
Denote

ce = Ue(Xe) = maxue.
Q

If ¢, is bounded, then applying elliptic estimates to (7), we can find some u* € WO1 ’2(9)
such that ue — u* in C'(Q). Clearly, ||ug||1 .o = 1. Moreover, we get

/ (64””*2 — ﬁu*2> dx = lim (6(4”78)'4% — ﬁuﬁ) dx
Q e=0JQ

sup / (64”"2 — Bu?)dx.
Q

12
ueWy = (Q), [lull1,o<1

Hence u* is the desired extremal function and Theorem 1 holds.

In the sequel, we assume ¢; = ug(xg) — +oo and x; — xo € Qase—0. By are-
sult of Gidas-Ni-Nirenberg [7], one has xy & dQ. Since u, is bounded in WO1 ’2(9), we
can assume without loss of generality, u; — 1y weakly in WOI’Z(Q), ug — ug strongly
in L9(Q) for any g > 1, ug — up almost everywhere in Q. The following energy
concentration phenomenon is crucial in blow-up analysis. Namely

LEMMA 4. ug = 0 and |Vug|?dx — 8, weakly in sense of measure as € — 0,
where 5x0 is the usual Dirac measure centered at x.

Proof. Suppose ug # 0, then we obtain

/Q V(e — uo)[Pdx=1— (/Q |Vuo|?dx — a/gu%dx) +o0g(1). )

In view of (9), Lions’ inequality (2) implies that 471t ig bound in L*(Q) for some

s > 1. Applying elliptic estimates to (7), we have u, is bounded in W?*(Q2). Then the
Sobolev embedding theorem implies that u, is bounded in C°(Q), which contradicts
cg — +oo as € — 0. Therefore uy =0. Consequently, we have limg_,¢ [¢, |[Vue Pdx=1.

We next proof |Viue|?dx — &, . For otherwise, we can find ry >0 and 1 > 0 such
that B, (xo) C Q and

limsup |Vue|?dx < 1—1.
e—0 Br()(xo)
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One may choose a cut-off function ¢ € C§'(By, (xo)) verifying that ¢(x) =1 on B, »(x0),
0< ¢(x) <1 on By (x), and

limsup IV(due)|Pdx <1—1.

e—0 ]Bro (XO

The classical Trudinger-Moser inequality (1) implies that e“4m=€)0’2 s hounded in
2 JE—
L7 (B, »(x0)). Applying elliptic estimates to (7), we get ue is bounded in CO(IB%,O/4 (x0))
contradicting ¢ — +oo again. This completes the proof of the lemma. [J
To proceed, we set

re =/ Aecg L3 e/2)ce

Then we have

LEMMA 5. For any y < 2m, there holds rgeYC% — 0 as € — 0 and consequently
re =0 as € —0.

Proof. By the definition of r¢, we obtain

P v =2 (47:7572;/)6%/ 2 (e(4ng)ug_ B )dx
Q

4t —¢€

< c;2/ 2T dx 4 0g(1). (10)
Q

Since y < 2w, we can choose p; > 1 such that yp; < 2z. In view of the classical
Trudinger-Moser inequality (1), we have by the Holder inequality

1 1
/ugezyugdxg (/ e2ymu§dx) . (/ ugmdx) " =0¢(1), (11
Q Q Q

where 1/p; +1/p, = 1. Combining (10) and (11), we obtain r,gey"g —0ase—0.1It
is not difficult to see that r, — 0 as € — 0. [
Denote
= {(x ER? 1 xe +rex € QJ.

Define two blow-up functions

{ Ve (x) = lug (xe +rex), x€ L, 12

Qe (x) = ce(ug(xe +rex) —ce), x€ Q.

We now investigate the convergence behavior of Y, and @, . More precisely, we have

LEMMA 6. v, — 1inC C(Rz)as£—>0 qog—>(me1 (Rz)as£—>0 where

_ 1 2
0(x) = — 5 —log(1-+ TP,
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Proof. A direct calculation shows

2
Allfsz—arﬁl//g+4nﬁ P22 e — ¢ Py e el e —R) (13)

Since |we| <1, u2 <c? and re — 0 as € — 0, we have by applying elliptic estimate to
(13) that y; — v in Cllo’c9 (R?), where y is a bounded harmonic function in R?. The
Liouville theorem leads to y = 1. Also we have

B
4r —

AQe = —ociriye + ciridy ye — y/ge(“”_g)(“g("f“fx)‘c%). (14)

In view of Lemma 5, we have by applying elliptic estimates to (14) that ¢ — ¢ in
CL9(R?), where ¢ satisfies

loc
—Ap=¢e%"? in R2?

¢(0) =0=supg2 ¢
Jr2 SmPdx < 1.

By a classification result of Chen-Li [3], we conclude that

1
= ——log(1 2
(x) = ——log(1+mlx[)

and
/ AOgx — 1. (15)
]R2

O
Now, we will consider the convergence behavior of u, away from the concentra-
tion point xy. Similar to [10, 1], define

I/l£7')/ == min{YC£7u8}7

then we have

LEMMA 7. Forany 0 <y <1, there holds

li Vug o|>dx =
812(1)/9| ”s,y‘ X=7

Proof. Testing the equation (7) by (ug — yce)™, we obtain for any fixed R > 0,

+12 9. + Ug(Ue YC£)+
/\V Y |2 dx = OC/Q( — Yee) Tdx — [3/7&8471_ g)dx

1
+—/ ue(ug — yc£)+e(4”*£)“8dx
A«g Q
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1
> —/ ug (g — )/cg)+e(4”78)”gdx+og(l)
2’8 BRrs(xé‘)

> (1-p)(1 +og(1))/B ( Ot oc(1).

r(0

Letting € — O first and then R — 4+ in the above inequality, we have by (15) that
liminf [V (ue = yee) )3 > 1-7. (16)
Similarly as above, testing (7) by ue y, we obtain
1ig1jgf||vu£,y||§dx >7. (17)
Note that

||Vu€7)’||%+“V(uS_YC£)+||2_ 2, "’O‘”us”%: 1+o0g(1). (18)

Combining (16), (17) and (18), we finish the proof of the lemma. [J
As a consequence of Lemma 7, we have the following:

LEMMA 8. There holds

Ae
lim [ (e#F=9"% — Bu2)dx < |Q|+hmsup—.

e=0JQ e—0 £

Proof. Let 0 <y <1, we have

An—e)u _ (4m—end /
/Q( —Bud)dx = /Q<e . 8) wt [ P droe(l)
= P dx+ el4m—e)ez _ P dx
odr—¢ e <yce A — ¢

(47'[78)”% _ ﬁ d 1
+ _— (e —477:—£> x+o0e(1)

B / (4m—e)u? B Ae
< ey — e
\/(247T—8dx+ o\’ e dx+y2c§+og(l)

Ar— u% )Lé‘
:/Qe( n—g) .ydx+y2—cg—|—0£(l). (19)

(4m—e)u’

Note that ue y converges to 0 almost everywhere. Hence [ e “erdx converges to

|Q2|. Passing to the limit € — 0 in (19), we have

lim ((4” &) ﬁug)dx<|Q|+y—hmsup)L—

e—0

Letting v — 1, we get the desired result. [
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Clearly, Lemma 8 implies that
lim — =0. (20)
This result will be applied to prove the following:

LEMMA 9. Forany ¢ € C*(Q), we have

. —1 (Am—e)uZ B _
éli% Q?LS Cellg (e 47r—£)dx ¢ (x0).

= . o _ el
Proof. Let ¢ €C*(Q) be fixed. Write for simplicity ge=A; 'ceute <e(4” ez _ 4£7£> .
For any fixed y, 0 < y < 1, there holds

/gg(Z)dx:/ gePdx+ geOdx+ geOdx. (21)
Q ug<Yce {ug=yee }\Brre (xe) {ug=yce JOBRr, (xe)

We will estimate the right-hand integrals of (21). Obviously

Ce

dx = —/ g e HTENE gy C—S/ Boue dx. 22
/’48<ch g8¢ A‘S M£<VC£¢ ¢ A‘S g <Yce dn—¢ ( )

Let 1 <s<1/ybefixedand 1/s+ 1/r = 1. Using Holder inequality and the classical
Trudinger-Moser inequlity (1), we obtain

N

a2
/ Guupe T4 4
g <Yce

T
Q Q

1/t @ o 1/s
t T—E€ su&yd
sgp\¢| (/ngydx> (/Qe x)

<
— op(1). (23)
It is easy to see that
/ Boue ;. <Cs.up\¢|/ uedx = 0p(1). (24)
ug <Yyce 4m—¢ Q Q

Here we apply the fact that u, — 0 in L9(Q) for any ¢ > 0. Inserting (20), (23) and
(24) into (22), we get

/ geddx = o0g(1). (25)
ug <Yyce

It follows from Lemma 5 that Bg,, (xe) C {ue = yce} for € > 0 sufficiently small.

Hence we have
_ ~ B
dx = 1+o0.(1 / At ((47: eut P d
/{M€>m}mBRr8(XS)ge¢ x = ¢(x0)(1+0e(1)) e (o) cete | e ) K
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— o) (1+os(1) ([ | Pdrtontr))
Bg(0)
= @(x0)(140e(1) +0g(1)).
Letting € — O first, then R — 4o, we have
lim li = . 2
R;l}l}»locgli;[%) {uggycg}ﬁBRrE(xs)gS(bdx ¢(XO) (26)
For any ¢ € C?(Q), we calculate
1 —1.2( (4m—e) B
geddx < = sup|o| A tu (e(”‘c’ ¢ ———— |dx
/{”62705}\3Rrg(x6) ‘ Y {ue=yce }\Bpre (xe) £ 4m—e
1
< swplol (1 [ vt ou(1) ) =ou(1) +on(1)
R
This implies that
lim lim ge0dx = 0. 27)

R—+e0e—0 {M€>YC8}\BR1‘S (xe)

Inserting (25) - (27) into (21), we finish the proof of Lemma 9. [

LEMMA 10. For any 1 < q < 2, ceug — G weakly in Wol’q(Q), where G is a
distributional solution to

~AG = §,, + aG,
(28)
G=0 on 0JQ.
Moreover; ceug — G in Cl_(Q\{xo}).
Proof. Multiplying both sides of the equation (7) by c¢, one has
— _ 2
— A(cette) — otcette = Ay ceute (e(4” ez _ 471:[3— 8) . (29)

By Lemma 9, ge = A; !ceue (6(47[_8)”% - 4L> is bounded in L'(€2). We claim that

n—E€
celte is bounded in L'(€). Suppose not, we assume that |[ceute||; — oo as € — 0. Set
a new sequence of functions
Cellg

We = ———.
‘ l|cettel|1

Then we have ||we|l; =1 and

A = awp - Cete ((am-erz B (30)
||C£ug||1 ng 47t_£
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We can derive from Lemma 9 and the definition of w, that Awe is bounded in L!(Q).
Using an argument of Struwe ([18], Theorem 2.2) to (30), we have wg is bounded in
W, (Q) forany 1 < g <2. Assume we — w weakly in W, (). In particular, we —
w in L'(Q). Since g¢/||ceuell1 — 0 in L'(Q), we conclude that w is a distribution
solution to the equation

—Aw —ow = 0.

Further, we have w = 0. This contradicts ||w||; = limg_||we||1 = 1 and confirms our
claim.

Since ge + oceue is bounded in L' (Q), again by Theorem 2.2 in [18], we have
cegltg is bounded in WO1 “(Q) for 1 < g < 2. Hence we obtain

cete = G weakly in WOI"q(Q) (1<g<2),
ceug — G strongly in LP(Q) (Vp>1).

For any fixed r > 0, choose a cut-off function 1 € C}(Q\B,(x)) such that n = 1
on Q\By,(x0). Then one has ||V(nug)|» — 0 as € — 0. Therefore eln—e)(nee)? g
bounded in L*(Q\ B,(xp)) forany s > 1, and U=t s bounded in L*(Q\Bay(x0)).
Applying the elliptic estimate to (29), we have ceue — G in C'(Q\By,(x0)). By
Lemma 9, we obtain g¢ — 0, in sense of measure, where 0y, means the Dirac measure
centered at xg. In view of (29), G is a distributional solution to (28). [

By elliptic estimates, G takes the form:

1 ~
G:—Elog\x—xo\—I—A,Co—i—l[/(x)7 31)
where Ay, is a constant depending on xo, ¥(x) € C'(Q) and y(xp) = 0.

4. Upper bound estimate

In this section, we need the following Carleson-Chang’s result to derive an upper
bound of the integral [,(e“™ )4 — Bu2)dx. Namely

LEMMA 11. (Carleson-Chang [2]) Let B be the unit disc in R2. Assume ve is
a sequence of functions in Wol’z(IB%). If [5|Vve|?dx =1 and |Vve|*dx — 8 as € — 0
weakly in sense of measure. Then

. >
limsup [ (¢*™& — 1)dx < er.
£—0 B

In view of (28) and (31), we have by the divergence theorem
G

/ \VG|?dx = — / GAGdx + / G—=—ds

Q\Bs (x0) Q\Bs (x0) I(Q\Bs(xo) IV

1
=——1 A, 2 1).
S logd + 0+a/QG dx+o5(1)
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Since cgue — G in CloC

(Q\{x0}), we consequently get

1 1
2 2
A\Eé(xo) ‘Vué“ dx= C_2 <_ﬁ10g5 +Ax0+OC/QG dx+03(1)+08(1)) . (32)

€

Let s¢ = supyp (v, Ue and e = (ue — s¢)™, the positive part of ue —se. Then e €
Wy 2 (Bs(x0)). Since [ () [VutePdx = 1= g () |Vitedx+ ot [ utdx and [ouldx
= 0g(1), we have by (32) that

1 1
Vigl?dx <1— — [ ——1log§ + A, /sz 1 1)).
/Ba(xo)| i 2dx 2( 21086+ Ay, +a | Gdx-+os(1) +ox(1)

€

By Lemma 11, we get

lim sup (/% — 1)dx < med?, (33)
e—0 /Bs(x)

where T, = fEa(xo) |Vue|>dx. Moreover, we know from Lemma 6 that us = c¢ + 0g(1)
on Bg,, (x¢). Hence, there holds on Bg,, (x¢)

(4r — e)u? < (47— €)(the + 5¢)* < 472 + 8Tilese + 0g (1)
< Atz —41ogd + 8mA,, +05(1) +0g(1)
< Ami2 /T — 210g 8 +4mA,, +o(1),

where o(1) — 0 as € — O first and next § — 0. Therefore

/I; ( )( (4m—e)u ﬁ’/lg) /];g ( )6(4”_8)”gdx+0(1)
Rre \(Xe Rre (Xe

4mA, +o(1)
¢ 0 4miz /T
<& 8 1
- /IB R,g<xs>(e Ydx+o(1)

4mAy,+o(1) i
< D). 6o
o) Bs(x0)

Combining (33) and (34), one concludes for any fixed R > 0

limsup ( (4m—e)u Bug)dx < n.e47tAy0+l (35)
e—0 Brre (xe)

On the other hand, we have

/ (W™= _ Bu2)dx = r? 2p(4m—€)cg (/ egwdy-i-oe(l)) +0g(1)
]BRrg (XE ) ]BR (O)

= %(1 +or(l)+o0e(l)) +o0e(1).
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It follows that

A
lim li (4m—e)u = 36
fim lim f € Bt = lim (36)

In view of Lemma 8, (35) and (36), we have
sup / (64’”‘2 — Bu?)dx
ueWy (@), Jully o<1

= limsup | (e“" 1 — Bud)dx < |Q| + me ™ot (37)
e—0 Q

5. Test functions

In this section, we will construct a family of test functions ¢ € WO1 2(Q) such that
| @e[[1,0 =1 and

timsup Q(e4”¢3 — Bo2)dx > |Q| + met ™ot (38)
E—

for sufficiently small € > 0. This leads to a contradiction between (37) and (38). Then
we immediately conclude that c¢¢ is bounded. Therefore, Theorem 1 holds by elliptic
estimates. For this purpose, we write r = |x — x| and set
C+¢ (—ﬁlog(l +n£—§)+B> if r<Re
e = G-V if Re<r<2Re

C
if r>2Re,

aAQ

where 1 € i (Bage (x0)) satisfying 7 =1 on Bge(x) and ||Vn]|;= = O(5= =), G is
given as in (31), R = —loge, B and C are constants depending only on € to be deter-
mined later. To ensure ¢ € Wo 2(Q), let

1 1 1 1
C+—=|——log(1+mR*)+B) == [ —=—log(Re)+A,, |,
+C< ppe og(l+nR")+ ) C( o og(Re) + 0)

which gives that
1
47nC* = —loge® +logn +4nA,, —4nB+ O ( 7 ) (39)

A straightforward calculation shows

1 1
/Q(\qug|2—ocd)§)dx: C <—10g82+10gr£+4nAxO—1+0(R810g(R£))+0 (ﬁ)) )

Setting ||¢¢ |10 = 1, we get

1
4nC? = —1+4nA,, +logr — loge” + O(Relog(Re)) + O <ﬁ> . (40)
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Combining (39) and (40) , we get
Bl +O(Relog (Re)) + O ! (1)
 4rm g R? )"
For all x € Bge(xo), we have by (39) and (41) that
2
4m¢? > 4nC? +8nB — 2log (1 + ng—z)

2
I 2 1
= —2log <1+n8—2> —loge” +logm+4mA,+1+0 (F) .

Hence
4m2 B logﬂ+4nA0+1+0(L2>/ 1 ( 1 )
e — dx = e K ————dx+ 0| =
/BRguo)( hoe) Br(0) (1+7|x|?)? R?
1

Moreover, on Q\Bge(xo), we have the estimate

(4m—£)92 _ / AT 302 dx
/Q\BRS (x0) ( ﬁ (P ) Q\Boge (x0) ( B ¢’8 )

> / 1+ 4762 — Bo2)dx
Q\Boge (x0) ( ¢ 2

> \9|+4” P (/ G*dx+0¢(1 >>. (43)

Since B < 47 and C?/R? = 0¢(1), we have by (42) and (43) that

4
[ potiar> (0] 4 retmort 4 P ( [ GParoc1 >).
Q

This implies that (38) holds provided that £ > 0 is chosen sufficiently small.
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