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Abstract. Let Ω be a smooth bounded domain in R
2 , W 1,2

0 (Ω) be the usual Sobolev space and
λ(Ω) be the first eigenvalue of the Laplace-Beltrami operator, say

λ(Ω) = inf
u∈W1,2

0 (Ω),
∫

Ω u2dx=1

∫
Ω
|∇u|2dx.

Using blow-up analysis, we prove that for real numbers α < λ(Ω) and β < 4π , the supremum

sup
u∈W1,2

0 (Ω),
∫

Ω |∇u|2dx−α
∫

Ω u2dx�1

∫
Ω
(e4πu2 −βu2)dx

can be attained by some function u ∈W 1,2
0 (Ω) with

∫
Ω |∇u|2dx−α

∫
Ω u2dx = 1 . In the case

β = 0 , this is reduced to a result of Yang [24].

1. Introduction and main result

Let Ω ⊂ R
2 be a bounded smooth domain, W 1,2

0 (Ω) be the usual Sobolev space.
The classical Trudinger-Moser inequality [27, 17, 16, 20, 15] states the following:

sup
u∈W 1,2

0 (Ω),‖∇u‖2
2�1

∫
Ω

eγu2
dx < +∞, ∀γ � 4π ; (1)

moreover, if γ > 4π , all integrals in (1) are still finite, but the supremum is infinite. Let
(u j) be a function sequence in W 1,2

0 (Ω) such that ‖∇u j‖2 = 1 and u j ⇀ u0 weakly in

W 1,2
0 (Ω) . It was proved by Lions [12] that for any q < 1/(1−‖∇u0‖2

2) , there holds

limsup
j→∞

∫
Ω

e4πqu2
j dx < +∞. (2)

If u0 �≡ 0, (2) is stronger than (1). While if u0 ≡ 0, (2) gives no information than (1).
Nevertheless, Adimurthi-Druet [1] obtained that for any 0 � α < λ (Ω) =
inf

u∈W1,2
0 (Ω),‖u‖2=1

‖∇u‖2
2 ,

sup
u∈W1,2

0 (Ω),‖∇u‖2
2�1

∫
Ω

e4πu2(1+α‖u‖2
2)dx < +∞. (3)
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This inequality was generalized by Yang [21, 22] and Zhu [28] to n -dimensional case
(n � 3), by Yang [23] to closed Rieman surface case, and by Lu-Yang [13] to the
version involving Lp -norm for any p > 1. A slightly stronger version of (3) was due
to Tintarev [19], say

sup
u∈W1,2

0 (Ω),‖u‖1,α�1

∫
Ω

e4πu2
dx < +∞, ∀α < λ (Ω), (4)

where ‖ · ‖2
1,α = ‖∇u‖2

2 −α‖u‖2
2 . It was recently proved by Yang [24] that extremal

functions for the supremum in (4) exist. This result was extended by Nguyen [14] and
Yang-Zhu [26] to higher dimensional case. For related works, we refer the reader to
Yang-Zhu [25], Li-Yang [8], Li [9] and so on.

Let us briefly recall the history of the problem of extremal functions for Trudinger-
Moser inequality. The first result was due to Carleson-Chang [2], who obtained the
existence of extremal functions for the supremum in (1) in the case that Ω is the unit
disc in R

2 , in fact in the n -dimensional case, ∀n � 2. This result was then generalized
by Struwe [18] to domains close to the ball in the sense of measure, by Flucher [5] and
Lin [11] to general bounded smooth domains. For manifold versions of (1) and their
extremal functions, we refer the reader to Fontana [6] and Li [10] respectively.

Let α < λ (Ω) and β be two real numbers. Obviously it follows from (4) that

sup
u∈W1,2

0 (Ω),‖u‖1,α�1

∫
Ω

(
e4πu2 −βu2

)
dx < +∞. (5)

Concerning the extremal functions for the above supremum, we have the following

THEOREM 1. Let Ω ⊂ R
2 be a bounded smooth domain, λ (Ω) be define as in

(3). If α < λ (Ω) and β < 4π , then the supremum

sup
u∈W 1,2

0 (Ω),‖u‖1,α�1

∫
Ω
(e4πu2 −βu2)dx

can be attained by some function u∗ ∈W 1,2
0 (Ω)∩C1(Ω) with ‖u∗‖1,α = 1 , where ‖ ·

‖1,α is defined as in (4).

Note that Theorem 1 is reduced to that of Yang [24]. The proof of Theorem 1
is based on the blow-up analysis, which was originally used by Carleson-Chang [2],
Ding-Jost-Li-Wang [4] and Li [10], in particular, we use an argument of Yang [24].
More precisely, on the one hand, by analyzing the asymptotic behavior of the maxi-
mizers for subcritical functionals (see Lemma 2 below), we derive an upper bound C0

of the functional
∫

Ω e4πu2
dx−β

∫
Ω u2dx under the assumption that blow-up occur; On

the other hand, by constructing a sequence of test functions, we prove that C0 is not
really an upper bound of the corresponding functional. Combining these two steps,
we conclude that blow-up can not occur and that the desired extremal functions would
exist.
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The remaining part of this paper is organized as follows: In Section 2, we prove
the existence of maximizers uε ∈W 1,2

0 (Ω) for subcritical functionals; In Section 3, we
investigate the behavior of the maximizers uε by using blow-up analysis; In Section 4,
using a result due to Carleson and Chang [2], we obtain an upper bound estimates of
the functional

∫
Ω(e4πu2 −βu2)dx under the assumption of blow-up analysis; In Section

5, we construct a family of test function to finish the proof of Theorem 1.

2. Maximizers for subcritical Trudinger-Moser functionals

In this section, we will show that maximizers for subcritical functionals exist. This
is based on a direct method in the calculus of variation. Let α < λ (Ω) and β < 4π be
fixed. For simplicity, denote

Λβ ,ε = sup
u∈W 1,2

0 (Ω),‖u‖1,α�1

∫
Ω
(e(4π−ε)u2 −βu2)dx.

Then we have

LEMMA 2. For any 0 < ε < 4π , there exists uε ∈W 1,2
0 (Ω)

⋂
C1(Ω) with ‖uε‖1,α

= 1 such that ∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx = Λβ ,ε . (6)

Moreover, in the distributional sense uε satisfies the equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
Δuε + αuε = − 1

λε
uεe(4π−ε)u2

ε + βuε
λε (4π−ε) in Ω,

uε > 0 in Ω,

λε =
∫

Ω

(
u2

εe
(4π−ε)u2

ε − βu2
ε

4π−ε

)
dx.

(7)

Proof. For any 0 < ε < 4π , we choose a sequence of functions u j ∈ W 1,2
0 (Ω)

such that ‖u j‖1,α � 1 and

lim
j→∞

∫
Ω
(e(4π−ε)u2

j −βu2
j)dx = Λβ ,ε (8)

Since α < λ (Ω) , we get that u j is bounded in W 1,2
0 (Ω) . Without loss of general-

ity, we assume u j ⇀ uε weakly in W 1,2
0 (Ω) , u j → uε strongly in Lp(Ω) for any

p > 1, and u j → uε almost everywhere in Ω . Moreover, we have that ‖uε‖1,α �
liminf j→∞ ‖u j‖1,α � 1. Note that∫

Ω
|∇u j −∇uε |2dx =

∫
Ω
|∇u j|2dx−

∫
Ω
|∇uε |2dx+o j(1)

=
∫

Ω

(|∇u j|2−αu2
j

)
dx−

∫
Ω

(|∇uε |2−αu2
ε
)
dx+o j(1)

� 1−‖uε‖2
1,α +o j(1).
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Using the Lions’ inequality (2), we get e(4π−ε)u2
j is bounded in Ls(Ω) for some s > 1.

Since

|e(4π−ε)u2
j − e(4π−ε)u2

ε | � (4π − ε)
(
e(4π−ε)u2

j + e(4π−ε)u2
ε
)
|u2

j −u2
ε |

and u j → uε strongly in Lp(Ω) for any p > 1 as j → ∞ , we conclude that

lim
j→∞

∫
Ω
(e(4π−ε)u2

j −βu2
j)dx =

∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx.

This together with (8) immediately leads to (6). Obviously uε �≡ 0. Suppose ‖uε‖1,α <
1. Since β < 4π , we get

Λβ ,ε =
∫

Ω
(e(4π−ε)u2

ε −βu2
ε)dx <

∫
Ω

(
e
(4π−ε) u2

ε
‖uε ‖21,α −β

u2
ε

‖uε‖2
1,α

)
dx � Λβ ,ε ,

which is a contradiction. Hence, we have ‖uε‖1,α = 1. A straightforward calculation
shows uε satisfies the Euler-Lagrange equation (7). Applying elliptic estimates to (7),
we have uε ∈C1(Ω) . �

3. Blow-up analysis

In view of (7), we will prove that λε has a positive lower bound, which is necessary
in the subsequent analysis.

LEMMA 3. Let λε be as in (7), then

liminf
ε→0

λε > 0.

Proof. For any u ∈W 1,2
0 (Ω) with ‖u‖1,α � 1, we get∫

Ω
(e4πu2 −βu2)dx = lim

ε→0

∫
Ω
(e(4π−ε)u2 −βu2)dx � lim

ε→0

∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx.

This leads to

sup
u∈W 1,2

0 (Ω),‖u‖1,α�1

∫
Ω
(e4πu2 −βu2)dx � Λβ ,ε = lim

ε→0

∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx.

One can easily see that∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx = Λβ ,ε � sup

u∈W1,2
0 (Ω),‖u‖1,α�1

∫
Ω
(e4πu2 −βu2)dx.

Using an elementary inequality tet � et −1 for t � 0, we have

λε � 1
4π − ε

∫
Ω
(e(4π−ε)u2

ε −1−βu2
ε)dx.
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Therefore

liminf
ε→0

λε � 1
4π

liminf
ε→0

∫
Ω
(e(4π−ε)u2

ε −1−βu2
ε)dx

=
1
4π

⎛⎝ sup
u∈W1,2

0 (Ω),‖u‖1,α�1

∫
Ω
(e4πu2 −βu2)dx−|Ω|

⎞⎠ > 0.

This ends the proof of the lemma. �
Denote

cε = uε(xε) = max
Ω

uε .

If cε is bounded, then applying elliptic estimates to (7), we can find some u∗ ∈W 1,2
0 (Ω)

such that uε → u∗ in C1(Ω) . Clearly, ‖uε‖1,α = 1. Moreover, we get∫
Ω

(
e4πu∗2 −βu∗2

)
dx = lim

ε→0

∫
Ω

(
e(4π−ε)u2

ε −βu2
ε

)
dx

= sup
u∈W1,2

0 (Ω),‖u‖1,α�1

∫
Ω
(e4πu2 −βu2)dx.

Hence u∗ is the desired extremal function and Theorem 1 holds.
In the sequel, we assume cε = uε(xε)→+∞ and xε → x0 ∈ Ω as ε → 0. By a re-

sult of Gidas-Ni-Nirenberg [7], one has x0 �∈ ∂Ω . Since uε is bounded in W 1,2
0 (Ω) , we

can assume without loss of generality, uε ⇀ u0 weakly in W 1,2
0 (Ω) , uε → u0 strongly

in Lq(Ω) for any q > 1, uε → u0 almost everywhere in Ω . The following energy
concentration phenomenon is crucial in blow-up analysis. Namely

LEMMA 4. u0 ≡ 0 and |∇uε |2dx ⇀ δx0 weakly in sense of measure as ε → 0 ,
where δx0 is the usual Dirac measure centered at x0 .

Proof. Suppose u0 �≡ 0, then we obtain

∫
Ω
|∇(uε −u0)|2dx = 1−

(∫
Ω
|∇u0|2dx−α

∫
Ω

u2
0dx

)
+oε(1). (9)

In view of (9), Lions’ inequality (2) implies that e(4π−ε)u2
ε is bound in Ls(Ω) for some

s > 1. Applying elliptic estimates to (7), we have uε is bounded in W 2,s(Ω) . Then the
Sobolev embedding theorem implies that uε is bounded in C0(Ω) , which contradicts
cε →+∞ as ε → 0. Therefore u0 ≡ 0. Consequently, we have limε→0

∫
Ω |∇uε |2dx = 1.

We next proof |∇uε |2dx ⇀ δx0 . For otherwise, we can find r0 > 0 and η > 0 such
that Br0(x0) ⊂ Ω and

limsup
ε→0

∫
Br0 (x0)

|∇uε |2dx � 1−η .
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One may choose a cut-off function φ ∈C∞
0 (Br0(x0)) verifying that φ(x)≡ 1 on Br0/2(x0) ,

0 � φ(x) � 1 on Br0(x0) , and

limsup
ε→0

∫
Br0 (x0)

|∇(φuε )|2dx � 1−η .

The classical Trudinger-Moser inequality (1) implies that e(4π−ε)φ2u2
ε is bounded in

L
2

2−η (Br0/2(x0)) . Applying elliptic estimates to (7), we get uε is bounded in C0(Br0/4(x0))
contradicting cε → +∞ again. This completes the proof of the lemma. �

To proceed, we set

rε =
√

λεc
−1
ε e−(2π−ε/2)c2

ε .

Then we have

LEMMA 5. For any γ < 2π , there holds rεeγc2
ε → 0 as ε → 0 and consequently

rε → 0 as ε → 0 .

Proof. By the definition of rε , we obtain

r2
εe

2γc2
ε = c−2

ε e−(4π−ε−2γ)c2
ε

∫
Ω

u2
ε

(
e(4π−ε)u2

ε − β
4π − ε

)
dx

� c−2
ε

∫
Ω

u2
εe

2γu2
ε dx+oε(1). (10)

Since γ < 2π , we can choose p1 > 1 such that γ p1 < 2π . In view of the classical
Trudinger-Moser inequality (1), we have by the Hölder inequality

∫
Ω

u2
εe

2γu2
ε dx �

(∫
Ω

e2γ p1u
2
ε dx

) 1
p1

(∫
Ω

u2p2
ε dx

) 1
p2

= oε(1), (11)

where 1/p1 +1/p2 = 1. Combining (10) and (11), we obtain rεeγc2
ε → 0 as ε → 0. It

is not difficult to see that rε → 0 as ε → 0. �
Denote

Ωε = {x ∈ R
2 : xε + rεx ∈ Ω}.

Define two blow-up functions{
ψε (x) = c−1

ε uε(xε + rεx), x ∈ Ωε ,

ϕε (x) = cε(uε(xε + rεx)− cε), x ∈ Ωε .
(12)

We now investigate the convergence behavior of ψε and ϕε . More precisely, we have

LEMMA 6. ψε → 1 in C1,θ
loc (R2) as ε → 0 ; ϕε →ϕ in C1,θ

loc (R2) as ε → 0 , where

ϕ(x) = − 1
4π

log(1+ π |x|2).
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Proof. A direct calculation shows

Δψε = −αr2
ε ψε +

β
4π − ε

r2
ε λ−1

ε ψε − c−2
ε ψεe

(4π−ε)(u2
ε(xε+rε x)−c2

ε ). (13)

Since |ψε |� 1, u2
ε � c2

ε and rε → 0 as ε → 0, we have by applying elliptic estimate to
(13) that ψε → ψ in C1,θ

loc (R2) , where ψ is a bounded harmonic function in R
2 . The

Liouville theorem leads to ψ ≡ 1. Also we have

Δϕε = −αc2
εr

2
ε ψε +

β
4π − ε

c2
εr

2
ε λ−1

ε ψε −ψεe
(4π−ε)(u2

ε(xε+rε x)−c2
ε ). (14)

In view of Lemma 5, we have by applying elliptic estimates to (14) that ϕε → ϕ in
C1,θ

loc (R2) , where ϕ satisfies ⎧⎪⎪⎨⎪⎪⎩
−Δϕ = e8πϕ in R

2

ϕ(0) = 0 = sup
R2 ϕ∫

R2 e8πϕdx � 1.

By a classification result of Chen-Li [3], we conclude that

ϕ(x) = − 1
4π

log(1+ π |x|2)

and ∫
R2

e8πϕdx = 1. (15)

�
Now, we will consider the convergence behavior of uε away from the concentra-

tion point x0 . Similar to [10, 1], define

uε,γ = min{γcε ,uε},

then we have

LEMMA 7. For any 0 < γ < 1 , there holds

lim
ε→0

∫
Ω
|∇uε,γ |2dx = γ.

Proof. Testing the equation (7) by (uε − γcε)+ , we obtain for any fixed R > 0,∫
Ω
|∇(uε − γcε)+|2dx = α

∫
Ω

uε(uε − γcε)+dx−β
∫

Ω

uε(uε − γcε)+

λε(4π − ε)
dx

+
1
λε

∫
Ω

uε(uε − γcε)+e(4π−ε)u2
ε dx



592 X. SU

� 1
λε

∫
BRrε (xε )

uε(uε − γcε)+e(4π−ε)u2
ε dx+oε(1)

� (1− γ)(1+oε(1))
∫

BR(0)
e8πϕdx+oε(1).

Letting ε → 0 first and then R → +∞ in the above inequality, we have by (15) that

liminf
ε→0

‖∇(uε − γcε)+)‖2
2 � 1− γ. (16)

Similarly as above, testing (7) by uε,γ , we obtain

liminf
ε→0

‖∇uε,γ‖2
2dx � γ. (17)

Note that

‖∇uε,γ‖2
2 +‖∇(uε − γcε)+‖2

2 = ‖uε‖2
1,α + α‖uε‖2

2 = 1+oε(1). (18)

Combining (16), (17) and (18), we finish the proof of the lemma. �
As a consequence of Lemma 7, we have the following:

LEMMA 8. There holds

lim
ε→0

∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx � |Ω|+ limsup

ε→0

λε
c2

ε
.

Proof. Let 0 < γ < 1, we have∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx =

∫
Ω

(
e(4π−ε)u2

ε − β
4π − ε

)
dx+

∫
Ω

β
4π − ε

dx+oε(1)

=
∫

Ω

β
4π − ε

dx+
∫
uε�γcε

(
e(4π−ε)u2

ε − β
4π − ε

)
dx

+
∫

uε>γcε

(
e(4π−ε)u2

ε − β
4π − ε

)
dx+oε(1)

�
∫

Ω

β
4π − ε

dx+
∫

Ω

(
e(4π−ε)u2

ε,γ − β
4π − ε

)
dx+

λε
γ2c2

ε
+oε(1)

=
∫

Ω
e(4π−ε)u2

ε,γ dx+
λε

γ2c2
ε

+oε(1). (19)

Note that uε,γ converges to 0 almost everywhere. Hence
∫

Ω e(4π−ε)u2
ε,γ dx converges to

|Ω| . Passing to the limit ε → 0 in (19), we have

lim
ε→0

∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx � |Ω|+ 1

γ2 limsup
ε→0

λε
c2

ε
.

Letting γ → 1, we get the desired result. �
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Clearly, Lemma 8 implies that

lim
ε→0

cε

λε
= 0. (20)

This result will be applied to prove the following:

LEMMA 9. For any φ ∈C2(Ω) , we have

lim
ε→0

∫
Ω

λ−1
ε cεuε

(
e(4π−ε)u2

ε − β
4π − ε

)
dx = φ(x0).

Proof. Let φ∈C2(Ω) be fixed. Write for simplicity gε =λ−1
ε cεuε

(
e(4π−ε)u2

ε − β
4π−ε

)
.

For any fixed γ , 0 < γ < 1, there holds∫
Ω

gεφdx =
∫

uε<γcε
gε φdx+

∫
{uε�γcε}\BRrε (xε )

gε φdx+
∫
{uε�γcε}∩BRrε (xε )

gε φdx. (21)

We will estimate the right-hand integrals of (21). Obviously

∫
uε<γcε

gεφdx =
cε

λε

∫
uε<γcε

φuεe
(4π−ε)u2

ε dx− cε

λε

∫
uε<γcε

β φuε

4π − ε
dx. (22)

Let 1 < s < 1/γ be fixed and 1/s+1/t = 1. Using Hölder inequality and the classical
Trudinger-Moser inequlity (1), we obtain∣∣∣∣∫

uε<γcε
φuεe

(4π−ε)u2
ε dx

∣∣∣∣ � sup
Ω

|φ |
∫

Ω
uε,γe

(4π−ε)u2
ε,γ dx

� sup
Ω

|φ |
(∫

Ω
ut

ε,γdx

)1/t (∫
Ω

e(4π−ε)su2
ε,γ dx

)1/s

= oε(1). (23)

It is easy to see that∣∣∣∣∫
uε<γcε

β φuε
4π − ε

dx

∣∣∣∣ � C sup
Ω

|φ |
∫

Ω
uεdx = oε(1). (24)

Here we apply the fact that uε → 0 in Lq(Ω) for any q > 0. Inserting (20), (23) and
(24) into (22), we get ∫

uε<γcε
gε φdx = oε(1). (25)

It follows from Lemma 5 that BRrε (xε) ⊂ {uε � γcε} for ε > 0 sufficiently small.
Hence we have∫

{uε�γcε}∩BRrε (xε )
gε φdx = φ(x0)(1+oε(1))

∫
BRrε (xε )

λ−1
ε cεuε

(
e(4π−ε)u2

ε− β
4π−ε

)
dx
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= φ(x0)(1+oε(1))
(∫

BR(0)
e8πϕdx+oε(1)

)
= φ(x0)(1+oε(1)+oR(1)).

Letting ε → 0 first, then R → +∞ , we have

lim
R→+∞

lim
ε→0

∫
{uε�γcε}∩BRrε (xε )

gε φdx = φ(x0). (26)

For any φ ∈C2(Ω) , we calculate∫
{uε�γcε}\BRrε (xε )

gε φdx � 1
γ

sup
Ω

|φ |
∫
{uε�γcε}\BRrε (xε )

λ−1
ε u2

ε

(
e(4π−ε)u2

ε − β
4π − ε

)
dx

� 1
γ

sup
Ω

|φ |
(

1−
∫

BR(0)
e8πϕdx+oε(1)

)
= oε(1)+oR(1).

This implies that

lim
R→+∞

lim
ε→0

∫
{uε�γcε}\BRrε (xε )

gε φdx = 0. (27)

Inserting (25) - (27) into (21), we finish the proof of Lemma 9. �

LEMMA 10. For any 1 < q < 2 , cεuε ⇀ G weakly in W 1,q
0 (Ω) , where G is a

distributional solution to {−ΔG = δx0 + αG,

G = 0 on ∂Ω.
(28)

Moreover, cεuε → G in C1
loc(Ω\{x0}) .

Proof. Multiplying both sides of the equation (7) by cε , one has

−Δ(cεuε)−αcεuε = λ−1
ε cεuε

(
e(4π−ε)u2

ε − β
4π − ε

)
. (29)

By Lemma 9, gε = λ−1
ε cεuε

(
e(4π−ε)u2

ε − β
4π−ε

)
is bounded in L1(Ω) . We claim that

cεuε is bounded in L1(Ω) . Suppose not, we assume that ‖cεuε‖1 →+∞ as ε → 0. Set
a new sequence of functions

wε =
cεuε

‖cεuε‖1
.

Then we have ‖wε‖1 = 1 and

−Δwε = αwε +
1

‖cεuε‖1

cεuε
λε

(
e(4π−ε)u2

ε − β
4π − ε

)
. (30)
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We can derive from Lemma 9 and the definition of wε that Δwε is bounded in L1(Ω) .
Using an argument of Struwe ([18], Theorem 2.2) to (30), we have wε is bounded in
W 1,q

0 (Ω) for any 1 < q < 2. Assume wε ⇀ w weakly in W 1,q
0 (Ω) . In particular, wε →

w in L1(Ω) . Since gε/‖cεuε‖1 → 0 in L1(Ω) , we conclude that w is a distribution
solution to the equation

−Δw−αw = 0.

Further, we have w ≡ 0. This contradicts ‖w‖1 = limε→0 ‖wε‖1 = 1 and confirms our
claim.

Since gε + αcεuε is bounded in L1(Ω) , again by Theorem 2.2 in [18], we have
cεuε is bounded in W 1,q

0 (Ω) for 1 < q < 2. Hence we obtain

cεuε ⇀ G weakly in W 1,q
0 (Ω) (1 < q < 2),

cεuε → G strongly in Lp(Ω) (∀p > 1).

For any fixed r > 0, choose a cut-off function η ∈ C1
0(Ω\Br(x0)) such that η ≡ 1

on Ω\B2r(x0) . Then one has ‖∇(ηuε)‖2 → 0 as ε → 0. Therefore e(4π−ε)(ηuε)2 is
bounded in Ls(Ω\Br(x0)) for any s > 1, and e(4π−ε)u2

ε is bounded in Ls(Ω\B2r(x0)) .
Applying the elliptic estimate to (29), we have cεuε → G in C1(Ω\B4r(x0)) . By
Lemma 9, we obtain gε ⇀ δx0 in sense of measure, where δx0 means the Dirac measure
centered at x0 . In view of (29), G is a distributional solution to (28). �

By elliptic estimates, G takes the form:

G = − 1
2π

log |x− x0|+Ax0 + ψ̃(x), (31)

where Ax0 is a constant depending on x0 , ψ̃(x) ∈C1(Ω) and ψ̃(x0) = 0.

4. Upper bound estimate

In this section, we need the following Carleson-Chang’s result to derive an upper
bound of the integral

∫
Ω(e(4π−ε)u2

ε −βu2
ε)dx . Namely

LEMMA 11. (Carleson-Chang [2]) Let B be the unit disc in R
2 . Assume vε is

a sequence of functions in W 1,2
0 (B) . If

∫
B
|∇vε |2dx = 1 and |∇vε |2dx ⇀ δ0 as ε → 0

weakly in sense of measure. Then

limsup
ε→0

∫
B

(e4πv2
ε −1)dx � eπ .

In view of (28) and (31), we have by the divergence theorem∫
Ω\Bδ (x0)

|∇G|2dx = −
∫

Ω\Bδ (x0)
GΔGdx+

∫
∂ (Ω\Bδ (x0))

G
∂G
∂ν

ds

= − 1
2π

logδ +Ax0 + α
∫

Ω
G2dx+oδ(1).
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Since cεuε → G in C1
loc(Ω\{x0}) , we consequently get∫

Ω\Bδ (x0)
|∇uε |2dx =

1
c2

ε

(
− 1

2π
logδ +Ax0 + α

∫
Ω

G2dx+oδ(1)+oε(1)
)

. (32)

Let sε = sup∂Bδ (x0) uε and ũε = (uε − sε)+ , the positive part of uε − sε . Then ũε ∈
W 1,2

0 (Bδ (x0)) . Since
∫
Bδ (x0) |∇uε |2dx = 1−∫

Ω\Bδ (x0) |∇uε |2dx+α
∫

Ω u2
εdx and

∫
Ω u2

εdx
= oε(1) , we have by (32) that∫

Bδ (x0)
|∇ũε |2dx � 1− 1

c2
ε

(
− 1

2π
logδ +Ax0 + α

∫
Ω

G2dx+oδ(1)+oε(1)
)

.

By Lemma 11, we get

limsup
ε→0

∫
Bδ (x0)

(e4π ũ2
ε/τε −1)dx � πeδ 2, (33)

where τε =
∫
Bδ (x0) |∇uε |2dx . Moreover, we know from Lemma 6 that uε = cε +oε(1)

on BRrε (xε) . Hence, there holds on BRrε (xε )

(4π − ε)u2
ε � (4π − ε)(ũε + sε)2 � 4π ũ2

ε +8π ũεsε +oε(1)

� 4π ũ2
ε −4logδ +8πAx0 +oδ (1)+oε(1)

� 4π ũ2
ε/τε −2logδ +4πAx0 +o(1),

where o(1) → 0 as ε → 0 first and next δ → 0. Therefore∫
BRrε (xε )

(e(4π−ε)u2
ε −βu2

ε)dx �
∫

BRrε (xε )
e(4π−ε)u2

ε dx+o(1)

� e4πAx0+o(1)

δ 2

∫
BRrε (xε )

(e4π ũ2
ε/τε −1)dx+o(1)

� e4πAx0+o(1)

δ 2

∫
Bδ (x0)

(e4π ũ2
ε/τε −1)dx+o(1). (34)

Combining (33) and (34), one concludes for any fixed R > 0

limsup
ε→0

∫
BRrε (xε )

(e(4π−ε)u2
ε −βu2

ε)dx � πe4πAx0+1. (35)

On the other hand, we have∫
BRrε (xε )

(e(4π−ε)u2
ε −βu2

ε)dx = r2
εe

(4π−ε)c2
ε

(∫
BR(0)

e8πϕdy+oε(1)
)

+oε(1)

=
λε

c2
ε
(1+oR(1)+oε(1))+oε(1).



A TRUDINGER-MOSER TYPE INEQUALITY 597

It follows that

lim
R→∞

lim
ε→0

∫
BRrε (xε )

(e(4π−ε)u2
ε −βu2

ε)dx = lim
ε→0

λε
c2

ε
(36)

In view of Lemma 8, (35) and (36), we have

sup
u∈W1,2

0 (Ω),‖u‖1,α�1

∫
Ω
(e4πu2 −βu2)dx

= limsup
ε→0

∫
Ω
(e(4π−ε)u2

ε −βu2
ε)dx � |Ω|+ πe4πAx0+1. (37)

5. Test functions

In this section, we will construct a family of test functions φε ∈W 1,2
0 (Ω) such that

‖φε‖1,α = 1 and

limsup
ε→0

∫
Ω
(e4πφ2

ε −β φ2
ε )dx > |Ω|+ πe4πAx0+1 (38)

for sufficiently small ε > 0. This leads to a contradiction between (37) and (38). Then
we immediately conclude that cε is bounded. Therefore, Theorem 1 holds by elliptic
estimates. For this purpose, we write r = |x− x0| and set

φε =

⎧⎪⎪⎨⎪⎪⎩
C+ 1

C

(
− 1

4π log(1+ π r2

ε2 )+B
)

if r � Rε
G−ηψ̃

C if Rε < r < 2Rε
G
C if r � 2Rε,

where η ∈ C∞
0 (B2Rε(x0)) satisfying η ≡ 1 on BRε(x0) and ‖∇η‖L∞ = O( 1

Rε ) , G is
given as in (31), R = − logε , B and C are constants depending only on ε to be deter-
mined later. To ensure φε ∈W 1,2

0 (Ω) , let

C+
1
C

(
− 1

4π
log(1+ πR2)+B

)
=

1
C

(
− 1

2π
log(Rε)+Ax0

)
,

which gives that

4πC2 = − logε2 + logπ +4πAx0 −4πB+O

(
1
R2

)
. (39)

A straightforward calculation shows∫
Ω
(|∇φε |2−αφ2

ε )dx=
1

4πC2

(
−logε2+logπ+4πAx0−1+O(Rε log(Rε))+O

(
1
R2

))
.

Setting ‖φε‖1,α = 1, we get

4πC2 = −1+4πAx0 + logπ − logε2 +O(Rε log(Rε))+O

(
1
R2

)
. (40)
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Combining (39) and (40) , we get

B =
1
4π

+O(Rε log(Rε))+O

(
1
R2

)
. (41)

For all x ∈ BRε(x0) , we have by (39) and (41) that

4πφ2
ε � 4πC2 +8πB−2log

(
1+ π

r2

ε2

)
= −2log

(
1+ π

r2

ε2

)
− logε2 + logπ +4πAx0 +1+O

(
1
R2

)
.

Hence∫
BRε (x0)

(e4πφ2
ε −β φ2

ε )dx � e
logπ+4πA0+1+O

(
1

R2

) ∫
BR(0)

1
(1+ π |x|2)2 dx+O

(
1
R2

)
= πe4πAx0+1 +O

(
1
R2

)
. (42)

Moreover, on Ω\BRε(x0) , we have the estimate∫
Ω\BRε (x0)

(e(4π−ε)φ2
ε −β φ2

ε )dx �
∫

Ω\B2Rε (x0)
(e4πφ2

ε −β φ2
ε )dx

�
∫

Ω\B2Rε (x0)
(1+4πφ2

ε −β φ2
ε )dx

� |Ω|+ 4π −β
C2

(∫
Ω

G2dx+oε(1)
)

. (43)

Since β < 4π and C2/R2 = oε(1) , we have by (42) and (43) that∫
Ω
(e4πφ2

ε −β φ2
ε )dx � |Ω|+ πe4πAx0+1 +

4π −β
C2

(∫
Ω

G2dx+oε(1)
)

.

This implies that (38) holds provided that ε > 0 is chosen sufficiently small.
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