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ON A GENERAL INEQUALITY RELATED TO THE

GENERALIZED–EULER–CONSTANT FUNCTION

HAN-QI TANG AND AI-MIN XU ∗

(Communicated by G. Nemes)

Abstract. Let γ(z) be the generalized-Euler-constant function. In this paper, we establish a
general inequality related to γ(z) , which contains a result due to Chen and Han as a special case.
We also obtain an inequality for the generalized Somos recurrence constant, using its relation
with the generalized-Euler-constant function.

1. Introduction

Somos’ quadratic recurrence constant σ is usually defined by

σ =

√
1

√
2

√
3
√

4 · · · =
∞

∏
k=1

k
1
2k = 1.66168794 · · · (1.1)

or

σ = exp

{
−
∫ 1

0

1− x
(2− x) lnx

dx

}
= exp

{
−
∫ 1

0

∫ 1

0

x
(2− xy) ln(xy)

dxdy

}
. (1.2)

See [4, 13, 14]. It arises in the study of the asymptotic behavior of the sequence (see
for example [3, p. 446] and [18]):

gn ∼σ2n

n

(
1+

2
n
− 1

n2 +
4
n3 −

21
n4 +

138
n5 − 1091

n6 +
10088

n7 − 106918
n8

+
1279220

n9 − 17070418
n10 +

251560472
n11 − 4059954946

n12 + · · ·
)−1

, (1.3)

where the gn ’s are defined recursively by

g0 = 1, gn = ng2
n−1, n ∈ N := {1,2,3, . . .}, (1.4)
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with the first few terms being

g0 = 1, g1 = 1, g2 = 2, g3 = 12, g4 = 576, g5 = 1658880, . . ..

It is remarkable particularly that Nemes [10] found recurrence relations and an asymp-
totic approximation for the coefficients of (1.3) . Xu [19] extended the Nemes results
to the generalized Somos recurrence. The constant σ introduced in (1.1) appears in
many important problems in pure and applied analysis and it was investigated by a great
number of mathematicians [1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 17, 20].

Sondow and Hadjicostas [17] introduced and studied the generalized-Euler-constant
function γ(z) , defined by the power series

γ(z) =
∞

∑
k=1

zk−1
(

1
k
− ln

k+1
k

)
(1.5)

when |z| � 1. The function was independently introduced by Pilehrood and Pilehrood
[11] almost at the same time. Its values include Euler’s constant γ = γ(1) and the
“alternating” Euler constant log 4

π = γ(−1) ; see for example [15, 16]. In particular, at
z = 1/2, the function takes the value

γ
(

1
2

)
= 2ln

2
σ

, (1.6)

which is equivalent to

σ = 2exp

{
−1

2
γ
(

1
2

)}
. (1.7)

Mortici [9] proved that for n � 1,

270(n+1)
2n(270n3 +1530n2 +1065n+6293)

< γ
(

1
2

)
− γn

(
1
2

)
<

18
2n(18n2 +84n−13)

,

(1.8)

where the partial sum of γ(z) is

γn(z) =
n

∑
k=1

zk−1
(

1
k
− ln

k+1
k

)
, |z| � 1.

He further provided a slightly weaker but simpler version of the above inequality, i.e.,
for n � 8,

1
2n(n+3)2 < γ

(
1
2

)
− γn

(
1
2

)
<

1
2n(n+2)2 . (1.9)

Lu and Song [7] improved Mortici’s estimate and proved that for n � 1,

690n2 +3524n+145
6(2n)(n+1)2(115n2 +894n+779)

< γ
(

1
2

)
− γn

(
1
2

)
<

48n+127
3(2n)(16n+85)(n+1)2 .

(1.10)
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They also provided a simpler version which improved (1.9) , namely, for n � 6,

1

2n
(
n+ 7

3

)2 < γ
(

1
2

)
− γn

(
1
2

)
<

1

2n (n+2)2
. (1.11)

You and Chen [20] improved these inequalities by using continued fractions.
Recently, Chen and Han [2] obtained the following new inequalities for γ(1/2)−

γn(1/2) :

1
2n

(
1

(n+1)2 −
8

3(n+1)3 +
23

2(n+1)4 −
332

5(n+1)5 +
479

(n+1)6 −
29024

7(n+1)7

)

<γ
(

1
2

)
− γn

(
1
2

)

<
1
2n

(
1

(n+1)2 −
8

3(n+1)3 +
23

2(n+1)4 −
332

5(n+1)5 +
479

(n+1)6

)
. (1.12)

In their paper, Chen and Han pointed out that the lower bound in (1.12) is sharper than
the one in (1.10) for n � 24, and the upper bound in (1.12) is sharper than the one in
(1.10) for n � 18.

Besides, there were some researches which focus on the estimates for γ(1/3) and
γ(1/4) ; see the related works in [7, 8, 9, 20]. Motivated by those interesting works, we
establish a general inequality for γ(z)− γn(z) , which contains (1.12) as a special case.
By using its relation with the generalized-Euler-constant function, we further obtain an
inequality for the generalized Somos quadratic recurrence constant.

2. Main results

First of all, for 0 < z < 1, we let

c2(z) =
1

2(1− z)
, c3(z) = − 2z+1

3(1− z)2 ,

c4(z) =
3z2 +8z+1
4(1− z)3 , c5(z) = −4z3 +33z2 +22z+1

5(1− z)4 ,

c6(z) =
5z4 +104z3 +198z2 +52z+1

6(1− z)5 ,

c7(z) = −6z5 +285z4 +1208z3 +906z2 +114z+1
7(1− z)6 .

In this section, we obtain a general inequality related to γ(z) which generalizes
the Chen-Han result. Let N be a set for all positive integers. We have the following
theorem.

THEOREM 2.1. For n ∈ N and 0 < z < 1 , we have

znl(n+1;z) < γ (z)− γn (z) < znu(n+1;z), (2.1)
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where

u(x;z) =
6

∑
k=2

ck(z)
xk

, l(x;z) =
7

∑
k=2

ck(z)
xk

. (2.2)

REMARK 2.1. Here some special examples of u(x;z) and l(x;z) for z = 1/2,
z = 1/3 and z = 1/4, respectively, are presented.

u(x;1/2) =
1
x2 − 8

3x3 +
23
2x4 −

332
5x5 +

479
x6 ,

l(x;1/2) =
1
x2 −

8
3x3 +

23
2x4 −

332
5x5 +

479
x6 − 29024

7x7 ,

u(x;1/3) =
3

4x2 −
5

4x3 +
27
8x4 −

123
10x5 +

56
x6 ,

l(x;1/3) =
3

4x2 −
5

4x3 +
27
8x4 −

123
10x5 +

56
x6 − 17127

56x7 ,

u(x;1/4) =
2

3x2 −
8

9x3 +
17
9x4 −

736
135x5 +

1594
81x6 ,

l(x;1/4) =
2

3x2 −
8

9x3 +
17
9x4 −

736
135x5 +

1594
81x6 − 48296

567x7 .

Thus, taking z = 1/2 in Theorem 2.1, we obtain the Chen-Han inequality (1.12) again.
Additionally, we also obtain the similar inequalities for z = 1/3 and z = 1/4.

COROLLARY 2.1. For n ∈ N , we have

1
3n

(
3

4(n+1)2 −
5

4(n+1)3 +
27

8(n+1)4 −
123

10(n+1)5 +
56

(n+1)6 −
17127

56(n+1)7

)

<γ
(

1
3

)
− γn

(
1
3

)

<
1
3n

(
3

4(n+1)2 −
5

4(n+1)3 +
27

8(n+1)4 −
123

10(n+1)5 +
56

(n+1)6

)
. (2.3)

COROLLARY 2.2. For n ∈ N , we have

1
4n

(
2

3(n+1)2−
8

9(n+1)3 +
17

9(n+1)4−
736

135(n+1)5 +
1594

81(n+1)6−
48296

567(n+1)7

)

<γ
(

1
4

)
− γn

(
1
4

)

<
1
4n

(
2

3(n+1)2 −
8

9(n+1)3 +
17

9(n+1)4 −
736

135(n+1)5 +
1594

81(n+1)6

)
. (2.4)

Before a proof of Theorem 2.1 is given, we need the following lemma.
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LEMMA 2.1. For 0 < z < 1 and x � 1 , we have

l(x;z)− zl(x+1;z) <
1
x
− ln

(
1+

1
x

)
< u(x;z)− zu(x+1;z). (2.5)

Proof. For t ∈ (−1,1] and m ∈ N , it is clear that

2m

∑
k=1

(−1)k−1

k
tk < ln(1+ t) <

2m−1

∑
k=1

(−1)k−1

k
tk,

which leads to the following inequality, namely, for x � 1 and m ∈ N ,

2m

∑
k=2

(−1)k

kxk >
1
x
− ln

(
1+

1
x

)
>

2m−1

∑
k=2

(−1)k

kxk . (2.6)

It follows from (2.6) that

1
x
− ln

(
1+

1
x

)
− l(x;z)+ zl(x+1;z)

>
1

2x2 −
1

3x3 +
1

4x4 −
1

5x5 +
1

6x6 −
1

7x7 − l(x;z)+ zl(x+1;z)

=
1

x7(1+ x)7

{
(x+1)7

7

∑
k=2

[
(−1)k

k
− ck(z)

]
x7−k + zx7

7

∑
k=2

ck(z)(x+1)7−k

}

=
1

x7(1+ x)7

{(
7

∑
k=0

(
7
k

)
xk

)
7

∑
k=2

[
(−1)k

k
− ck(z)

]
x7−k + zx7

7

∑
k=2

ck(z)
7−k

∑
j=0

(
7− k

j

)
x j

}

=
1

x7(1+ x)7

12

∑
j=0

b j(z)x j,

where

b j(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑ j
k=0

(7
k

)[ (−1)7− j+k

7− j+k − c7− j+k(z)
]
, 0 � j � 5,

∑6
k=1

(7
k

)[ (−1)k+1

k+1 − ck+1(z)
]
, j = 6,

∑7
k= j−5

(7
k

)[ (−1)7− j+k

7− j+k − c7− j+k(z)
]
+ z∑14− j

k=2

(7−k
j−7

)
ck(z), 7 � j � 12.

(2.7)

For 0 < z < 1, it is easy to verify that

b0(z) =
z
(
120+891z+1228z2+270z3 +12z4− z5

)
7(1− z)6 > 0,

b1(z) =
z
(
663+5215z+7442z2+1734z3 +71z4−5z5

)
6(1− z)6 > 0,



606 H.-Q. TANG AND A.-M. XU

b2(z) =
z
(
8961+75455z+112990z2+28350z3 +1105z4−61z5

)
30(1− z)6 > 0,

b3(z) =
z
(
8683+79395z+127250z2+35330z3 +1395z4−53z5

)
20(1− z)6 > 0,

b4(z) =
z
(
21527+218275z+386250z2+124450z3+5615z4−117z5

)
60(1− z)6 > 0,

b5(z) =
z
(
1927+22439z+46290z2+18866z3 +1207z4−9z5

)
12(1− z)6 > 0,

b6(z) =
3z
(
41+593z+1614z2+990z3 +121z4 + z5

)
4(1− z)6 > 0,

and

b7(z) = b8(z) = b9(z) = b10(z) = b11(z) = b12(z) = 0.

Therefore,

1
x
− ln

(
1+

1
x

)
− l(x;z)+ zl(x+1;z) > 0.

Similarly, we have

1
x
− ln

(
1+

1
x

)
−u(x;z)+ zu(x+1;z)

<
1

2x2 −
1

3x3 +
1

4x4 −
1

5x5 +
1

6x6 −u(x;z)+ zu(x+1;z)

=
1

x6(1+ x)6

{
(x+1)6

6

∑
k=2

[
(−1)k

k
− ck(z)

]
x6−k + zx6

6

∑
k=2

ck(z)(x+1)6−k

}

=
1

x6(1+ x)6

{(
6

∑
k=0

(
6
k

)
xk

)
6

∑
k=2

[
(−1)k

k
− ck(z)

]
x6−k + zx6

6

∑
k=2

ck(z)
6−k

∑
j=0

(
6− k

j

)
x j

}

=
1

x6(1+ x)6

10

∑
j=0

b̂ j(z)x j,

where

b̂ j(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑ j
k=0

(6
k

)[ (−1)6− j+k

6− j+k − c6− j+k(z)
]
, 0 � j � 4,

∑5
k=1

(6
k

)[ (−1)k+1

k+1 − ck+1(z)
]
, j = 5,

∑6
k= j−4

(6
k

)[ (−1)6− j+k

6− j+k − c6− j+k(z)
]
+ z∑12− j

k=2

(6−k
j−6

)
ck(z), 6 � j � 10.

(2.8)

It can be further checked that for 0 < z < 1, we have

b̂0(z) = − z
(
57+188z+114z2+ z4

)
6(1− z)5 < 0,
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b̂1(z) = − z
(
259+939z+589z2+9z3 +4z4

)
5(1− z)5 < 0,

b̂2(z) = − z
(
2281+9266z+6216z2+206z3 +31z4

)
20(1− z)5 < 0,

b̂3(z) = − z
(
763+3570z+2700z2+158z3 +9z4

)
6(1− z)5 < 0,

b̂4(z) = − z
(
289+1630z+1516z2+162z3 +3z4

)
4(1− z)5 < 0,

b̂5(z) = − z
(
17+128z+174z2+40z3 + z4

)
(1− z)5 < 0,

and

b̂6(z) = b̂7(z) = b̂8(z) = b̂9(z) = b̂10(z) = 0.

Thus, the desired result has been derived.

Proof of Theorem 2.1 . By (2.5) , we have

zk−1l(k;z)− zkl(k+1;z) < zk−1
(

1
k
− ln

(
1+

1
k

))
< zk−1u(k;z)− zku(k+1;z).

(2.9)

Adding the above inequalities, from k = n+1 to k = ∞ , yields

znl(n+1;z) <
∞

∑
k=n+1

zk−1
(

1
k
− ln

(
1+

1
k

))
< znu(n+1;z), (2.10)

which implies that

znl(n+1;z) < γ (z)− γn (z) < znu(n+1;z), (2.11)

and the proof is complete.

Sondow and Hadjicostas [17] generalized Somons’ quadratic recurrence constant
as

σt =
t

√
1

t

√
2

t
√

3 t
√

4 · · · =
∞

∏
k=1

k
1
tk , (2.12)

and established the following relation between the generalized Somos quadratic recur-
rence constant σt and the generalized Euler-constant function γ

(
1
t

)
:

γ
(

1
t

)
= t ln

t

(t−1)σ t−1
t

, t > 1. (2.13)

Thus, together with Theorem 2.1 we obtain the following estimates for the generalized
Somos recurrence constant σt .
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THEOREM 2.2. For n ∈ N and t > 1 , we have

{
t

t−1
exp

{
−1

t
γn

(
1
t

)
− u(n+1;1/t)

tn+1

}} 1
t−1

<σt <

{
t

t −1
exp

{
−1

t
γn

(
1
t

)
− l(n+1;1/t)

tn+1

}} 1
t−1

, (2.14)

where l(x;z) and u(x;z) are given in Theorem 2.1 .

In particular, we immediately have the following inequalities for the Somos quad-
ratic recurrence constant σ and the Somos cubic recurrence constant σ3 [17], respec-
tively.

COROLLARY 2.3. For n ∈ N , we have

2exp

{
−1

2
γn

(
1
2

)
− u(n+1;1/2)

2n+1

}
< σ < 2exp

{
−1

2
γn

(
1
2

)
− l(n+1;1/2)

2n+1

}
.

(2.15)

COROLLARY 2.4. For n ∈ N , we have√
3
2

exp

{
−1

3
γn

(
1
3

)
−u(n+1;1/3)

3n+1

}
<σ3 <

√
3
2

exp

{
−1

3
γn

(
1
3

)
− l(n+1;1/3)

3n+1

}
.

(2.16)
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