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Abstract. In this paper, we introduce exponential type locally generalized strictly double diag-
onally dominant tensors. This concept extends the concept of strictly diagonally dominant ten-
sors. It is shown that exponential type locally generalized strictly double diagonally dominant
tensors must be H -tensors. Furthermore, as applications of exponential type locally generalized
strictly double diagonally dominant tensors, we present some new eigenvalue localization sets
and checkable sufficient condition for the positive definiteness of even-order real symmetric ten-
sors. Appropriate numerical examples are proposed to illustrate that our new tensors eigenvalue
localization sets are more precise than some existing sets in some cases.

1. Introduction

Tensors (also known as multidimensional arrays) and their eigenvalues have be-
come increasingly significant issue in several diverse fields of applied mathematics and
computational mathematics, and promoted the development of numerical multilinear
algebra. On the other side, they have a great diversity of practical applications, such as
higher Markov chain [14], best-rank one approximation in data analysis [12, 13] and
positive definiteness of even-order multivariate forms in automatical control [15].

For a positive integer n � 2, let N = {1,2, · · · ,n} . The set of all real (complex)
numbers is denoted by R (C) . We call A = (ai1i2···im) a complex (real) tensor of order
m dimension n , denoted by C[m×n](R[m×n]) , if

ai1i2···im ∈ C(R),

where i j = 1,2, · · · ,n for j = 1,2, · · · ,m . Apparently, a vector is a tensor of order
1 and a matrix is a tensor of order 2. Given a tensor A = (ai1i2···im) ∈ R[m×n] , A
is nonnegative if every its entry ai1i2···im � 0. A real tensor A = (ai1i2···im) is called
symmetric if

ai1i2···im = aπ(i1i2···im),∀π ∈ Πm,
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where Πm is the permutation group of m indices. Particularly, a real tensor of order m
dimension n is called the unit tensor , if its entries are δi1i2···im for i1, · · · , im ∈ N , where

δi1i2···im =

{
1, if i1 = · · · = im,

0, otherwise.

In 2005, Qi [1] and Lim [2] introduced the concept of eigenvalues for higher order
tensors, independently. For a complex tensor A = (ai1i2···im) of order m dimension n ,
and an n dimension vector x = (x1,x2, · · · ,xn)� , A xm−1 is an n dimension vector in
Cn , whose i-th component is

(A xm−1)i =
n

∑
i2,i3,···,im=1

aii2···imxi2 · · ·xim ,

Moreover, if there are a complex number λ and a nonzero complex vector x =
(x1,x2, · · · ,xm)� such that

A xm−1 = λx[m−1],

then λ is called an eigenvalue of A and x an eigenvector of A associated with λ ,
where

x[m−1] =
(
xm−1
1 ,xm−1

2 , · · · ,xm−1
n

)�
.

If λ and x are all real, then λ is called an H -eigenvalue of A and x is called an
H -eigenvector of A associated with λ [1, 2]. Owing to the vitally significant theoreti-
cal significance and extensive practical application of tensor eigenvalues, an increasing
number of scholars devote themselves to the study of tensor spectral theory. In par-
ticular, eigenvalues of nonnegative tensors develop rapidly in theory and algorithms
[16, 17, 18, 19, 4, 5, 14, 25]. In recent years, there is a good deal of literatures on the
survey of eigenvalue inclusion sets [1, 20, 6, 21, 10] for general tensors. These eigen-
value inclusion theorems provide abundant conditions for us to identifying the positive
definiteness of an even-order real symmetric tensors.

For an m th-degree homogeneous polynomial form of n variables f (x) can be
denoted as

f (x) = A xm =
n

∑
i1,i2,···,im=1

ai1i2···imxi1xi2 · · ·xim , (1.1)

where x ∈ Rn . When m is even, f (x) is called positive definite if

f (x) > 0 ∀x ∈ R
n,x �= 0.

The positive definiteness of multivariate polynomial f (x) plays a significant role in
the stability study of nonlinear autonomous systems via Lyapunov’s direct method in
automatic control [15]. Unfortunately, for n � 3 and m � 4, this issue is a hard problem
in mathematics. Furthermore, Qi [1] pointed out that f (x) defined by (1.1) is positive
definite if and only if the real symmetric tensor A is positive definite. Recently, M -
tensors that extended from M -matrices was introduced by Wei [11] and Zhang [9],



EXPONENTIAL TYPE TENSORS AND EIGENVALUE LOCALIZATION 613

and the spectral theory of M -tensors provided a new method for certifying positive
definiteness of a multivariate form. Moreover, Wei et al [11] extended H -matrices to
H -tensors as a special case of M -tensors. Li [7] gave some criteria for identifying the
positive definiteness of even-order real symmetric tensors by considering the class of
nonsingular H -tensors. Since then, more and more researchers have begun to study
tensors with special structures, and to study the properties of their eigenvalues and
applications in other fields. There are much more works about structured tensors, see
[22, 23, 25, 26, 24, 27, 28, 29] for more details.

In this paper, we investigate exponential type locally generalized strictly double di-
agonally dominant tensors and its application, which is further extension discussion of
strictly diagonally dominant tensors. We will prove that exponential type locally gener-
alized strictly double diagonally dominant tensors are H -tensors, and give some criteria
for positive definiteness of even-order real symmetric tensors. Finally, as an important
application of exponential locally generalized strictly double diagonally dominant ten-
sors, some new tensors eigenvalues inclusion sets are given. Meanwhile, several proper
numerical examples are given to show that these new tensors eigenvalue inclusion re-
gions are more precise than some existing results in some cases.

The remainder of this paper is as follows. In Section 2, some preliminaries, that is,
definitions and useful lemmas are proposed. In Section 3, we define exponential type
locally generalized strictly double diagonally dominant tensors and establish the rela-
tionship between exponential type locally generalized strictly double diagonally domi-
nant tensors and H -tensors. Furthermore, some checkable sufficient conditions for the
positive definiteness of even-order real symmetric tensors are provided. In Section 4,
we present some new eigenvalue localization regions for tensors based on the third part
of the analysis and conclusion.

2. Preliminaries

In this section, we start with some definitions and useful lemmas for eigenvalue of
general tensor and H -tensors.

DEFINITION 2.1. [7, Definition 2] Let A = (ai1i2···im) ∈ C[m×n] . A is called an
H -tensor if there is an entrywise positive vector x = (x1,x2, · · · ,xn)T ∈ Rn such that for
all i ∈ N ,

|ai···i|xm−1
i > ∑

i2,···,im∈N,
δii2···im=0

|aii2···im |xi2 · · ·xim . (2.1)

DEFINITION 2.2. [9, Definition 3.14] A tensor A = (ai1i2···im) ∈ C[m×n] is called
a (strictly) diagonally dominant tensor if for i ∈ N ,

|ai···i| � (>) ∑
i2,···,im∈N,
δii2···im=0

|aii2···im |. (2.2)
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DEFINITION 2.3. [16, Definition 2.1] Let A = (ai1i2···im) ∈ C[m×n] . Then A is
called reducible, if there exists a nonempty proper index subset I ⊂ N such that

ai1i2···im = 0, ∀i1 ∈ I, ∀i2 · · · im /∈ I.

If A is not reducible, then A is called irreducible.

DEFINITION 2.4. [34, Definition 2.5] An order m dimension n tensor A is called
weakly reducible, if there exists a nonempty proper index subset I ⊂ N such that

∀ai1i2···im = 0, i1 ∈ I, and at least an i j ∈ N \ I, j = 2, · · · ,m.

If A is not weakly reducible, then we call A weakly irreducible.

In the case of matrices, we note that there is no difference between irreducible and
weakly irreducible. However, an irreducible tensor must be a weakly irreducible tensor,
which is not valid in turn. Hence, for the weakly irreducible tensors, the results can also
be applied to irreducible tensors.

DEFINITION 2.5. [10, Definition 7] Let A = (ai1i2···im)∈ C[m×n] . For some i, j ∈
N, i �= j , if there exist indices k1,k2, · · · ,kr with

∑
i2,···,im∈N,
δksi2···im=0,

ks+1∈{i2,···,im}

|aksi2···im | �= 0, s = 0,1, · · · ,r,

where k0 = i,kr+1 = j , we call there is a nonzero elements chain from i to j .

DEFINITION 2.6. [8, Definition 1.1] Let A = (ai1i2···im) ∈ C[m×n] , D =
diag(d1,d2, · · · ,dn) . Denote

B = (bi1i2···im) = A Dm−1, bi1i2···im = ai1i2···imdi2di3 · · ·dim , i1, i2, · · · , im ∈ N,

we call B as the product of the tensor A and the matrix D .

LEMMA 2.1. [11, Proposition 29] Let A = (ai1i2···im) ∈ C
[m×n] . Then A is an

H -tensor if and only if exists a positive diagonal matrix D ∈ Cn,n such that A Dm−1 is
strictly diagonally dominant tensor.

LEMMA 2.2. [31, Theorem 2] Let A = (ai1i2···im) ∈ C[m×n] . Then A is an H -
tensor if and only if A D is an H -tensor, where D ∈ C

n,n is an arbitrary positive
diagonal matrix.

LEMMA 2.3. [30, Theorem 3.4] Let A = (ai1i2···im) ∈ C[m×n] . If A is a weakly
irreducible diagonally dominant tensor such that |ai···i| > ∑

i2,···,im∈N,
δii2···im=0

|aii2···im | for at least

one i , then A is H -tensor.
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LEMMA 2.4. [10, Theorem 6] Let A = (ai1i2···im) ∈ C[m×n] . If

(i) |ai···i| � ∑
i2,···,im∈N;
δii2···im=0

|aii2···im |, ∀i ∈ N ;

(ii) N1 =

⎧⎪⎨⎪⎩i ∈ N : |ai···i| > ∑
i2,···,im∈N,
δii2···im=0

|aii2···im |

⎫⎪⎬⎪⎭ �= /0 ;

(iii) For any i /∈ N1 , there exists a non-zero elements chain from i to j such that
j ∈ N1 , then A is a H -tensor.

LEMMA 2.5. [7, Theorem 9] Let A = (ai1i2···im) ∈ R[m×n] is an even-order sym-
metric tensor, ai···i > 0,∀i ∈ N . If A is a H -tensor, A is positive definite.

3. Exponential type locally generalized double diagonally dominant tensors and
some properties

In this section, we introduce exponential type locally generalized (strictly) double
diagonally dominant tensor, which is a generalization for (strictly) diagonally domi-
nant tensors, and the relationship between exponential type locally generalized (strictly)
double diagonally dominant tensor and H -tensor are also established. In addition, we
present some checkable sufficient condition for the positive definiteness of even-order
real symmetric tensors at the end of this section.

Let Ni ⊂ N,N =
k⋃

i=1
Ni,Ni

⋂
Nj = /0,1 � i, j � k, i �= j . And σ = (σ1,σ2, · · · ,σk)

is a permutation of (1,2, · · · ,k) , then ∀i ∈ N , there exist some 1 � σt � k such that
i ∈ Nσt .

For a tensor A = (ai1i2···im) ∈ C[m×n] , we denote

ΔN
i := {(i2, i3, · · · , im) : δii2···im = 0, is ∈ N,s = 2,3, · · · ,m},

ΔNσt
i := {(i2, i3, · · · , im) : δii2···im = 0, is ∈ Nσt ,s = 2,3, · · · ,m}.

It is evident that Δ
Nσp
i

⋂
Δ

Nσq
i = /0,∀i ∈ N,1 � p �= q � k . Without loss of generality,

we always assume i ∈ Nσu , j ∈ Nσv for 1 � u �= v � k and 1 � i �= j � n . We use the
following notation for the rest of the paper.

ri(A ) = ∑
i2,···,im∈N,
δii2···im=0

|aii2···im | = ∑
i2,···,im∈N

|aii2···im |− |ai···i|,

αΔNσu
i

i (A ) = ∑
(i2,···,im)∈ΔNσu

i ,
δii2···im=0

|aii2···im | = ∑
i2,···,im∈Nσu ,

δii2···im=0

|aii2···im |,

β ΔNσu
i

i (A ) = ri(A )−αΔNσu
i

i (A ),
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N+ =
{

i ∈ N : |aii···i| > αΔNσu
i

i (A )
}

, N0 =
{

i ∈ N : |aii···i| = αΔNσu
i

i (A )
}

,

J1 = J1(A ) = {i ∈ N : |aii···i| > ri(A )},
J2 = J2(A ) = {i ∈ N : |aii···i| � ri(A )},

J̃1 =

{
i ∈ N :

(
|aii···i|−αΔNσu

i
i (A )

) 1
m−1

(
|a j j··· j|−α

ΔNσv
j

j (A )
)

>

(
β ΔNσu

i
i (A )

) 1
m−1

β
ΔNσv

j
j (A ), i ∈ Nσu , j ∈ Nσv ,1�σu �=σv �k

}
,

J̃0 =

{
i ∈ N :

(
|aii···i|−αΔNσu

i
i (A )

) 1
m−1

(
|a j j··· j|−α

ΔNσv
j

j (A )
)

=
(

β ΔNσu
i

i (A )
) 1

m−1

β
ΔNσv

j
j (A ), i ∈ Nσu , j ∈ Nσv ,1�σu �=σv �k

}
.

DEFINITION 3.1. Let A = (ai1i2···im) ∈ C[m×n] . A is exponential type general-
ized locally double diagonally dominant tensor if the following inequality is holds for
∀i, j ∈ N, i �= j,(

|aii···i|−αΔNσu
i

i (A )
) 1

m−1
(
|a j j··· j|−α

ΔNσv
j

j (A )
)

�
(

β ΔNσu
i

i (A )
) 1

m−1

β
ΔNσv

j
j (A ),

(3.1)
where i ∈ Nσu , j ∈ Nσv ,1 � σu �= σv � k . A is exponential type locally generalized
strictly double diagonally dominant if the strict inequality holds in (3.1).

Obviously, if A is exponential type locally generalized double diagonally domi-
nant tensor and J1 �= /0 , then N = N0⋃N+ holds. And if A is exponential type locally
generalized strictly double diagonally dominant tensor and J1 �= /0 , then N = N+ is
satisfied.

THEOREM 3.1. Let A = (ai1i2···im) ∈ C[m×n] . If A is exponential type locally
generalized strictly double diagonally dominant tensor and J1 �= /0 , then A is a H -
tensor.

Proof. Since A is exponential type locally generalized strictly double diagonally
dominant tensor and J1 �= /0 , then N = N+ is valid. That is, there exists at most one
1 � k0 � k such that

|aii···i|−αΔNσu
i

i (A ) > β ΔNσu
i

i (A ), ∀i ∈ Nσu ,σu �= k0. (3.2)

In other words, we have N \Nk0 ⊆ J1 . If Nk0 = /0 , then A is strictly diagonally domi-
nant tensor, and A must be a H -tensor in this situation. Therefore, we always assume
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Nk0 \ J1 �= /0 . Next, we take appropriate positive integer dk0 such that

max
i∈N\Nk0

⎛⎝ β ΔNσu
i

i (A )

|aii···i|−αΔNσu
i

i (A )

⎞⎠
1

m−1

< dk0 < min
j∈Nk0

\J1

|a j j··· j|−α
ΔNσv

j
j (A )

β
ΔNσv

j
j (A )

, (3.3)

Since N=N+ and i∈N\Nk0 , j∈Nk0\J1 , then we have |aii···i|−αΔNσu
i

i (A )>0,β
ΔNσv

j
j (A )

> 0. From the inequality of (3.3), one has 0 < dk0 < 1. Hence, we construct the fol-
lowing positive diagonal matrix D ∈ Cn,n with diagonal entries

di =

{
1, i ∈ Nk0 ,

dk0 , i ∈ N \Nk0 .

Now, we consider tensor B = A Dm−1 = (bi1i2··· im)∈C[m×n] . In view of αΔNσu
i

i (A )

= ∑
(i2,···,im)∈ΔNσu

i ,
δii2···im=0

|aii2···im | and β ΔNσu
i

i (A ) = ri(A )− αΔNσu
i

i (A ) , then there is at least

il /∈ Nσu , l = 2, · · · ,m for (i2, · · · , im) ∈ ΔN
i \ ΔNσu

i . That is to say, when one has

(i2, · · · , im) ∈ ΔN
i \ΔNσu

i , then at least one of di2 , · · · ,dim is equal to dk0 .

Thus, for any i ∈ Nk0 \ J1 , we have |aii··· i| > αΔ
Nk0
i

i (A )+ β Δ
Nk0
i

i (A )dk0 from the
right inequality of (3.3), and |aii··· i| = |bii··· i| . Then

ri(B)

= ∑
(i2,···,im)∈Δ

Nk0
i ,

δii2···im=0

|aii2···im |di2 · · ·dim + ∑
(i2,···,im)∈ΔN

i \Δ
Nk0
i

|aii2···im |di2 · · ·dim

= ∑
(i2,···,im)∈Δ

Nk0
i ,

δii2···im=0

|aii2···im |+ ∑
(i2,···,im)∈ΔN

i \Δ
Nk0
i

|aii2···im |di2 · · ·dim

� ∑
(i2,···,im)∈Δ

Nk0
i ,

δii2···im=0

|aii2···im |+ ∑
(i2,···,im)∈ΔN

i \Δ
Nk0
i

|aii2···im |dk0

= αΔ
Nk0
i

i (A )+ β Δ
Nk0
i

i (A )dk0 < |aii···i| = |bii···i|.

(3.4)

For any i ∈ Nk0 ∩ J1 , we obtain |aii··· i| > αΔ
Nk0
i

i (A )+ β Δ
Nk0
i

i (A ) and |aii··· i| = |bii··· i| .
Then

ri(B)

= ∑
(i2,··· ,im)∈Δ

Nk0
i ,

δii2··· im=0

|aii2··· im |di2 · · · dim + ∑
(i2,··· ,im)∈ΔN

i \Δ
Nk0
i

|aii2··· im |di2 · · · dim
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� ∑
(i2,··· ,im)∈Δ

Nk0
i ,

δii2··· im=0

|aii2··· im |+ ∑
(i2,··· ,im)∈ΔN

i \Δ
Nk0
i

|aii2··· im |dk0 (3.5)

= αΔ
Nk0
i

i (A )+ β Δ
Nk0
i

i (A )dk0 < αΔ
Nk0
i

i (A )+ β Δ
Nk0
i

i (A ) < |aii··· i| = |bii··· i|.

And for any i ∈ N \Nk0 , we get |aii··· i|dm−1
k0

> αΔNσu
i

i (A )dm−1
k0

+ β ΔNσu
i

i (A ) from the

left inequality of (3.3), and |aii··· i|dm−1
k0

= |bii··· i| . Then

ri(B)

= ∑
(i2,···,im)∈ΔNσu

i ,
δii2···im=0

|aii2···im |di2 · · ·dim + ∑
(i2,···,im)∈ΔN

i \ΔNσu
i

|aii2···im |di2 · · ·dim

= ∑
(i2,···,im)∈ΔNσu

i ,
δii2···im=0

|aii2···im |dm−1
k0

+ ∑
(i2,···,im)∈ΔN

i \ΔNσu
i

|aii2···im |di2 · · ·dim

� ∑
(i2,···,im)∈ΔNσu

i ,
δii2···im=0

|aii2···im |dm−1
k0

+ ∑
(i2,···,im)∈ΔN

i \ΔNσu
i

|aii2···im |

= αΔNσu
i

i (A )dm−1
k0

+ β ΔNσu
i

i (A ) < |aii···i|dm−1
k0

= |bii···i|.

(3.6)

Therefore, we have |bii··· i|> ri(B) for all i∈N from inequalities (3.4), (3.5) and (3.6),
that is to say, tensor B = A Dm−1 is strictly diagonally dominant. Furthermore, A is
a H -tensor by Lemma 2.1. The proof is completed.

When k = 2, so that N = Nσ1

⊕
Nσ2 , and taking J1 = Nσu ,u = 1,2, the following

conclusion is obtained immediately.

COROLLARY 3.1. Let A = (ai1i2···im) ∈ C[m×n] . If there exists a nonempty subset
Nσ1 of N such that:

(i) |aii···i| > ri(A ) for all i ∈ Nσ1 ;

(ii)

(
|aii···i|−αΔ

Nσ1
i

i (A )
) 1

m−1
(
|a j j··· j|−α

Δ
Nσ2
j

j (A )

)
>

(
β Δ

Nσ1
i

i (A )
) 1

m−1

β
Δ

Nσ2
j

j (A )

for all i ∈ Nσ1 , j ∈ Nσ2 , where Nσ1

⊕
Nσ2 = N ,

then A is a H -tensor.

What is worth noticing here is that one of Nσu ,u = 1,2 must be a subset of J1 in
Corollary 3.1. If that’s not the case, there must be i0 ∈ Nσ1 , j0 ∈ Nσ2 such that

|ai0i0···i0 |−α
Δ

Nσ1
i0

i0
(A ) � β

Δ
Nσ1
i0

i0
(A ), |a j0 j0··· j0 |−α

Δ
Nσ2
j0

j0
(A ) � β

Δ
Nσ2
j0

j0
(A ).
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Since Nσ1 ∪Nσ2 = N = N+ , the following inequality is obtained immediately.(
|ai0i0···i0 |−α

Δ
Nσ1
i0

i0
(A )

) 1
m−1

(
|a j0 j0··· j0 |−α

Δ
Nσ2
j0

j0
(A )

)
�
(

β
Δ

Nσ1
i0

i0
(A )

) 1
m−1

β
Δ

Nσ2
j0

j0
(A ).

This is contrary to Corollary 3.1.
When k = n and Ni = {i} , so that N = Nσ1

⊕
Nσ2

⊕ · · ·⊕Nσn , then

αΔNσu
i

i (A ) = 0, β ΔNσu
i

i (A ) = ri(A ), i ∈ N,

there is the following conclusion in a moment.

COROLLARY 3.2. Let A = (ai1i2···im) ∈ C[m×n] . If the following inequality holds
for all i, j ∈ N, i �= j (|aii···i|

) 1
m−1 |a j j··· j| >

(
ri(A )

) 1
m−1 r j(A ).

Then A is a H -tensor.

THEOREM 3.2. Let A = (ai1i2···im) ∈ C
[m×n] . A is exponential type locally gen-

eralized double diagonally dominant tensor. If A is weakly irreducible and J1 �=
/0, J̃1 �= /0 , then A is a H -tensor.

Proof. Since A is exponential type locally generalized double diagonally domi-
nant tensor and J1 �= /0 , then N = N0⋃N+ . Furthermore, we prove N = N+ , that is
N0 = /0 . If N0 �= /0 , then there exists i0 ∈ N0 such that |ai0i0···i0 | � ri0(A ) .

(i) For the case that |ai0i0···i0 |< ri0(A ) , it is evident that |ai0i0···i0 |−α
Δ

Nσi0
i0

i0
(A ) = 0

and β
Δ

Nσi0
i0

i0
(A ) > 0. From the (3.1), we obtain β

ΔNσv
j

j (A ) = 0 for ∀ j ∈ N \Nσv . Thus,
we have

a ji2··· im = 0, ∀ j ∈ Nσv , ∃i2 · · · im /∈ Nσv ,

equivalently, A is weakly reducible. This leads to a contradiction.

(ii) For the case that |ai0i0··· i0 | = ri0(A ) , that is β
Δ

Nσi0
i0

i0
(A ) = 0, then there exists

a nonempty proper index subset i0 ∈ Nσi0
⊂ N such that

ai0i2··· im = 0, ∀i0 ∈ Nσi0
, ∃i2 · · · im /∈ Nσi0

,

which is in contradiction with the weak irreducibility of A . From the above (i) and
(ii), we can get N0 = /0 . From the above analysis in Theorem 3.1, there exists at most
one 1 � k0 � k such that

|aii··· i|−αΔNσu
i

i (A ) � β ΔNσu
i

i (A ), ∀i ∈ Nσu ,σu �= k0.
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In other words, we have N \Nk0 ⊆ J1 . If Nk0 = /0 , then A is weakly irreducible
diagonally dominant tensor, and there exists at least an i ∈ N such that |bii··· i| > ri(B)
by reason of J̃1 �= /0 . Then, A must be a H -tensor by Lemma 2.3. Therefore, we
suppose Nk0 \ J0 �= /0 . We construct the positive diagonal matrix D ∈ Cn,n by using
the same method with Theorem 3.1, and denote B = A Dm−1 = (bi1i2···im) ∈ C

[m×n] .
Similar to the proof of Theorem 3.1, we conclude that |bii···i| � ri(B) for all i ∈ N . In
addition, there is at least an i ∈ N such that |bii···i| > ri(B) on account of J̃1 �= /0 .

Since D ∈ Cn,n is a positive diagonal matrix, we know that tensor B has the
same weak irreducibility with tensor A from definition 2.6. Moreover, A is weakly
irreducible, and so is B . Hence, we see that B is an H -tensor by the Lemma 2.3.
Furthermore, A is also an H -tensor in the light of Lemma 2.2. The proof is completed.
Since the irreducibility of tensors implies the weak irreducibility of tensors, we obtain
the following conclusion at once.

COROLLARY 3.3. Let A = (ai1i2···im) ∈ C
[m×n] . A is exponential type locally

generalized double diagonally dominant tensor. If A is irreducible and J1 �= /0, J̃1 �= /0 ,
then A is a H -tensor.

THEOREM 3.3. Let A = (ai1i2···im) ∈ C[m×n] . A is exponential type locally gen-
eralized double diagonally dominant tensor. If ∀i ∈ N \ J̃1 = J̃0 �= /0 , there exists a
non-zero elements chain from i to j such that j ∈ J̃1 �= /0 , then A is a H -tensor.

Proof. First of all, it is the same as theorem 3.2, we construct the positive diagonal
matrix D ∈ Cn,n and denote B = A Dm−1 = (bi1i2···im) ∈ C[m×n] . Similar to the proof
of Theorem 3.2, we can get |bii···i| � ri(B) for all i ∈ N , and there is at least an i ∈ N
such that |bii···i| > ri(B) .

Because D ∈ Cn,n is a positive diagonal matrix, there exists a non-zero elements
chain of B from i to j , if and only if there exists a non-zero elements chain of A
from i to j at same time. Furthermore, if |bii···i| = ri(B) , then i ∈ N \ J̃1 = J̃0 ; by the
assumption, we see that there exists a non-zero elements chain of A from i to j , such
that j ∈ J̃1 . Then, there is a non-zero elements chain of B from i to j , such that j ∈ J̃1

satisfies |b j j··· j| > r j(B) .
Based on above discussion, we realize that the tensor B meets the condition of

Lemma 2.4, so B is an H -tensor. Furthermore, A is also an H -tensor on the basis of
Lemma 2.2. The proof is completed.

According to Lemma 2.5 and preceding Theorem 3.1-3.3, we can obtain some
checkable sufficient condition for the positive definiteness of an even-order real sym-
metric tensor.

THEOREM 3.4. Let A = (ai1i2···im) ∈ R[m×n] is an even-order symmetric tensor,
and ai···i > 0 for all i ∈ N . If A satisfies one of the following conditions:

(i) all the conditions of Theorem 3.1;

(ii) all the conditions of Theorem 3.2;
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(iii) all the conditions of Theorem 3.3,

then A is positive definite.

EXAMPLE 3.1. We consider the following a 4th-degree homogeneous polyno-
mial.

f (x) = A x4 = 8x4
1 +2x4

2 +2x4
3 +2x4

4 +4x3
1x2 +4x3

1x3 +4x3
1x4

Obviously, we can obtain an order 4 dimension 4 real symmetric tensor A = (ai1i2i3i4) ,
where

a1111 = 8, a2222 = a3333 = a4444 = 2,

a1211 = a1121 = a1112 = 1, a1113 = a1131 = a1311 = 1,

a1114 = a1141 = a1411 = 1, a2111 = a3111 = a4111 = 1,

and other elements are ai1i2i3i4 = 0. By the calculation, we get

|a1111| = 8 < 9 = r1(A )

and
|a2222|(|a1111|− r1(A )+ |a1222|) = −2 < 0 = r2(A )|a1222|.

Apparently, A is neither a strictly diagonally dominant tenor nor a quasi-doubly strictly
diagonally dominant tenor, so in this situation, it does not work that we identify the pos-
itive definiteness of A by using Theorem 3 in [23] and Theorem 4 in [24].

Let k = 3,N =
3⋃

i=1
Ni,N1 = {1,2},N2 = {3},N3 = {4} , σ = (1,2,3) .

By computations, we get

(|a1111|−αΔN1
1

1 (A ))
1
3 (|a3333|−αΔN2

3
3 (A ))=(8−3)

1
3 (2−0)>

(
β ΔN1

1
1 (A )

) 1
3 β ΔN2

3
3 (A )=6

1
3 ,

(|a2222|−αΔN1
2

2 (A ))
1
3 (|a3333|−αΔN2

3
3 (A ))=(2−1)

1
3 (2−0)>

(
β ΔN1

2
2 (A )

) 1
3 β ΔN2

3
3 (A )=0

1
3 ,

(|a1111|−αΔN1
1

1 (A ))
1
3 (|a4444|−αΔN3

4
4 (A ))=(8−3)

1
3 (2−0)>

(
β ΔN1

1
1 (A )

) 1
3 β ΔN3

4
4 (A )=6

1
3 ,

(|a2222|−αΔN1
2

2 (A ))
1
3 (|a4444|−αΔN3

4
4 (A ))=(2−1)

1
3 (2−0) >

(
β ΔN1

2
2 (A )

) 1
3 β ΔN3

4
4 (A )=0

1
3 ,

(|a3333|−αΔN2
3

3 (A ))
1
3 (|a4444|−αΔN3

4
4 (A ))=(2−0)

1
3 (2−0) >

(
β ΔN2

3
3 (A )

) 1
3 β ΔN3

4
4 (A )=1

1
3 .

Therefore, A is exponential type locally strictly double diagonally dominant tensor.
Furthermore, we obtain that A is positive definite by Theorem 3.4.

4. New eigenvalue localization sets for general tensors

In this section, as a significantly important application of exponential type locally
generalized strictly double diagonally dominant tensors, we will investigate into eigen-
value estimation of general tensors based on the relationship between the exponential
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locally generalized strictly double diagonally dominant tensors and H -tensors. Next,
several new eigenvalue localization regions for tensors will be given. Before proposing
our results, we review the existing eigenvalue localization sets for tensors.

In 2005, Qi [1] have given an eigenvalue inclusion set for real symmetric tensors,
which was an extension of the Gersgorin’s eigenvalue inclusion theorem from matrices
[3]. It is evident that this result can also be extended to general tensors.

THEOREM 4.1. [1, Theorem 6] Let A = (ai1i2···im) ∈ C[m×n] , n � 2 . Then

σ(A ) ⊆ Γ(A ) =
⋃
i∈N

Γi(A ),

where σ(A ) is the set of all the eigenvalue of A and

Γi(A ) = {z ∈ C : |z−ai···i| � ri(A )},ri(A ) = ∑
i2,···,im∈N,
δii2···im=0

|aii2···im |.

To obtain tighter sets than Γ(A ) , Li et al. [6] generalized the Brauer’s eigenvalue
localization set of matrices [3] and presented the following Brauer-type eigenvalue lo-
calization sets for tensors.

THEOREM 4.2. [6, Theorem 2.1]Let A = (ai1i2···im) ∈ C[m×n] , n � 2 , Then

σ(A ) ⊆ K (A ) =
⋃

i, j∈N
j �=i

Ki, j(A ),

where

Ki, j(A ) =
{

z ∈ C :
(
|z−ai···i|− r j

i (A )
)
|z−a j··· j| � |ai j··· j|r j(A )

}
and

r j
i (A ) = ∑

δii2···im=0,

δ ji2 ···im=0

|aii2···im | = ri(A )−|ai j··· j|.

At the same time, to reduce computations, Li et al. [6] gave an S -type eigenvalue
localization set by dividing N = {1,2, · · · ,n} into disjoint subsets S and S , where S
was the complement of S in N . The details are as follows:

Given a nonempty proper subset S of N , we denote

ΔN := {(i2, i3, · · · , im) : each i j ∈ N for j = 2, · · · ,m},
ΔS := {(i2, i3, · · · , im) : each i j ∈ S for j = 2, · · · ,m},

and then
ΔS = ΔN\ΔS.
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This indicates that for a tensor A = (ai1i2···im) ∈ C[m×n] , we have that for i ∈ S ,

ri(A ) = rΔS

i (A )+ rΔS

i (A ),

where
rΔS

i (A ) = ∑
(i2,···,im)∈ΔS,

δii2···im=0

|aii2···im |,rΔS

i (A ) = ∑
(i2,···,im)∈ΔS

|aii2···im |.

THEOREM 4.3. [6, Theorem 2.2] Let A = (ai1i2···im) ∈ C[m×n] , n � 2 , and S be
a nonempty proper subset of N . Then

σ(A ) ⊆ K S(A ) =

⎛⎝ ⋃
i∈S, j∈S

Ki, j(A )

⎞⎠⋃⎛⎝ ⋃
i∈S, j∈S

Ki, j(A )

⎞⎠ .

After that, some new S-type eigenvalue localization sets for tensors based on pre-
vious partitioning method for index set was proposed by Li et al. [21], Huang et al [20]
and some other investigators, and it was proved that those new sets are more precise
than Γ(A ) , K (A ) and K S(A ) .

THEOREM 4.4. [20, Theorem 3.1] Let A = (ai1i2···im) ∈ C
[m×n] , n � 2 , and S be

a nonempty proper subset of N . Then

σ(A ) ⊆ ϒS(A ) :=

⎛⎝ ⋃
i∈S, j∈S

ϒ j
i (A )

⎞⎠⋃⎛⎝ ⋃
i∈S, j∈S

ϒ j
i A )

⎞⎠ ,

where

ϒ j
i (A ) = {z∈C : |(z−ai···i)(z−a j··· j)−ai j··· ja ji···i|� |z−a j··· j|r j

i (A )+ |ai j··· j|ri
j(A )}.

THEOREM 4.5. [21, Theorem 4] Let A = (ai1i2···im) ∈ C
[m×n] , n � 2 , and S be a

nonempty proper subset of N . Then

σ(A ) ⊆ ΩS(A ) :=

⎛⎝ ⋃
i∈S, j∈S

ΩS
i, j(A )

⎞⎠⋃⎛⎝ ⋃
i∈S, j∈S

ΩS
i, jA )

⎞⎠ ,

where

ΩS
i j(A ) :=

{
z ∈ C : (|z−ai···i|)

(
|z−a j··· j|− rΔS

j (A )
)

� ri(A )rΔS

j (A )
}

,

ΩS
i j(A ) :=

{
z ∈ C : (|z−ai···i|)

(
|z−a j··· j|− rΔS

j (A )
)

� ri(A )rΔS

j (A )
}

.

In addition, Zhao et.al [10] obtained the following eigenvalue inclusion region for
tensors on the basis that H -tensors have no zero eigenvalues.
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LEMMA 4.1. [10, Lemma 2] Let A = (ai1i2···im) ∈ C[m×n] . If A is a H -tensor,
then 0 /∈ σ(A ) .

THEOREM 4.6. [10, Theorem 11] Let A = (ai1i2···im) ∈ C[m×n],n � 2 . Then

σ(A ) ⊆ Φ(A ) =
⋂

S⊆N

ΦS(A ),

where

ΦS(A ) =

(⋃
i∈S

ΦS
i (A )

)⋃⎛⎝ ⋃
i∈S, j∈S

ΦS
i, j(A )

⎞⎠ ,

ΦS
i (A ) = {z ∈ C : |z−aii···i| � ri(A ), i ∈ S},

ΦS
i, j(A ) =

{
z ∈ C :

(
|z−aii···i|− rΔS

i (A )
)(

|z−a j j··· j|− rΔS

j (A )
)

� rΔS

i (A )rΔS

j (A )
}

.

Now, we will present a eigenvalue localization set for tensor on basis of Theorem
3.1.

THEOREM 4.7. Let A = (ai1i2···im) ∈ C[m×n],n � 2 . Then

σ(A ) ⊆ Ψ(A ) =

⎛⎝ ⋃
i∈Nσu ,i�= j

Ψ̂i, j(A )

⎞⎠⋃( ⋃
1�σu �=σv�k

Ψ̃i, j(A )

)
,1 � i, j � k,

where

Ψ̂i, j(A ) = {z ∈ C : |z−aii···i| � ri(A ), i ∈ Nσu , i �= j},

Ψ̃i, j(A ) =

{
z ∈ C :

(
|z−aii···i|−αΔNσu

i
i (A )

) 1
m−1

(
|z−a j j··· j|−α

ΔNσv
j

j (A )
)

�
(

β ΔNσu
i

i (A )
) 1

m−1

β
ΔNσv

j
j (A ), i ∈ Nσu , j ∈ Nσv ,1�σu �=σv �k

}
.

Proof. For every eigenvalue λ ∈ σ(A ) , we take

B = (bi1i2···im) = λ I−A .

Then

0 ∈ σ(B),ri(A ) = ri(B),αΔNσu
i

i (A ) = αΔNσu
i

i (B),β ΔNσu
i

i (A ) = β ΔNσu
i

i (B),∀i ∈ N.

We assume λ /∈ Ψ(A ) , then there exists a nonempty subset Nσu ⊆N,Nσu

⋂
Nσv =

/0,1 � i �= j � k such that λ /∈ Ψi, j(A ) . Therefore, we obtain

|z−aii···i| > ri(A ), i ∈ Nσu ,∀i �= j,
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(
|z−aii···i|−αΔNσu

i
i (A )

) 1
m−1

(
|z−a j j··· j|−α

ΔNσv
j

j (A )
)

>

(
β ΔNσu

i
i (A )

) 1
m−1

β
ΔNσv

j
j (A ),

where i ∈ Nσu , j ∈ Nσv ,1 � σu �= σv � k .
Equivalently, we have

|bii···i| > ri(B), i ∈ Nσu ,∀i �= j,(
|bii···i|−αΔNσu

i
i (B)

) 1
m−1

(
|b j j··· j|−α

ΔNσv
j

j (B)
)

>

(
β ΔNσu

i
i (B)

) 1
m−1

β
ΔNσv

j
j (B),

where i ∈ Nσu , j ∈ Nσv ,1 � σu �= σv � k .
According to Theorem 3.1, B is an H -tensor. Furthermore, by Lemma 4.1, we

get 0 /∈ σ(B) . This leads to a contradiction. Therefore, λ ∈ σ(A ) . The proof is
completed.

REMARK 4.1. It is worth noting that Theorem 4.7 is established for every Nσu ⊆
N,1 � i � k,2 � k � n . In other words, no matter how to divide the set N , Ψ(A )
captures all the eigenvalues of tensor A .

If k = 2, that is Nσ1

⊕
Nσ2 = N , σ = {1,2} , then we have the following results

by the Corollary 3.1.

COROLLARY 4.1. Let A = (ai1i2···im) ∈ C[m×n],n � 2 . Then

σ(A ) ⊆ Ψ̂(A ) =

⎛⎝ ⋃
i∈Nσu ,i=1,2,i�= j

Ψ̂i, j(A )

⎞⎠⋃( ⋃
1�σu �=σv�2

Ψ̃i, j(A )

)
.

If k = n and Ni = {i} , that is N = Nσ1

⊕
Nσ2

⊕ · · ·⊕Nσn , then αΔNσu
i

i = 0,β ΔNσu
i

i =
ri(A ), i ∈ N , there is the following conclusion at this time by the Corollary 3.2.

COROLLARY 4.2. Let A = (ai1i2···im) ∈ C[m×n],n � 2 . Then

σ(A ) ⊆ D(A ) =
⋃

i, j∈N
j �=i

Di, j(A ),

where

Di j(A ) =
{

z ∈ C : |z−ai···i| 1
m−1 |z−a j··· j| �

(
ri(A )

) 1
m−1 r j(A )

}
.

There is no doubt that the following result is established.

THEOREM 4.8. Let A = (ai1i2···im) ∈ C[m×n],n � 2 . Then

σ(A ) ⊆ Ψ(A ) ⊆ Γ(A ).



626 J. LIU AND L. XION

Obviously, this new eigenvalue localization region is more precise than Theorem 2.1
[1] from Theorem 4.8. Not only so, we show that Ψ(A ) is tighter than some existing
results.

EXAMPLE 4.1. Let A ∈ R[4×4] be a order 4 dimension 4 real tensor with ele-
ments defined as follows;

a1111 = 10, a2222 = 8, a3333 = 7, a4444 = 5,

a1333 = a1444 = 1, a1211 = a1113 = a1141 = 1,

a1332 = a1442 = a1232 = a1234 = a1321 = a1214 = 1,

a2333 = a2444 = 1, a2112 = a2234 = a2113 = a2343 = a2123 = 1,

a3222 = 1, a3111 = 1,a3121 = a3434 = a3123 = 1,

a4222 = 1, a4111 = 1,a4121 = a4334 = 1,

and other elements are ai1i2i3i4 = 0.

Let S = {1,2} . Evidently, S = {3,4} . By computations, we get that

r1(A )=11,r3
1(A )=10,r4

1(A )=10,rΔS

1 (A )=1,rΔS

1 (A )=10,rΔS

1 (A )=2,rΔS

1 (A )=9,

r2(A ) = 7,r3
2(A ) = 6,r4

2(A ) = 6,rΔS

2 (A ) = 1,rΔS

2 (A ) = 6,rΔS

2 (A ) = 3,rΔS

2 (A ) = 4,

r3(A ) = 5,r1
3(A ) = 4,r2

3(A ) = 4,rΔS

3 (A ) = 3,rΔS

3 (A ) = 2,rΔS

3 (A ) = 4,rΔS

3 (A ) = 1,

r4(A ) = 4,r1
4(A ) = 3,r2

4(A ) = 3,rΔS

4 (A ) = 3,rΔS

4 (A ) = 1,rΔS

4 (A ) = 3,rΔS

4 (A ) = 1.

By Theorem 4.1(Theorem 6 of [1]), we get

σ(A ) ⊆ Γ(A ) = {z ∈ C : −1 � z � 21},
By Theorem 4.3(Theorem 2.2 of [6]), we get

σ(A ) ⊆ K S(A ) = {z ∈ C : −0.7016 � z � 20.3739},
By Theorem 4.4(Theorem 3.1 of [20]), we get

σ(A ) ⊆ ϒS(A ) = {z ∈ C : −0.7016 � z � 20.3739},
By Theorem 4.5(Theorem 4 of [21]), we get

σ(A ) ⊆ ΩS(A ) = {z ∈ C : −0.4641 � z � 19.7823},
By Theorem 4.6(Theorem 11 of [10]), we get

σ(A ) ⊆ Φ(A ) = {z ∈ C : −0.3723 � z � 19.6847},
Next, we will estimate the eigenvalues of this tensor by applying theorem 4.7 and

compare it with the previous results.
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Let k = 3,N =
3⋃

i=1
Ni,N1 = {3,4},N2 = {1},N3 = {2} , σ = (1,2,3) . When Nσu =

N1 ,that is σu = 1, then we have

|z−a3333| � r3(A ), |z−a4444| � r4(A ),(
|z−a3333|−αΔN1

3
3 (A )

) 1
3
(
|z−a1111|−αΔN2

1
1 (A )

)
�
(

β ΔN1
3

3 (A )
) 1

3

β ΔN2
1

1 (A ),(
|z−a3333|−αΔN1

3
3 (A )

) 1
3
(
|z−a2222|−αΔN3

2
2 (A )

)
�
(

β ΔN1
3

3 (A )
) 1

3

β ΔN3
2

2 (A ),(
|z−a4444|−αΔN1

4
4 (A )

) 1
3
(
|z−a1111|−αΔN2

1
1 (A )

)
�
(

β ΔN1
4

4 (A )
) 1

3

β ΔN2
1

1 (A ),(
|z−a4444|−αΔN1

4
4 (A )

) 1
3
(
|z−a2222|−αΔN3

2
2 (A )

)
�
(

β ΔN1
4

4 (A )
) 1

3

β ΔN3
2

2 (A ),

equivalently,

|z−7|� 5, |z−5|� 4,

(|z−7|−1)
1
3 (|z−10|−0) � 4

1
3 ∗ 11, (|z−7|−1)

1
3 (|z−8|−0) � 4

1
3 ∗ 7,

(|z−5|−1)
1
3 (|z−10|−0) � 3

1
3 ∗ 11, (|z−5|−1)

1
3 (|z−8|−0) � 3

1
3 ∗ 7.

By Theorem 4.7 in our result, we obtain⋃
i∈Nσu ,i�= j

Ψ̂i, j(A )=Ψ̂3, j(A )
⋃

Ψ̂4, j(A )={2�z�12}
⋃
{1�z � 9} = {1�z�12},

Ψ̃3,1(A ) = {0.2521 � z � 18.0827}, Ψ̃3,2(A ) = {1.3450 � z � 14.0861},
Ψ̃4,1(A ) = {0.0032 � z � 17.1099}, Ψ̃4,2(A ) = {1.0000 � z � 13.2227},⋃
1�σu �=σv�k

Ψ̃i, j(A ) = Ψ̃3,1(A )
⋃

Ψ̃3,2(A )
⋃

Ψ̃4,1(A )
⋃

Ψ̃4,2(A )

= {0.0032 � z � 18.0827}.
From the above, we have

Ψ(A ) =
( ⋃

i∈Nσu ,i�= j

Ψ̂i, j(A )
)⋃( ⋃

1�σu �=σv�k

Ψ̃i, j(A )
)

= {0.0032 � z � 18.0827},

which implies that eigenvalue inclusion region for tensors in Theorem 4.7 is more pre-
cise than some existing results in some situations.

5. Conclusions

We have introduced exponential type locally generalized strictly double diagonally
dominant tensors. This concept is a natural extension of strictly diagonally dominant
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tensors. Moreover, we have shown that exponential type locally generalized strictly
double diagonally dominant tensors must be H -tensors. On this basis, some checkable
sufficient conditions for the positive definiteness of even-order real symmetric tensors
and several new eigenvalues localization sets for general tensors have being presented.
And some numerical examples are given to illustrate the effectiveness and superiority
of our results.
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