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AN ELEMENTARY THREE-VARIABLE INEQUALITY
WITH CONSTRAINTS FOR THE POWER FUNCTION
OF THE NORMS ON SOME METRIC SPACES

ZHENG L1*, TIE ZHANG AND CHANG-JUN LI

(Communicated by J. Matkowski)

Abstract. A three-variable inequality with constraints for the p-power function of the norms
on some metric spaces is established by an elementary technique. The new inequality performs
sharper than the classical triangle inequality in the case p = 1. The performance of the involved
corollaries are compared with Jensen’s inequality and Clarkson’s inequality.

1. Introduction

The importance of inequalities is evident to each researcher. Mathematicians pre-
sented a lot of powerful inequalities (see [1]-[12]), and benefited from them in return.
Research on the inequality for the power function of norms may not seem very attrac-
tive, but it is actually useful. For example, the Clarkson’s inequality, which is stated as
follows, plays an important role in investigating the convexity of the space LP(Q).

THEOREM 1. (Clarkson’s Inequality)([13, p.44]) Let u,v € LP(Q). Then
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In this paper, we propose a three-variable inequality for the power function of the
norms. The inequality has the type as

[x +yl15+ llx+ 2zl = [lx+y+z[|}+ [|x]|, under condition 1,

[x +yl[5+ [[x+ 2|5 < [lx+y+z[|5+ [|Ix]|}, under condition 2.
Here the function || - ||} represents the p-power function of the norm | - ||, on the given
space. We prove that the new inequality holds not only for the case p =2 on the real
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inner product space, but also for the case 1 < p < e= on some other spaces, such as R
and LP(Q). The special case ” p = 1” of this inequality performs sharper than the well-
known triangle inequality. Moreover, as the corollary of the new inequality, a special
case of Jensen’s inequality, whose performance approximates to the result of Theorem
1, is also given for various cases.

The remaining sections of this article is organized as follows. In Section 2, we
prove that the new inequality holds for ||-||> (i.e. p =2) on the real inner product
space. In Section 3, via an elementary (but effective) procedure we investigate the new
inequality on R for p € [1,0), and get some corollaries. Finally in Section 4 we extend
the discussion to the space LP(Q, p). Based on the primary results of Section 3, we
establish the corresponding inequalities on LP (€, ). A further investigation for the
case |- ||5. ¢ # p, while norms || ||, and || - ||, are equivalent, is researched as well.

2. Results on the real inner product space

Let us look at some enlightening results on the real inner product space X first.
Assume the norm || -|| is induced by the real inner product (-, -) on X, i.e.,

Ix] = (x, )2, ¥xeX. (1)

We have following results.

PROPOSITION 1. Let the norm || -|| be defined as (1). Then for Vx,y,z € X, we
have
e+ 112+ llx+2lf* = ey + 2P+ I, i (v 2) <O
e Y12+ b2l < ety 2P+ e, i (0 2) > 0.

Proof. Since

x4+ y[I% + [l + 2| = e+ v+ 2> = [|x])?
=@+y,x+y)+ @+, x+7) - x+y+z, x+y+z)—(x x)
=(x+y, x+y) +x 0) +2(x, 2) + (2, 2) — (x+p, x+y) —2(x+y, 2) — (2, 2) — (x, x)
=-2(y, ),

we conclude this proposition. [

COROLLARY 1. Under the assumption of Proposition 1, if (y, z) = 0, then for
Vx € X, following equality is true.

ey 117 201 = [l y 2]+ ]

There is another equality which is the well-known “parallelogram law” for the
special case z = —y of Proposition | as follows (see [0, p.568] and [14, p.219]),

ety P+ e =yl2 = ey, x by + oy =y =203 207 @)
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which is also a special case of Clarkson’s inequality. This beautiful equality is an
important reference for the discussion in the remaining sections.

Proposition 1 is essentially an inequality of the inner product, and it enlighten us
to search for similar inequalities on a more general space. To this end, we will first
prepare some primary theoretical tools for the further study.

3. Results on R

Let R denote the set of real numbers and |- | represent the absolute value function
on R. For the given numbers p,A € R which satisfy 1 < p <o and 0 < A <1
respectively, we say p € [1,00) and A € [0,1].

For the given number z € R, we define a function from R to R:

F(x) = x+zP = xlP, pell,e). 3)
The monotonicity of F;(x) is described as follows.

LEMMA 1. The function F,(x) defined by (3) is non-decreasing if z > 0, and non-
increasing if 7 < 0.

Proof. If z > 0, then we have

(x+2z)P —xP, if 0<x<x+gz
F(x)=¢ (x+27—(=1Px", if x<0<x+z
(=D)P[(x+2)? —xP], if x<x+2z<0,

and its derivative function for each case is:
plx+z)P~t—xr71), if 0<x<x+z

F!(x) = plx+2)P 1+ (—x)P71],  if x<0<x+z
=G+ = (0P x<xtz<0.

It follows that F/(x) > 0 for all the three cases, which means F;(x) is non-decreasing
provided z > 0.
Otherwise, if z <0, we let y=x+z,1.e.,, x =y —z, and then

F(x) =P =y =" == (ly—2l" = yI") = =F-=(y).

Noticing (—z) > 0, it follows that F_,(y) is non-decreasing, which implies that F;(x) =
—F_,(y) = —F_,(x+z2) is non-increasing. Thus we prove this lemma. [
Based on Lemma | we obtain some inequalities on R.

PROPOSITION 2. If p € [1, ), then for Vx, y, z € R, we have

|x+ [P+ |x+2|?

> 0; “4)
x4+ [P +]x+2z|P <

x+y+zP+xP, ify-z
\ 0. ©)

<
x+y+zlP+xP, ify-z>
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Proof. Observing the two sides of the inequality (4), we have

left —right = |x+y|” + |x+z|" — (Jx +y+ [P + |x|?)
=[x+ = [x7 = (x+z4+y|P — [x+2]P),
= Fy(x) = F(x+2),

where the function F(x) is defined as (3). Hence it follows from Lemma 1 that

. >0, if y>0,z<0;0r y<0,z>0;
left_rlght{é& if y>0,z>0;0r y<0,z<0.

Therefore, we get (4) and (5), and complete the proof. [J
REMARK 1. The special case p =1 of Proposition 2 is

x+y|+x+z=x+y+zl+x], VxeR, y-2<0;
x+y|+x+z| <|x+y+z|+|x],VxeR, y-z>0.

Compared with the corresponding results of triangle inequality

[x+y|+x+z| > 2x+y+2z|;
2x+y+z| < |x+y+z|+ |x],

inequality (6) is obviously performs sharper.
Some corollaries are derived immediately.
COROLLARY 2. If p €[, o), then for ¥x, y € R and A € [0, 1], we have

et y1P 4 e = yIP = 2[A P + (1= 2) y)P].

Proof. Let z = —y in inequality (4), it yields
e+ 317+ x =yl =27,

and
[ +y17 + x = y|7 = [y +x|P + [y —x|” > 2|y|F.

(6)

(7

Therefore, |x+ y|” + |x —y|P should not be less than any convex combination of 2|x|?

and 2|y|?. The proof is completed. [J

For arbitrary numbers u, v € R, there always exist numbers x, y € R, so that

Uu=x+y, v=x-—y,

where
x=w+v)/2, y=w—v)/2.

Hence Corollary 2 can be restated as the following equivalent form.
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COROLLARY 3. If p € [1, o), then for Vu, v € R and A € [0, 1], we have
P
] . (8)

REMARK 2. The special case A = 1 of Corollary 3 leads to the following inequal-
ity

p

u-+v +(1_7L)

2

u—v

2

ul? + [v|P =2 [/1

p

Py |ylp
|u‘ |V| = 9 p S [1’ 00)7

2 =

u-+v
2

which is a special case of Jensen’s inequality.

REMARK 3. The special case p =1, A = 1 of Corollary 3 coincides with the
triangle inequality
lu|+|v| = lu+v],

which indicates that Corollary 3 generalizes the triangle inequality on R.

COROLLARY 4. If p € [1, =), then for Vx, y € R and A € [0, 1], following in-
equality is true.

[AP? 4 (L= )17+ Alx+ 297 + (1= A) |y +24(7). ©)

N —

e+ ylP <

Proof. Let z =y in inequality (5), it follows that
20x+y|P <+ 297+ [xf”,

and symmetrically
20x+ 3|7 =2[y +x|P < [y +2x|7 + [y]”.

Therefore, we have
2x+yP <A (e +297 + [x|P) + (1 = 24) (ly+2x["+ [y]?), VA €]0,1],

and prove the inequality (9). O

4. Results on LP(Q, 1)
Next we apply the primary results to the well-known metric space. Let (Q, 1) be

a measure space, and p € [1,e0). The space L?(Q, ) is defined as the collection of
equivalence classes of measurable functions for which ||f[|q, , < e, Vf € LP(Q,u),

where
I/p
1l p = ( /. Iflf’du> (10)
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is the p-normon L?(Q, ) (see [1], [14]). In this article, for the given fi, f> € LP(Q, 1)
we define the subsets associated with the value of f; and f; as follows.

E_(f1, f2) ={x € Q| fi(x) /2(x) <0}, (11)
EL(f1, o) ={x€ Q] fi(x) f2(x) > 0}, (12)
Eo(f1, f2) = {x € Q| fi(x)f2(x) = 0}, (13)

It is obvious that

Q=E_(fi, L)UE+(fi. L) UEo(f1, f2),

and for arbitrary vectors f, f1, f» € LP(Q, 1), the relationship between the p-power
functions of the corresponding norms can be expressed as follows:

T I P 74 ey 7 | S,

”fHE (1. )UE(fi f)op T ||fHE+ (f1./2), p

p
=l (.ot ”fH& (1. ) UE(fi. o). p
Based on the results on R, we have following results.

PROPOSITION 3. [If p € [1, ), then for Vf, g, h € LP(E, ), following inequal-
ities are true.

P 14 14
1+ 8l 15+ Al = 17 +8 412 s+ 12 e mUsen. »

I+ elz, n p I HRIE o 0 (14)
If +8l6,, +If+2lig, , <N +8+AlE, o myuren. p T IFIE, (o 1)U e 1), »
I+ 8lz gnpt I HRIE )y (15)

Proof. We will mainly prove the inequality (14). It follows from (4) that
P P
1+ &1z (. mUEoe. 1. p T I FlE_ (0. U (e, 1.0

-/ e 7 +g(x)|”du +/ e 1O F RO
-/ (100 + (017 + [ £(x) + h(x)|”] dt
(8. h)UEo(g. h)
> [ 109 +809 + RO+ £ (from (4)
(g, h)UEo(g, h

_”f"'g"'hHE (g, W)UEo(g, ), + Hf”E (& W) UEo(g, ), p
Therefore,
1f +28llg, , + I1f +Allg, , =1+ 8% (o myUrote.n). p T I TAIE (¢ 1y UEs(e. ). o
T +812, o, +Hf+h||mh
p
2| f+g+hlg (&, W) UEo(g.h),p T ||fHE (& WUEo(g. ), p
T80, o, +Hf+h||mh
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the inequality (14) is proved.

637

The proof for inequality (15) is a simple modification of above process, thus be

omitted. [J

COROLLARY 5. If p € [1, o), then for Vf, g € LP(Q,u), A €0, 1], following

inequalities hold.
1+l + 17 =8l , = 2 [AAI ,+ (1= D)lglh ]

f+el? p
A1+ gl >2 AH |
Q,p

2

+(1—A>H¥

Q,p

(16)

a7

1
I +8llf, < 5 [MUAIG,+ (= lglf, ,+ 217+ 2805, + (1= A) 127+ g1,

Proof. Let h = —g in inequality (14). It is obvious that £ (g, —g) =0 and

Q=E_(g, —g)|JEo(g. —g)-

Thus, it follows from (14) that

1F+elfy ,+1f =gl , > 2115 .

and

£ 48l , +If —sllg,, =g+ flig,, + 18— fllg, , = 2llgllg, -

Alternately, let & = g in inequality (15). In this case, E_(g, g) =0 and

Q :E+(g, g)UEO(& g)7

hence it follows from (15) that

20lf +8llg, , < If +28llg, , 1718, »»

and symmetrically
27 +glh,, < 127 +gllh, + lglh -

(18)

19)

(20)

21

(22)

Therefore, according to inequalities (19), (20), (21), (22) and similar to the analysis
of Corollary 2, Corollary 3 and Corollary 4 one can deduce inequalities (16), (17) and

(18), and complete this proof. [l

REMARK 4. The special case A = 1/2” of inequalities (16) and (17) yield

f—zg|”
+HT

fteg
I +8l5,,+ 1 gl |55

a.p = e, , + lelle, , >

P
Q,p

Q,p

)
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which has following equivalent form

u+vl?

2

u—v

2

lllg, , + IVIlg, , >

I 1
= ||~ ~ )
Q.p 2 Q. p 2 Q. p

iflet f=(u+v)/2, g= (u—v)/2. The performance of above inequality approxi-
mates (but less precise than) that of Clarkson’s inequality. Comparatively speaking,
the advantage of Corollary 5 lies in its wider scope of application since it holds for

pE [17°°)'

Q, p

We have to point out that the above discussion requires that the norm || - ||, ,
depends on the parameter p which is also the exponent of the power function. A natural
question is whether there is an appropriate inequality for the p-power function of an
arbitrary norm || - || 4 while g # p. The complete study of this issue await further
research in the future, and here we prepare a narrow answer for the case that the two
involved norms are equivalent.

DEFINITION 1. ([14], [15]) We say the two norms || - ||, and || - ||, are equivalent
on space Y, if there exist real positive constants m and M such that

ml|fllp < |Ifllg <Ml|fllp, VfeY. (23)

In fact, (23) holds for all the finite-dimensional spaces, such as ¥ = R" (see [15]).

COROLLARY 6. Let p € [1, o) and norm || -||q,, be defined by (10). Suppose
norms ||-||q,q and || - ||q, p satisfy the relation as (23), and the constants m and M are
defined by (23), then for Vf, g € LP(Q,u), A € [0, 1], the following inequalities are
true.

m\?»~r
I+ 8l + 1 —elbg =2 (57) MG+ =D)lglh,] 24)
» p myr |, |l f+g|” PN
U1+l >2(57) || 52 +a-n)FE | 25)
P LN e LA llel A lf2el? (1A 2f el
Ir+elh <5 (o) [RIAIG o+ A=D)lgl + A1 +28l5 +(1=2) 121 +elf ) -

(26)
Proof. Because
1+ 8l + 17 =gl g =m [If+8lh,+ 17 —gllh ] (From (23))
>2m? (MG, ,+ (1= Al | - (From (16))

m\Pp
22 (2 [MFl, (- B)lgll, ] (from (23)
the inequality (24) is proved.
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Inequality (25) is equivalent to inequality (24), and its proof is omitted.
As for the inequality (26), we have

1F+ellf , <MPlf+glby, (from (23))

1
<M (MG, ,+ (1= 2)lglf, , + R 1f +26llf ,+ (L= )lI2f + 85,
(from (18))
1 /M\?
<5 (5) (M1 4+ (- 2)llelf g+ 217+ 2615, o+ (- DI+l
(from (23))

Thus we get inequality (26) and complete this proof. [
We recall that L?(Q, 1) is an inner product space. Therefore, according to equality
(2) and similar to the analysis as Corollary 6 we give following corollary.

COROLLARY 7. Assume norm || - ||q, > is defined by (10) (p=2). Suppose norms
|- lle,q and || - ||@,2 satisfy the relation as (23), and the constants m and M are defined
by (23), then for Vf, g € L*(Q, W), the following inequalities hold.

m 2
I+ 8l g+ 1 =8l >2(37) (IF112 g+ lslg) @7)
11+ il g > 2 () (|12 =ty (28)
Q. q 8 Q. q 7 M ) 04 ) 0.4 .

Proof. Since

1f +8l1% o+ 1S —8lie, g = m” (If +
=2m® (| f13, 2+ I8l ) (from (2)

52 () (11 + elBsy) (from (23)

a2t/ —sllds)  (from (23))

we obtain inequality (27). Inequality (28) can be obtained similarly. []

5. Conclusion

By some elementary technique we establish a three-variable inequality for the p-
power function of the norms on some metric spaces, such as the inner product space
and L”(Q, u). However, there are still some problems that need further study, namely,

(i) Does the inequality still hold for || - ||7 where the norm || - ||, is not equivalent to
the norm || - ||, ?

(ii) Does the inequality hold for a more generalized metric space?
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Further research and the improvement or generalization on the existing primary work
is undoubtedly the next goal in the future.
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