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SHARP WILKER AND HUYGENS TYPE INEQUALITIES FOR

TRIGONOMETRIC AND INVERSE TRIGONOMETRIC FUNCTIONS

BO ZHANG ∗ AND CHAO-PING CHEN

(Communicated by E. Neuman)

Abstract. In this paper, we prove Wilker and Huygens type inequalities for inverse trigonometric
functions. This solves two conjectures proposed by Chao-Ping Chen. Also, we present new sharp
Wilker and Huygens type inequalities for trigonometric functions.

1. Introduction

Wilker in [23] proposed two open problems:

(a) Prove that if 0 < x < π/2, then

(
sinx
x

)2

+
tanx

x
> 2. (1.1)

(b) Find the largest constant c such that(
sinx
x

)2

+
tanx

x
> 2+ cx3 tanx

for 0 < x < π/2.

In [22], inequality (1.1) was proved, and the following inequality

2+
(

2
π

)4

x3 tanx <

(
sinx
x

)2

+
tanx

x
< 2+

8
45

x3 tanx for 0 < x <
π
2

, (1.2)

where the constants

(
2
π

)4

and
8
45

are the best possible, was also established.

Wilker type inequalities (1.1) and (1.2) have attracted much interest of many math-
ematicians and have motivated a large number of research papers involving different
proofs and various generalizations and improvements (cf. [6,7,8,9,13,14,18,15,16,17,
19, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and the references cited therein). A brief survey
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of some old and new inequalities associated with trigonometric functions can be found
in [21]. These include (among other results) Wilker’s inequality.

Another inequality which is of interest to us is Huygens inequality [10], which
asserts that

2

(
sinx
x

)
+

tanx
x

> 3 for all 0 < |x| < π
2

. (1.3)

Neuman and Sándor [18] have pointed out that (1.3) implies (1.1).
It is known in the literature that

(cosx)1/3 <
sinx
x

<
2+ cosx

3
for all 0 < |x| < π

2
. (1.4)

The left-hand side inequality (1.4) first appeared in [12, p. 238]. The left-hand side of
(1.4) can be rewritten as

(
sinx
x

)2 tanx
x

> 1

⎛
⎝or

3

√(
sinx
x

)2 tanx
x

> 1

⎞
⎠ for all 0 < |x| < π

2
. (1.5)

Baricz and Sándor [4] have pointed out that inequality (1.5) implies (1.1) and (1.3), by
using the arithmetic-geometric mean inequality.

The right-hand side inequality (1.4) was first mentioned by the German philoso-
pher and theologian Nicolaus de Cusa (1401-1464), by a geometrical method. A rigor-
ous proof of the right-hand side inequality (1.4) was given by Huygens [10], who used
the right-hand side of (1.4) to estimate the number π . The right-hand side inequality
(1.4) is now known as Cusa’s inequality [13, 18, 32, 20]. Further interesting historical
facts about Cusa’s inequality can be found in [20].

Wu and Srivastava [26, Lemma 3] established another inequality( x
sinx

)2
+

x
tanx

> 2 for all 0 < |x| < π
2

. (1.6)

Neuman and Sándor [18, Theorem 2.3] proved that for 0 < |x| < π/2,

sinx
x

<
2+ cosx

3
<

1
2

( x
sinx

+ cosx
)

. (1.7)

By multiplying both sides of inequality (1.7) with x/sinx , we obtain that for 0 < |x| <
π/2,

1
2

[( x
sinx

)2
+

x
tanx

]
>

2(x/sinx)+ x/ tanx
3

> 1. (1.8)

The second inequality in (1.8) is equivalent to the second inequality in (1.4).
Chen and Sándor [8] proved the following inequality chain:

(sinx/x)2 + tanx/x
2

>

(
sinx
x

)2 (
tanx

x

)
>

2(sinx/x)+ tanx/x
3

>

(
sinx
x

)2/3 (
tanx

x

)1/3

>
1
2

[( x
sinx

)2
+

x
tanx

]
>

2(x/sinx)+ x/ tanx
3

> 1 (1.9)
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for 0 < |x| < π/2.
In 2012, Chen [5] proved that for 0 < x < 1,

2+
17
45

x3 arctanx <

(
arcsinx

x

)2

+
arctanx

x
(1.10)

and

3+
7
20

x3 arctanx < 2

(
arcsinx

x

)
+

arctanx
x

, (1.11)

where the constants 17
45 and 7

20 are the best possible.
Also in [5], Chen proposed the following two conjectures.

CONJECTURE 1.1. For 0 < x < 1, we have(
arcsinx

x

)2

+
arctanx

x
< 2+

π2 + π −8
π

x3 arctanx. (1.12)

The constant π2+π−8
π is the best possible.

CONJECTURE 1.2. For 0 < x < 1, we have

2

(
arcsinx

x

)
+

arctanx
x

< 3+
5π −12

π
x3 arctanx. (1.13)

The constant 5π−12
π is the best possible.

Conjectures 1.1 and 1.2 were proved in 2017 by Malešević et al. [11]. The proofs
of these authors are rather complex. In this paper, we provide a simple proof of in-
equalities (1.10)-(1.13) (Theorems 2.1 and 2.2). Also, we present new sharp Wilker
and Huygens type inequalities for trigonometric functions. More precisely, we prove
the following inequality chain:

2+
1
9
x3 tanx <

x
tanx

+
tanx

x
< 2+

(
2
π

)4

x3 tanx

<

(
2+ cosx

3

)2

+
tanx

x
< 2+

17
90

x3 tanx

for 0 < x < π/2, where the constants 1
9 ,

(
2
π
)4

and 17
90 are the best possible (Theorems

2.3 and 2.4).
The following lemma will be useful in our present investigation.

LEMMA 1.1. (see [1, 2, 3]) Let −∞ < a < b < ∞ , and let f , g : [a,b] → R be
continuous on [a,b] , differentiable on (a,b) . Let g′ (x) �= 0 on (a,b) . If f ′ (x)/g′ (x)
is increasing (decreasing) on (a,b) , then so are

[ f (x)− f (a)]/ [g(x)−g(a)] and [ f (x)− f (b)]/ [g(x)−g(b)] .

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

The numerical values given have been calculated using the computer program
MAPLE 13.
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2. Results

THEOREM 2.1. For 0 < x < 1 ,

2+
17
45

x3 arctanx <

(
arcsinx

x

)2

+
arctanx

x
< 2+

π2 + π −8
π

x3 arctanx, (2.1)

where the constants 17
45 and π2+π−8

π are the best possible.

Proof. For 0 < x < 1, let

f (x) =

(
arcsinx

x

)2
+ arctan x

x −2

x3 arctanx
.

Elementary calculations reveal that

lim
x→0+

f (x) =
17
45

= 0.377 . . . and lim
x→1−

f (x) =
π2 + π −8

π
= 1.595 . . . .

In order to prove Theorem 2.1, it suffices to show that f (x) is strictly increasing on
(0,1) .

For 0 � x < 1, let

f1(x) =

(
arcsinx

x

)2
+ arctan x

x −2

x3 , f1(0) = lim
x→0+

f1(x) = 0

and

f2(x) = arctanx.

Then, we have, for 0 < x < 1,

f (x) =
f1(x)
f2(x)

=
( arcsinx

x )2
+ arctanx

x −2

x3

arctanx
.

Elementary calculation reveals that

f ′1(x)
f ′2(x)

=
1+ x2

x3

{
2arcsinx

x2
√

1− x2
− 5

x

(
arcsinx

x

)2

− 4
x

(
arctanx

x

)
+

1
x(1+ x2)

+
6
x

}
.

It is easy to see that

d
dx

(
arcsinx

x

)2

=
2arcsinx

x2
√

1− x2
− 2

x

(
arcsinx

x

)2

.

Using the expansion [5, Lemma 2]

(arcsinx)2 =
∞

∑
n=0

22n+1 · (n!)2

(2n+2)!
x2n+2, 0 < |x| < 1, (2.2)
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we find

2arcsinx

x2
√

1− x2
=

d
dx

(
arcsinx

x

)2

+
2
x

(
arcsinx

x

)2

=
∞

∑
n=0

22n+2(n+1) · (n!)2

(2n+2)!
x2n−1.

We then obtain

f ′1(x)
f ′2(x)

=
1+ x2

x3

{
∞

∑
n=0

22n+2(n+1) · (n!)2

(2n+2)!
x2n−1−

∞

∑
n=0

5 ·22n+1 · (n!)2

(2n+2)!
x2n−1

−
∞

∑
n=0

(−1)n4
2n+1

x2n−1 +
∞

∑
n=0

(−1)nx2n−1 +
6
x

}

=
17
45

+8
∞

∑
n=3

anx
2n−4

=
17
45

+
92
315

x2 +
92
105

x4 +
7864
10395

x6 +
175064
189189

x8 + . . . ,

where

an =
22n−3(8n3−10n2−13n−5)Γ(n)2

Γ(2n+3)
+

(−1)n

4n2−1
.

By induction on n , it is easy to show that for n � 3,

Γ(n)2

Γ(2n+3)
>

1
22n−3(8n3−10n2−13n−5)(4n2−1)

(we here omit the proof), which yields an > 0 for n � 3. We then obtain

(
f ′1(x)
f ′2(x)

)′
> 0 for 0 < x < 1.

Therefore, the functions f ′1(x)/ f ′2(x) is strictly increasing on (0,1) . By Lemma 1.1,
the function

f (x) =
f1(x)
f2(x)

=
f1(x)− f1(0)
f2(x)− f2(0)

is strictly increasing on (0,1) . The proof of Theorem 2.1 is complete.

THEOREM 2.2. For 0 < x < 1 ,

3+
7
20

x3 arctanx < 2

(
arcsinx

x

)
+

arctanx
x

< 3+
5π −12

π
x3 arctanx, (2.3)

where the constants 7
20 and 5π−12

π are the best possible.
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Proof. For 0 < x < 1, let

F(x) =
2
(

arcsinx
x

)
+ arctan x

x −3

x3 arctanx
.

Elementary calculations reveal that

lim
x→0+

F(x) =
7
20

= 0.35 and lim
x→1−

F(x) =
5π −12

π
= 1.18028 . . . .

In order to prove Theorem 2.2, it suffices to show that F(x) is strictly increasing on
(0,1) .

For 0 � x < 1, let

F1(x) =
2
( arcsinx

x

)
+ arctan x

x −3

x3 , F1(0) = lim
x→0+

F1(x) = 0

and

F2(x) = arctanx.

Then, we have, for 0 < x < 1,

F(x) =
F1(x)
F2(x)

=
2( arcsinx

x )+ arctanx
x −3

x3

arctanx
.

Elementary calculations reveal that

F ′
1(x)

F ′
2(x)

=
1+ x2

x4

{
2√

1− x2
+

1
1+ x2 −8

(
arcsinx

x

)
−4

(
arctanx

x

)
+9

}

=
1+ x2

x4

{
∞

∑
n=0

2Γ(n+ 1
2 )√

πΓ(n+1)
x2n +

∞

∑
n=0

(−1)nx2n

−
∞

∑
n=0

(2n)!
22n−3(n!)2(2n+1)

x2n −
∞

∑
n=0

(−1)n4
2n+1

x2n +9

}

=
1+ x2

x4

∞

∑
n=2

{
2(2n−3)Γ(n+ 1

2 )
(2n+1)

√
πΓ(n+1)

+ (−1)n 2n−3
2n+1

}
x2n

=
7
20

+
∞

∑
n=2

{
(16n3 +12n2−20n−19)Γ(n+ 1

2)
(n+1)

√
πΓ(n+1)

− (−1)n8

}
x2n−2

(2n+1)(2n+3)

=
7
20

+
53
280

x2 +
313
448

x4 +
755
1408

x6 +
49897
73216

x8 + . . . .

By induction on n , it is easy to show that for n � 2,

Γ(n+ 1
2 )√

πΓ(n+1)
>

8(n+1)
16n3 +12n2−20n−19
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(we here omit the proof), which yields

(16n3 +12n2−20n−19)Γ(n+ 1
2 )

(n+1)
√

πΓ(n+1)
− (−1)n8 > 0 for n � 2.

We then obtain (
F ′

1(x)
F ′

2(x)

)′
> 0 for 0 < x < 1.

Therefore, the functions F ′
1(x)/F ′

2(x) is strictly increasing on (0,1) . By Lemma 1.1,
the function

F(x) =
F1(x)
F2(x)

=
F1(x)−F1(0)
F2(x)−F2(0)

is strictly increasing on (0,1) . The proof of Theorem 2.2 is complete.

THEOREM 2.3. For 0 < x < π/2 ,

2+
1
9
x3 tanx <

x
tanx

+
tanx

x
< 2+

(
2
π

)4

x3 tanx, (2.4)

where the constants 1
9 and

(
2
π
)4

are the best possible.

Proof. For 0 < x < π/2, let

g(x) =
x

tanx + tanx
x −2

x3 tanx
.

Elementary calculations give that

lim
x→0+

g(x) =
1
9

= 0.111111 . . . and lim
x→π/2−

g(x) =
(

2
π

)4

= 0.164255 . . ..

In order to Theorem 2.3, it suffices to show that g(x) is strictly increasing for 0 < x <
π/2.

Differentiating g(x) and using the power series expansions of sinx and cosx , we
obtain

x5 sin3 x
2

g′(x)

=(x2−2)sin3 x−3xcos3 x+(3x− x3)cosx

=(x2−2)
(

3sinx− sin(3x)
4

)
−3x

(
3cosx+ cos(3x)

4

)
+(3x− x3)cosx

=
2

135
x9− 17

4725
x11 +

23
56700

x13− 3713
130977000

x15 +
∞

∑
n=8

(−1)nun(x), (2.5)
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where

un(x) =
(4n2−16n+9)9n+96n3−36n2−24n−9

12 · (2n+1)!
x2n+1.

Elementary calculations show that for 0 < x < π/2 and n � 8,

un+1(x)
un(x)

=
3x2

2
(12n2−24n−9)9n+9+64n+84n2+32n3

(1+n)(2n+3)
(
(4n2−16n+9)9n+96n3−36n2−24n−9

)
<

3(π/2)2

2
(12n2−24n−9)9n+9+64n+84n2+32n3

(1+n)(2n+3)(4n2−16n+9)9n

<
9
2

12n2−24n−9+ xn

(1+n)(2n+3)(4n2−16n+9)
,

where

xn =
9+64n+84n2+32n3

9n .

Noting that the sequence {xn} is strictly decreasing for n � 8, we have

xn � x8 =
7427

14348907
.

We then obtain

un+1(x)
un(x)

<
9
2

12n2−24n−9+ 7427
14348907

(1+n)(2n+3)(4n2−16n+9)
< 1.

Hence, for every x∈ (0,π/2) , the sequence n �−→ un(x) is strictly decreasing for n � 8.
Therefore, we obtain from (2.5) that

x5 sin3 x
2

g′(x) > x9
(

2
135

− 17
4725

x2 +
23

56700
x4− 3713

130977000
x6

)
> 0.

Hence, the function g(x) is strictly increasing for x ∈ (0,π/2) . The proof of Theorem
2.3 is complete.

THEOREM 2.4. For 0 < x < π/2 ,

2+
(

2
π

)4

x3 tanx <

(
2+ cosx

3

)2

+
tanx

x
< 2+

17
90

x3 tanx, (2.6)

where the constants
(

2
π
)4

and 17
90 are the best possible.
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Proof. For 0 < x < π/2, let

h(x) =

(
2+cosx

3

)2 + tanx
x −2

x3 tanx
.

Elementary calculations give that

lim
x→0+

h(x) =
17
90

= 0.1888888 . . . and lim
x→π/2−

h(x) =
(

2
π

)4

= 0.164255 . . . .

In order to Theorem 2.4, it suffices to show that h(x) is strictly decreasing for 0 < x <
π/2.

Differentiating h(x) and using the power series expansions of sinx and cosx , we
obtain

−9x5 sin2 xh′(x)

=3xsinxcos3 x+12xsinxcos2 x−42xsinxcosx−2x2 cos4 x−4x2 cos3 x

+3x2 cos2 x+8x2 cosx+36sin2 x−14x2

=− 53
4

x2 +18+3xsinx− 81
4

xsin(2x)+3xsin(3x)+
3
8
xsin(4x)

+5x2 cosx−18cos(2x)+
1
2
x2 cos(2x)− x2 cos(3x)− 1

4
x2 cos(4x)

=
11
42

x8 − 1961
12600

x10 +
60769

1663200
x12− 115223

22702680
x14 +

∞

∑
n=8

(−1)nvn(x), (2.7)

where

vn(x) =
(2n2−7n)16n−(16n2−656n+576)4n+

(
128
9 n2− 640

9 n
)
9n−640n2+128n

32·(2n)! x2n.

Elementary calculations show that for 0 < x < π/2 and n � 8,

vn+1(x)
vn(x)

=
72x2

(2n+1)(n+1)
P(n)
Q(n)

<
72(π/2)2

(2n+1)(n+1)
P(n)
Q(n)

<
178P(n)

(2n+1)(n+1)Q(n)
,

(2.8)

where

P(n) = (2n2−3n−5)16n+(8n2−24n−32)9n

− (4n2−156n−16)4n−40n2−72n−32

and

Q(n) = (18n2−63n)16n +(128n2−640n)9n−1

− (144n2−5904n+5184)4n−5760n2 +1152n.
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We claim that for n � 8,

R(n) > 0, (2.9)

where

R(n) = (2n+1)(n+1)Q(n)−178P(n)

= (36n4−72n3−527n2 +471n+890)16n− (1296n2−3632n−5696)9n

+
(
3200+22440(n−39)+568(n−39)2

)
4n +1360n2 +13968n+5696.

By direct computation, we find that (2.9) holds for n = 8,5, ...,39. We prove now
(2.9) for n � 40, it suffices to show that(

16
9

)n

>
1296n2−3632n−5696

36n4−72n3−527n2 +471n+890
, n � 40. (2.10)

For n = 40, elementary calculations show that[(
16
9

)n

− 1296n2−3632n−5696
36n4−72n3−527n2 +471n+890

]
n=40

=
21125648099669692144278649784718245365463382958383913376

2136540416021163806782770363146770002914542755
> 0,

which shows that the inequality (2.10) holds true for n = 40.
We assume now that the inequality (2.10) holds true for a fixed positive integer

n � 40, we try to obtain it for n+1. By inductive assumption, we have(
16
9

)n+1

− 1296(n+1)2−3632(n+1)−5696
36(n+1)4−72(n+1)3−527(n+1)2+471(n+1)+890

>

(
16
9

)
1296n2−3632n−5696

36n4−72n3−527n2 +471n+890

− 1296(n+1)2−3632(n+1)−5696
36(n+1)4−72(n+1)3−527(n+1)2+471(n+1)+890

=
16S(n)
9T (n)

,

where

S(n) = 85639613888892+12836987226692(n−40)+800704481739(n−40)2

+26601591562(n−40)3+496464759(n−40)4+4934988(n−40)5

+20412(n−40)6

and

T (n) = 8317213816424940+1672218300452028(n−40)

+146979332535359(n−40)2+7376539810632(n−40)3

+231207222769(n−40)4+4634506656(n−40)5

+58017672(n−40)6+414720(n−40)7+1296(n−40)8.
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We then obtain(
16
9

)n+1

>
1296(n+1)2−3632(n+1)−5696

36(n+1)4−72(n+1)3−527(n+1)2+471(n+1)+890
.

The proof of the inequality (2.10) is thus completed by means of the principle of math-
ematical induction on n .

Hence, the claim (2.9) holds for n � 8. We then obtain from (2.8) that

vn+1(x)
vn(x)

< 1

for 0 < x < π/2 and n � 8. Hence, for every x ∈ (0,π/2) , the sequence n �−→ vn(x)
is strictly decreasing for n � 8. Therefore, we obtain from (2.7) that

−9x5 sin2 xh′(x) > x8
(

11
42

− 1961
12600

x2 +
60769

1663200
x4− 115223

22702680
x6

)
> 0

for 0 < x < π/2, which implies h′(x) < 0 for 0 < x < π/2. Hence, the function h(x)
is strictly decreasing on (0,π/2) . The proof of Theorem 2.4 is complete.
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