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ON THE WILKER AND HUYGENS–TYPE INEQUALITIES

CHAO-PING CHEN ∗ AND RICHARD B. PARIS

(Communicated by N. Elezović)

Abstract. Chen and Cheung [3] established sharp Wilker and Huygens-type inequalities. These
authors also proposed three conjectures on Wilker and Huygens-type inequalities. In this paper,
we consider these conjectures. We also present sharp Wilker and Huygens-type inequalities.

1. Introduction

Wilker [18] proposed the following two open problems:
(a) Prove that if 0 < x < π/2, then

(
sinx
x

)2

+
tanx

x
> 2. (1.1)

(b) Find the largest constant c such that(
sinx
x

)2

+
tanx

x
> 2+ cx3 tanx

for 0 < x < π/2. In [17], the inequality (1.1) was proved, and the following inequality

2+
(

2
π

)4

x3 tanx <

(
sinx
x

)2

+
tanx

x
< 2+

8
45

x3 tanx, 0 < x <
π
2

(1.2)

was also established, where the constants (2/π)4 and 8
45 are the best possible.

The Wilker-type inequalities (1.1) and (1.2) have attracted much interest of many
mathematicians and have motivated a large number of research papers involving differ-
ent proofs, various generalizations and improvements (cf. [1,2,3,6,8,10,11,12,13,14,
15, 16, 19, 20, 21, 22, 23, 25, 26, 27, 28] and the references cited therein).

A related inequality that is of interest to us is Huygens’ inequality [9], which
asserts that

2

(
sinx
x

)
+

tanx
x

> 3, 0 < |x| < π
2

. (1.3)

Mathematics subject classification (2010): 26D05.
Keywords and phrases: Wilker and Huygens-type inequalities, trigonometric functions, Bernoulli

numbers.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-14-44

685

http://dx.doi.org/10.7153/jmi-2020-14-44


686 C.-P. CHEN AND R. B. PARIS

Wu and Srivastava [21, Lemma 3] established another inequality( x
sinx

)2
+

x
tanx

> 2, 0 < |x| < π
2

. (1.4)

Neuman and Sándor [15, Theorem 2.3] proved that for 0 < |x| < π/2,

sinx
x

<
2+ cosx

3
<

1
2

( x
sinx

+ cosx
)

. (1.5)

By multiplying both sides of inequality (1.5) by x/sinx , we obtain that for 0 < |x| <
π/2,

1
2

[( x
sinx

)2
+

x
tanx

]
>

2(x/sinx)+ x/ tanx
3

> 1. (1.6)

Chen and Sándor [6] established the following inequality chain:

(sinx/x)2 + tanx/x
2

>

(
sinx
x

)2( tanx
x

)
>

2(sinx/x)+ tanx/x
3

>

(
sinx
x

)2/3( tanx
x

)1/3

>
1
2

[( x
sinx

)2
+

x
tanx

]
>

2(x/sinx)+ x/ tanx
3

> 1 (1.7)

for 0 < |x| < π/2.
In analogywith (1.2), Chen and Cheung [3] established sharp Wilker and Huygens-

type inequalities. For example, these authors proved that for 0 < x < π/2,

2+
8
45

x4 +
16
315

x5 tanx <

(
sinx
x

)2

+
tanx

x
< 2+

8
45

x4 +
(

2
π

)6

x5 tanx, (1.8)

where the constants 16
315 and (2/π)6 are best possible,

( x
sinx

)2
+

x
tanx

< 2+
2
45

x3 tanx, (1.9)

where the constant 2
45 is best possible, and

3+
3
20

x3 tanx < 2

(
sinx
x

)
+

tanx
x

< 3+
(

2
π

)4

x3 tanx, (1.10)

where the constants 3
20 and (2/π)4 are best possible.

In view of (1.8), (1.9) and (1.10), Chen and Cheung [3] posed the following con-
jectures.

CONJECTURE 1.1. For 0 < x < π/2 and n � 3,

2+
n

∑
k=3

(
2(22k −1)|B2k|− (−1)k

)
22k−1

(2k)!
x2k−2
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+

(
2(22n+2−1)|B2n+2|− (−1)n+1

)
22n+1

(2n+2)!
x2n−1 tanx

<

(
sinx
x

)2

+
tanx

x
<2+

n

∑
k=3

(
2(22k−1)|B2k|−(−1)k

)
22k−1

(2k)!
x2k−2+

(
2
π

)2n

x2n−1 tanx,

where Bn (n ∈ N0,N0 = N∪{0},N := {1,2, . . .}) are the Bernoulli numbers, defined
by

t
et −1

=
∞

∑
n=0

Bn
tn

n!
, |t| < 2π .

CONJECTURE 1.2. For 0 < x < π/2 and n � 1,

( x
sinx

)2
+

x
tanx

< 2+
n

∑
k=2

(k−1) ·22k+1|B2k|
(2k)!

x2k +
n ·22n+3|B2(n+1)|

(2n+2)!
x2n+1 tanx.

Here, and throughout this paper, an empty sum is understood to be zero.

CONJECTURE 1.3. For 0 < x < π/2 and n � 2,

3+
n

∑
k=3

(
22k(22k −1)|B2k|

4k
− (−1)k

)
2

(2k−1)!
x2k−2

+
(

22n+2(22n+2−1)|B2n+2|
4(n+1)

− (−1)n+1
)

2
(2n+1)!

x2n−1 tanx

<2

(
sinx
x

)
+

tanx
x

<3+
n

∑
k=3

(
22k(22k −1)|B2k|

4k
− (−1)k

)
2

(2k−1)!
x2k−2 +

(
2
π

)2n

x2n−1 tanx.

Recently, Chen and Paris [4] proved Conjecture 1.2. This paper is a continuation of our
earlier work [4]. The first aim of the present paper is to prove Conjectures 1.1 and 1.3.

Mortici [11, Theorem 1] presented the following double inequality:

2+
(

8
45

− 8
945

x2
)

x3 tanx <

(
sinx
x

)2

+
tanx

x

< 2+
(

8
45

− 8
945

x2 +
16

14175
x4
)

x3 tanx, 0 < x < 1.

(1.11)

By using Maple software, we find that

(
sinx
x

)2
+ tanx

x −2

x3 tanx
=

8
45

− 8
945

x2 +
16

14175
x4 +

8
467775

x6 +
3184

638512875
x8
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+
272

638512875
x10 +

7264
162820783125

x12 + · · · . (1.12)

This fact led us to claim that the upper bound in (1.11) should be the lower bound. The
second aim of the present paper is to prove the following inequality:

2+
(

8
45

− 8
945

x2 +
16

14175
x4
)

x3 tanx <

(
sinx
x

)2

+
tanx

x

<2+
(

8
45

− 8
945

x2 +
241920−2688π4+32π6

945π8 x4
)

x3 tanx, 0 < x <
π
2

, (1.13)

where the constants 16
14175 and (241920−2688π4+32π6)/(945π8) are the best possi-

ble.

REMARK 1.1. The inequalities (1.13) are sharper than the inequalities (1.2) and
(1.8).

In analogy with (1.13), we here determine the best possible constants α,β ,λ ,μ ,ρ , and
� such that

2+
(

2
45

− 2
315

x2−αx4
)

x3 tanx<
( x

sinx

)2
+

x
tanx

<2+
(

2
45

− 2
315

x2−βx4
)

x3 tanx,

3+
(

3
20

+
1

280
x2+λx4

)
x3 tanx<2

(
sinx
x

)
+

tanx
x

<3+
(

3
20

+
1

280
x2+μx4

)
x3 tanx

and

3+
(

1
60

− 1
280

x2−ρx4
)

x3 tanx<2
( x

sinx

)
+

x
tanx

<3+
(

1
60

− 1
280

x2−�x4
)

x3 tanx

for 0 < x < π/2. This is the last aim of the present paper.

2. A useful lemma

It is well known that

tanx =
∞

∑
n=1

22n(22n−1)|B2n|
(2n)!

x2n−1, |x| < π
2

, (2.1)

By using induction, Chen and Qi [5] (see also [24]) proved the following

LEMMA 2.1. Let n � 1 be an integer. Then for 0 < x < π/2 , we have

22n+2(22n+2−1)|B2n+2|
(2n+2)!

x2n tanx < tanx−
n

∑
k=1

22k(22k −1)|B2k|
(2k)!

x2k−1
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<

(
2
π

)2n

x2n tanx, (2.2)

where the the constants

22n+2(22n+2−1)|B2n+2|
(2n+2)!

and

(
2
π

)2n

are the best possible.

3. Main results

THEOREM 3.1. For 0 < x < π/2 and n � 3 , we have(
(−1)n22n+1

(2n+2)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
x2n−1 tanx

<

(
sinx
x

)2

+
tanx

x
−
{

2+
n

∑
k=3

(
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2

}

<

(
2
π

)2n

x2n−1 tanx. (3.1)

Proof. First of all, we prove the first inequality in (3.1). By using the power series
expansions for cosx and tanx , we have(

sinx
x

)2

+
tanx

x
=

1
2x2 −

1
2x2 cos(2x)+

tanx
x

= 2+
n

∑
k=3

(
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2 + rn(x),

where

rn(x) =
∞

∑
k=n+1

(
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2.

The first inequality in (3.1) is equivalent to(
(−1)n22n+1

(2n+2)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
x2n−1 tanx < rn(x)

for 0 < x < π/2 and n � 3, which can be written by (2.1) as

∞

∑
k=n+2

{(
(−1)n22n+1

(2n+2)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
22k−2n(22k−2n−1)|B2k−2n|

(2k−2n)!

−
(

(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)}
x2k−2 < 0,
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where we note that the term corresponding to k = n+1 vanishes.
We claim that for k � n+2,(

(−1)n22n+1

(2n+2)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
22k−2n(22k−2n−1)|B2k−2n|

(2k−2n)!

<
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

. (3.2)

It is enough to prove the following inequality:(
22n+1

(2n+2)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
22k−2n(22k−2n−1)|B2k−2n|

(2k−2n)!

<− 22k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

, k � n+2.

Using the following inequality (see [7]):

2

(2π)2n (1−2−2n)
<

|B2n|
(2n)!

<
2

(2π)2n (1−21−2n)
, n � 1, (3.3)

it suffices to show that for k � n+2,(
22n+1

(2n+2)!
+

22n+2(22n+2−1)2

(2π)2n+2 (1−21−2(n+1)
)
)

22k−2n(22k−2n−1)2

(2π)2k−2n (1−21−2(k−n)
)

<− 22k−1

(2k)!
+

22k(22k −1)2

(2π)2k (1−2−2k)
,

which can be rearranged as(
22n+1

(2n+2)!
+

2(22n+2−1)
22n+2−2

(
2
π

)2n+2
)

22k−2n−1
22k−2n−2

(
2
π

)2k−2n

+
22k−2

(2k)!
<

(
2
π

)2k

,

(
22n+1

(2n+2)!
+2

(
1+

1
22n+2−2

)(
2
π

)2n+2
)(

1+
1

22k−2n−2

)(π
2

)2n

+
22k−2

(2k)!

(π
2

)2k
< 1, k � n+2.

Noting that the sequences

1+
1

22k−2n−2
and

22k−2

(2k)!

(π
2

)2k

are both strictly decreasing for k � n+2, it suffices to show that(
22n+1

(2n+2)!
+2

(
1+

1
22n+2−2

)(
2
π

)2n+2
)

15
14

(π
2

)2n
+

22n+2

(2n+4)!

(π
2

)2n+4
< 1
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for n � 3, which can be rearranged as

22n+1

(2n+2)!

(π
2

)2n+2
+

1
22n+1−1

+
22n+2

(2n+4)!

(π
2

)2n+6
(

14
15

)
<

14
15

(π
2

)2
−2, n � 3.

Noting that the sequence

an :=
22n+1

(2n+2)!

(π
2

)2n+2
+

1
22n+1−1

+
22n+2

(2n+4)!

(π
2

)2n+6
(

14
15

)
, n � 3

is strictly decreasing, we see that

an � a3 =
1

127
+

π8

80640
+

π12

62208000
<

14
15

(π
2

)2
−2

holds true for n � 3, since

1
127

+
π8

80640
+

π12

62208000
= 0.14039705 . . .,

14
15

(π
2

)2
−2 = 0.30290769 . . . .

This proves the claim (3.2). Hence, the first inequality in (3.1) holds for 0 < x < π/2
and n � 3.

Secondly, we prove the second inequality in (3.1). We consider two cases.
Case 1. n = 2N +1 (N � 1).
It is well known that for x �= 0,

2N

∑
k=1

(−1)k−1 x2k−2

(2k−2)!
< cosx <

2N+1

∑
k=1

(−1)k−1 x2k−2

(2k−2)!
.

We then obtain that(
sinx
x

)2

=
1

2x2 −
1

2x2 cos(2x) <
2N+1

∑
k=1

(−1)k−1 22k−1

(2k)!
x2k−2. (3.4)

The choice n = 2N +1 in (2.2), we obtain from the right-hand inequality of (2.2) that

tanx
x

<
2N+1

∑
k=1

22k(22k −1)|B2k|
(2k)!

x2k−2 +
(

2
π

)4N+2

x4N+1 tanx. (3.5)

Adding these two expressions, we obtain(
sinx
x

)2

+
tanx

x
< 2+

2N+1

∑
k=3

(
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2

+
(

2
π

)4N+2

x4N+1 tanx.

This shows that the second inequality in (3.1) holds for n = 2N +1.
Case 2. n = 2N (N � 2).
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Write(
sinx
x

)2

+
tanx

x
= 2+

2N

∑
k=3

(
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2

+
∞

∑
k=2N+1

(
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2.

We need to prove

∞

∑
k=2N+1

(
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2 <

(
2
π

)4N

x4N−1 tanx. (3.6)

Noting that (2.1) holds, we can rewrite (3.6) as

∞

∑
k=2N+1

{
(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

−
(

2
π

)4N 22k−4N(22k−4N −1)|B2k−4N|
(2k−4N)!

}
x2k−2 < 0.

We claim that for k � 2N +1,

(−1)k−122k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

<

(
2
π

)4N 22k−4N(22k−4N −1)|B2k−4N|
(2k−4N)!

. (3.7)

It is enough to prove the following inequality:

22k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

<

(
2
π

)4N 22k−4N(22k−4N −1)|B2k−4N|
(2k−4N)!

, k � 2N +1.

(3.8)

Using (3.3), we find that for k � 2N +1,

22k+2(22k+2−1)|B2k+2|
(2k+2)!

22k(22k −1)|B2k|
(2k)!

<

22k+2(22k+2−1)2

(2π)2k+2 (1−21−2(k+1)
)

22k(22k −1)2

(2π)2k (1−2−2k)

=
2(4k −2)(4 ·4k−1)

π2(4k −1)(2 ·4k−1)
< 1

(3.9)

and1

22k−4N+2(22k−4N+2−1)|B2k−4N+2|
(2k−4N +2)!

22k−4N(22k−4N −1)|B2k−4N|
(2k−4N)!

>

22k−4N+2(22k−4N+2−1)2

(2π)2k−4N+2 (1−2−2(k−2N+1)
)

22k−4N(22k−4N −1)2

(2π)2k−4N (1−21−2(k−2N)
)

1The inequality (3.10) is proved in the appendix.
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=
16k+N+1−(8 ·256N+64N)4k+1+8 ·1024N

π2(4k −16N)(4k+1−16N)
>1.

(3.10)

Hence, the sequence

22k−1

(2k)!
+

22k(22k −1)|B2k|
(2k)!

is strictly decreasing, and the sequence

(
2
π

)2N 22k−2N(22k−2N −1)|B2k−2N|
(2k−2N)!

is strictly increasing for k � 2N +1. In order to prove (3.8), it suffices to show that for
k � 2N +1,

24N+1

(4N +2)!
+

24N+2(24N+2−1)|B4N+2|
(4N +2)!

<

(
2
π

)4N 22(22 −1)|B2|
2!

=
(

2
π

)4N

. (3.11)

By (3.3), it suffices to show that

24N+1

(4N +2)!
+

24N+2(24N+2−1)2

(2π)4N+2 (1−21−2(2N+1)
) <

(
2
π

)4N

,

24N+1

(4N +2)!
+2

(
1+

1
24N+2−2

)(
2
π

)4N+2

<

(
2
π

)4N

,

24N+1

(4N +2)!

(π
2

)4N+2
+

1
24N+1−1

<
(π

2

)2
−2, N � 2.

Noting that the sequence

bN :=
24N+1

(4N +2)!

(π
2

)4N+2
+

1
24N+1−1

, N � 2

is strictly decreasing, we see that

bN � b2 =
1

511
+

π10

7257600
<
(π

2

)2
−2

holds true for N � 2, since

1
511

+
π10

7257600
= 0.0148603 . . .,

(π
2

)2
−2 = 0.4674011 . . . .

This proves the claim (3.7). Hence, (3.6) holds, which shows that the second inequality
in (3.1) holds for n = 2N . Thus, the second inequality in (3.1) holds for 0 < x < π/2
and n � 3. The proof of Theorem 3.1 is complete.
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THEOREM 3.2. For 0 < x < π/2 and n � 2 , we have(
2(−1)n

(2n+1)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
x2n−1 tanx

<2

(
sinx
x

)
+

tanx
x

−
{

3+
n

∑
k=3

(
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2

}

<

(
2
π

)2n

x2n−1 tanx. (3.12)

Proof. First of all, we prove the first inequality in (3.12). By using the power
series expansions for sinx and tanx , we have

2

(
sinx
x

)
+

tanx
x

= 3+
n

∑
k=3

(
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2 +Rn(x),

where

Rn(x) =
∞

∑
k=n+1

(
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2.

The first inequality in (3.12) is equivalent to(
2(−1)n

(2n+1)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
x2n−1 tanx < Rn(x)

for 0 < x < π/2 and n � 2, which can be written by (2.1) as

∞

∑
k=n+2

{(
2(−1)n

(2n+1)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
22k−2n(22k−2n−1)|B2k−2n|

(2k−2n)!

−
(

2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)}
x2k−2 < 0,

where we note that the term corresponding to k = n+1 vanishes.
We claim that for k � n+2,(

2(−1)n

(2n+1)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
22k−2n(22k−2n−1)|B2k−2n|

(2k−2n)!

<
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

. (3.13)

It is enough to prove the following inequality:(
2

(2n+1)!
+

22n+2(22n+2−1)|B2n+2|
(2n+2)!

)
22k−2n(22k−2n−1)|B2k−2n|

(2k−2n)!
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<− 2
(2k−1)!

+
22k(22k −1)|B2k|

(2k)!
, k � n+2.

Using (3.3), it suffices to show that for k � n+2,(
2

(2n+1)!
+

22n+2(22n+2−1)2

(2π)2n+2 (1−21−2(n+1)
)
)

22k−2n(22k−2n−1)2

(2π)2k−2n (1−21−2(k−n)
)

<− 2
(2k−1)!

+
22k(22k −1)2

(2π)2k (1−2−2k)
,

which can be rearranged as(
1

(2n+1)!
+

22n+2−1
22n+2−2

(
2
π

)2n+2
)

2(22k−2n−1)
22k−2n−2

(
2
π

)2k−2n

+
1

(2k−1)!
<

(
2
π

)2k

,

(
1

(2n+1)!
+
(

1+
1

22n+2−2

)(
2
π

)2n+2
)

2

(
1+

1
22k−2n−2

)(π
2

)2n

+
1

(2k−1)!

(π
2

)2k
< 1, k � n+2.

Noting that the sequences

2

(
1+

1
22k−2n−2

)
and

1
(2k−1)!

(π
2

)2k

are both strictly decreasing for k � n+2, it suffices to show that(
1

(2n+1)!
+
(

1+
1

22n+2−2

)(
2
π

)2n+2
)

15
7

(π
2

)2n
+

1
(2n+3)!

(π
2

)2n+4
< 1

for n � 2, which can be rearranged as

1
(2n+1)!

(π
2

)2n+2
+

1
22n+2−2

+
1

(2n+3)!

(π
2

)2n+6
(

7
15

)
<

7
15

(π
2

)2
−1, n � 2.

Noting that the sequence

xn :=
1

(2n+1)!

(π
2

)2n+2
+

1
22n+2−2

+
1

(2n+3)!

(π
2

)2n+6
(

7
15

)
, n � 2

is strictly decreasing, we see that

xn � x2 =
1
62

+
π6

7680
+

π10

11059200
<

7
15

(π
2

)2
−1

holds true for n � 2, since

1
62

+
π6

7680
+

π10

11059200
= 0.1497778 . . .,

7
15

(π
2

)2
−1 = 0.1514538 . . . .
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This proves the claim (3.13). Hence, the first inequality in (3.12) holds for 0 < x < π/2
and n � 2.

Secondly, we prove the second inequality in (3.12). We consider two cases.
Case 1. n = 2N +1 (N � 1).
It is well known that for x �= 0,

2N

∑
k=1

(−1)k−1 x2k−2

(2k−1)!
<

sinx
x

<
2N+1

∑
k=1

(−1)k−1 x2k−2

(2k−1)!
. (3.14)

From the second inequality in (3.14) and (3.5), we obtain

2

(
sinx
x

)
+

tanx
x

< 3+
2N+1

∑
k=3

(
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2

+
(

2
π

)4N+2

x4N+1 tanx.

This shows that the second inequality in (3.12) holds for n = 2N +1.
Case 2. n = 2N (N � 1).
Write

2

(
sinx
x

)
+

tanx
x

= 3+
2N

∑
k=3

(
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2

+
∞

∑
k=2N+1

(
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2.

We need to prove

∞

∑
k=2N+1

(
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

)
x2k−2 <

(
2
π

)4N

x4N−1 tanx. (3.15)

Noting that (2.1) holds, we can rewrite (3.15) as

∞

∑
k=2N+1

{
2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

−
(

2
π

)4N 22k−4N(22k−4N −1)|B2k−4N|
(2k−4N)!

}
x2k−2 < 0.

We claim that for k � 2N +1,

2(−1)k−1

(2k−1)!
+

22k(22k −1)|B2k|
(2k)!

<

(
2
π

)4N 22k−4N(22k−4N −1)|B2k−4N|
(2k−4N)!

. (3.16)

It is enough to prove the following inequality:

2
(2k−1)!

+
22k(22k −1)|B2k|

(2k)!
<

(
2
π

)4N 22k−4N(22k−4N −1)|B2k−4N|
(2k−4N)!

, k � 2N +1.

(3.17)
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By (3.9) and (3.10), we see that the sequence

2
(2k−1)!

+
22k(22k −1)|B2k|

(2k)!

is strictly decreasing, and the sequence(
2
π

)2N 22k−2N(22k−2N −1)|B2k−2N|
(2k−2N)!

is strictly increasing for k � 2N + 1. In order to prove (3.17), it suffices to show that
for k � 2N +1,

2
(4N +1)!

+
24N+2(24N+2−1)|B4N+2|

(4N +2)!
<

(
2
π

)4N 22(22 −1)|B2|
2!

=
(

2
π

)4N

. (3.18)

By (3.3), it now suffices to show that

2
(4N +1)!

+
24N+2(24N+2−1)2

(2π)4N+2 (1−21−2(2N+1)
) <

(
2
π

)4N

,

which can be rearranged as(
2
π

)4N+2 1
(4N +1)!

+
1

24N+2−2
<

π2

8
−1, N � 1.

Noting that the sequence

yN :=
(

2
π

)4N+2 1
(4N +1)!

+
1

24N+2−2
, N � 1

is strictly decreasing, we see that

yN � y1 =
π4

48384
<

π2

8
−1

holds true for N � 1, since

π4

48384
= 0.00201325 . . .,

π2

8
−1 = 0.23370055 . . . .

This proves the claim (3.16). Hence, (3.15) holds, which shows that the second in-
equality in (3.12) holds for n = 2N . Thus, the second inequality in (3.12) holds for
0 < x < π/2 and n � 2. The proof of Theorem 3.2 is complete.

THEOREM 3.3. For 0 < x < π/2 , we have

2+
(

8
45

− 8
945

x2 +ax4
)

x3 tanx <

(
sinx
x

)2

+
tanx

x
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< 2+
(

8
45

− 8
945

x2 +bx4
)

x3 tanx (3.19)

with the best possible constants

a =
16

14175
= 0.001128 . . . and b =

241920−2688π4+32π6

945π8 = 0.001209 . . ..

(3.20)

Proof. The inequality (3.19) can be written as

a < f (x) < b,

where

f (x) =
1
x4

((
sinx
x

)2
+ tanx

x −2

x3 tanx
−
(

8
45

− 8
945

x2
))

.

Direct computations yield

lim
x→0

f (x) =
16

14175
and lim

x→π/2
f (x) =

241920−2688π4+32π6

945π8 .

In order to prove (3.19), it suffices to show that f (x) is strictly increasing on (0,π/2) .
Differentiation yields

f ′(x) =
g(x)

945x10 sin2 x
,

with

g(x) = 6615x2 sin(2x)−8505sin3 xcosx−8505x+1890x3

+10395xcos2 x−1890xcos4 x+672x5 sin2 x−16x7 sin2 x

= 6615x2 sin(2x)−8505

(
1
4

sin(2x)− 1
8

sin(4x)
)
−8505x+1890x3

+
10395

2
x
(
1+ cos(2x)

)
−1890x

(
1
8

cos(4x)+
1
2

cos(2x)+
3
8

)

+336x5
(
1− cos(2x)

)
−8x7

(
1− cos(2x)

)
=

16
495

x13 +
496

61425
x15− 64

26325
x17 +

∞

∑
n=9

(−1)n−1un(x),

where

un(x) =
(
945n ·22n−1−16065 ·22n−2+16n7−112n6 +952n5
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−1960n4 +889n3 +13727n2−2172n
) 22nx2n+1

(2n+1)!
, n � 9.

Direct computation yields

un+1(x)
un(x)

=
8x2pn

qn
,

where

pn =(1890n−16065)4n+16n7+616n5+1680n4+889n3+12810n2+24309n+11340

and

qn = (n+1)(2n+3)
(
(1890n−16065)4n+64n7−448n6 +3808n5

−7840n4 +3556n3 +54908n2−8688n
)
.

Noting that 8(π/2)2 < 20, we find that for 0 < x < π/2 and n � 9,

un+1(x)
un(x)

<
8(π/2)2pn

qn
<

20pn

qn
< 1,

since2

qn−20pn > 0 for n � 9. (3.21)

Therefore, for fixed x ∈ (0,π/2) , the sequence n �→ un(x) is strictly decreasing for
n � 9. Hence, for 0 < x < π/2,

g(x) >
16
495

x13 +
496

61425
x15− 64

26325
x17 =

16
495

x13 +
16x15(93−28x2)

184275
> 0.

We then obtain that f ′(x) > 0 for 0 < x < π/2. The proof of Theorem 3.3 is complete.
Following the same method used in the proof of Theorem 3.3, we can prove the

following theorem.

THEOREM 3.4. For 0 < x < π/2 , we have

2+
(

2
45

− 2
315

x2 −αx4
)

x3 tanx <
( x

sinx

)2
+

x
tanx

< 2+
(

2
45

− 2
315

x2−βx4
)

x3 tanx, (3.22)

3+
(

3
20

+
1

280
x2 + λx4

)
x3 tanx < 2

(
sinx
x

)
+

tanx
x

2The inequality (3.21) is proved in the appendix.
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< 3+
(

3
20

+
1

280
x2 + μx4

)
x3 tanx (3.23)

and

3+
(

1
60

− 1
280

x2−ρx4
)

x3 tanx < 2
( x

sinx

)
+

x
tanx

< 3+
(

1
60

− 1
280

x2−�x4
)

x3 tanx, (3.24)

with the best possible constants

α =
224−8π2

315π4 = 0.004727 . . . , β =
4

1575
= 0.002539 . . ., (3.25)

λ =
23

33600
= 0.000684 . . ., μ =

17920−168π4−π6

70π8 = 0.000894 . . . (3.26)

and

ρ =
56−3π2

210π4 = 0.0012901 . . ., � =
83

100800
= 0.0008234 . . .. (3.27)

Proof. We only prove inequality (3.24). The proofs of (3.22) and (3.23) are anal-
ogous. The inequality (3.24) can be written as

ρ > F(x) > �,

where

F(x) =
1
x4

(
−2
(

x
sinx

)
+ x

tanx −3

x3 tanx
+
(

1
60

− 1
280

x2
))

.

Direct computations yield

lim
x→0

F(x) =
83

100800
and lim

x→π/2
F(x) =

56−3π2

210π4 .

In order to prove (3.24), it suffices to show that F(x) is strictly increasing on (0,π/2) .
Differentiation yields

F ′(x) =
G(x)

420x8 sin3 x
,

with

G(x) = 2520xsin(2x)+ (2520x−3x5+28x3)sinxcos2 x

+(3x5−1260x−28x3)sinx+(840x2−8820)cosx+840x2 cos2 x

+8820cos3 x+840x2
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= 2520xsin(2x)+ (2520x−3x5+28x3)
(

1
4

sinx+
1
4

sin(3x)
)

+(3x5−1260x−28x3)sinx+(840x2−8820)cosx+420x2
(
1+ cos(2x)

)
+8820

(
1
4

cos(3x)+
3
4

cosx

)
+840x2

=
∞

∑
n=6

(−1)nUn(x),

where

Un(x)=
(
(8n5−40n4+238n3−302n2−33924n+178605)9n−(34020n2+187110n)4n

−5832n5+29160n4−64638n3−215298n2+222588n−178605
) x2n

81 · (2n)!
.

Direct computation yields

Un+1(x)
Un(x)

=
9x2Pn

2Qn
,

where

Pn =(8n5 +158n3 +252n2−33934n+144585)9n− (15120n2 +113400n+98280)4n

−648n5−32508n2−34938n−23625−702n3

and

Qn = (2n+1)(n+1)
(
(8n5−40n4 +238n3−302n2−33924n+178605)9n

− (34020n2 +187110n)4n−5832n5 +29160n4−64638n3

−215298n2+222588n−178605
)
.

Noting that 9
2

(π
2

)2
< 12, we find that for 0 < x < π/2 and n � 6,

Un+1(x)
Un(x)

<
9(π/2)2Pn

2Qn
<

12Pn

Qn
< 1,

since3

Qn−12Pn > 0 for n � 6. (3.28)

Therefore, for fixed x ∈ (0,π/2) , the sequence n �→ Un(x) is strictly decreasing for
n � 6. Hence, we have

G(x) > 0, 0 < x <
π
2

.

We then obtain that F ′(x) > 0 for 0 < x < π/2. Hence, the inequality (3.24) holds with
the best possible constants given in (3.27). The proof is complete.

3The inequality (3.28) is proved in the appendix.
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REMARK 3.1. The upper bound in (3.22) is sharper than the upper bound in (1.9).
The inequalities (3.23) are sharper than the inequalities (1.10).

REMARK 3.2. Chen and Paris [4] showed that for 0 < x < π/2,

3+ θ1x
3 tanx < 2

( x
sinx

)
+

x
tanx

< 3+ θ2x
3 tanx (3.29)

with the best possible constants

θ1 = 0 and θ2 =
1
60

.

The double inequality (3.24) is an improvement on the double inequality (3.29).

Appendix A: Proof of (3.10)

Noting that π2 < 10, in order to prove (3.10), it suffices to show that for k �
2N +1,

16k+N+1− (8 ·256N +64N)4k+1 +8 ·1024N−10(4k−16N)(4k+1−16N)

=
(
(42N+2−40) ·4k +50 ·16N −32 ·256N−4 ·64N

)
4k +(8 ·1024N−10 ·256N)

>0. (A.1)

We see that for k � 2N +1,

(42N+2 −40) ·4k +50 ·16N −32 ·256N−4 ·64N

>(42N+2 −40) ·42N+1 +50 ·16N−32 ·256N−4 ·64N

=224 ·256N −590 ·16N−4 ·64N > 0

and

8 ·1024N −10 ·256N > 0.

Hence, (A.1) holds for k � 2N +1.

Appendix B: Proof of (3.21)

qn−20pn =
(
3780n3−22680n2−112455n+273105

)
4n +128n9−576n8 +5248n7

+2016n6−32984n5+70476n4+250052n3−134916n2−512244n−226800

=
(
179550+397845(n−9)+79380(n−9)2+3780(n−9)3

)
4n

+49648561200+46968464520(n−9)+19975332000(n−9)2

+5019956996(n−9)3+822741108(n−9)4+91303912(n−9)5

+6864480(n−9)6+337024(n−9)7+9792(n−9)8+128(n−9)9

> 0 for n � 9.
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Appendix C: Proof of (3.28)

We now show that for n � 6,

Qn−12Pn = (16n7−56n6 +268n5−70412n3+252112n2+909099n−1556415)9n

+70n4 ·9n−(68040n4+476280n3+413910n2−1173690n−1179360)4n

− (11664n7−40824n6+39852n5 +595350n4+256932n3−485352n2

−106029n−104895)> 0.

It suffices to show that for n � 6, (
9
4

)n

> An, (C.1)

where

An =
68040n4 +476280n3+413910n2−1173690n−1179360

16n7−56n6 +268n5−70412n3 +252112n2+909099n−1556415
,

and

9n >
1

70n4

(
11664n7−40824n6+39852n5 +595350n4+256932n3−485352n2

−106029n−104895
)
. (C.2)

By induction with respect to n , we can prove the inequalities (C.1) and (C.2).
Here, we only prove the inequality (C.1). The proof of (C.2) is analogous.

For n = 6 in (C.1), we find that

(
9
4

)6

=
531441
4096

= 129.746 . . . and A6 =
3138660
27229

= 115.269 . . . .

This shows that (C.1) holds for n = 6.
Now we assume that (C.1) holds for some n � 6. Then, for n �→ n+ 1 in (C.1),

by using the induction hypothesis, we have

(
9
4

)n+1

−An+1 >
9
4
An−An+1 =

2835Rn

2SnTn
,

where

Rn =960n11+12384n10+73088n9+256200n8−3508908n7−22121984n6+50474996n5

+274552068n4−445858781n3−777353865n2+997107984n−660306024

= 878926761468+1894841991720(n−6)+1695853296525(n−6)2

+849645117283(n−6)3+268187103036(n−6)4+56595283460(n−6)5
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+8234103112(n−6)6+835076820(n−6)7+58479432(n−6)8+2716928(n−6)9

+75744(n−6)10+960(n−6)11,

Sn = 16n7−56n6 +268n5−70412n3 +252112n2+909099n−1556415

= 1715427+679323(n−6)+1087672(n−6)2+509908(n−6)3+98760(n−6)4

+10348(n−6)5+616(n−6)6+16(n−6)7

and

Tn = 16n7 +56n6 +268n5 +1060n4−68292n3 +43052n2+1203203n−465388

= 4102070+4834979(n−6)+3323012(n−6)2+1021308(n−6)3+160300(n−6)4

+14380(n−6)5+728(n−6)6+16(n−6)7.

Hence, we have (
9
4

)n+1

> An+1.

Thus, by the principle of mathematical induction, the inequality (C.1) holds for n � 6.
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their applications, Publ. Math. Debrecen 75 (2009) 447–458.
[21] S.-H. WU, H. M. SRIVASTAVA,A weighted and exponential generalization of Wilker’s inequality and

its applications, Integral Transforms and Spec. Funct. 18 (2007) 529–535.
[22] S.-H. WU AND H. M. SRIVASTAVA, A further refinement of Wilker’s inequality, Integral Transforms

and Spec. Funct. 19 (2008) 757–765.
[23] L. ZHANG AND L. ZHU, A new elementary proof of Wilker’s inequalities, Math. Inequal. Appl. 11

(2008) 149–151.
[24] J.-L. ZHAO, Q.-M. LUO, B.-N.GUO, F. QI, Remarks on inequalities for the tangent function, Hacet.

J. Math. Stat. 41 (2012), no. 4, 499–506.
[25] L. ZHU, A new simple proof of Wilker’s inequality, Math. Inequal. Appl. 8 (2005) 749–750.
[26] L. ZHU, Some new Wilker-type inequalities for circular and hyperbolic functions, Abstr. Appl. Anal.

2009 (2009), Article ID 485842, http://www.hindawi.com/journals/aaa/2009/485842/.
[27] L. ZHU, A source of inequalities for circular functions, Comput. Math. Appl. 58 (2009) 1998–2004.
[28] L. ZHU, Inequalities for Hyperbolic functions and their Applications, J. Inequal. Appl. 2010 (2010),

Article ID 130821,
http://www.emis.de/journals/HOA/JIA/Volume2010/130821.abs.html.

(Received July 18, 2016) Chao-Ping Chen
School of Mathematics and Informatics

Henan Polytechnic University
Jiaozuo City 454000, Henan Province, China

e-mail: chenchaoping@sohu.com

Richard B. Paris
Division of Computing and Mathematics

University of Abertay
Dundee, DD1 1HG, UK

e-mail: R.Paris@abertay.ac.uk

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


